JPS6215605B2 - - Google Patents

Info

Publication number
JPS6215605B2
JPS6215605B2 JP56022539A JP2253981A JPS6215605B2 JP S6215605 B2 JPS6215605 B2 JP S6215605B2 JP 56022539 A JP56022539 A JP 56022539A JP 2253981 A JP2253981 A JP 2253981A JP S6215605 B2 JPS6215605 B2 JP S6215605B2
Authority
JP
Japan
Prior art keywords
lance
gas
molten steel
slag
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56022539A
Other languages
Japanese (ja)
Other versions
JPS57137411A (en
Inventor
Hajime Nashiwa
Takeshi Katogi
Kyoshi Ichihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2253981A priority Critical patent/JPS57137411A/en
Publication of JPS57137411A publication Critical patent/JPS57137411A/en
Publication of JPS6215605B2 publication Critical patent/JPS6215605B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は純酸素上吹転炉(所謂LD転炉)又は
複合吹錬炉等の転炉における溶鋼の精錬法に関す
る。 上吹転炉における溶鋼の精錬は転炉の上部開口
から炉内にランスを鉛直挿入し、該ランスから純
酸素ガスを溶鋼に吹付けて溶鋼を撹拌しつつ脱炭
し、更に転炉内に投入された媒溶剤が滓化して生
成した溶融スラグとの反応によつて脱燐、脱硫等
を施すことにより行われる。ところで転炉精錬に
おいては溶鋼の脱炭及び撹拌が主要な制御対象で
あるため、ランスと転炉内に装入された溶銑等の
主原料の重量から算出される溶鋼湯面との距離並
びに送酸速度等のランスからの酸素ガスのブロー
強度を指標として精錬条件が決定される。而して
脱燐反応をコントロールするためには滓化制御を
行う必要があるが、滓化促進のために、ランス位
置を高くしてランスと溶鋼湯面との距離を大きく
とる所謂ソフトブローの操業を行うことにより、
ランスから吹込まれる酸素ガスが鋼中のFe分の
酸化に消費される量と、鋼中のCの酸化に消費さ
れる量との比、即ちFe/Cへの酸素分配比の増
加を図り、スラグ中にFeOを多量に生成せしめて
スラグの酸化度を上げ、且つ融点を下げる方法が
採られる。しかしながらこの場合にソフトブロー
が過大に過ぎるとスラグ中への鉄分ロスが徒らに
増加して精錬歩留が低下する外、スラグがフオー
ミング(foaming)過剰となつてスロツピングが
発生し或はスラグラインの耐火物溶損が激しくな
るという不都合がある。 一方上吹転炉の底部に羽口を嵌着設置して該羽
口から溶鋼の撹拌用のガスを導入し得るようにし
た複合吹錬炉における精錬は、上吹転炉における
精錬同様上吹ランスからの吹込酸素ガスにより主
として脱炭を図り、スラグとの反応により脱燐、
脱硫を図るのであるが、更に炉底から溶鋼中に
Ar,CO2,O2,炭化水素等のガスを導入して鋼
浴を撹拌することにより、鋼浴の撹拌力を強化し
て酸素吹錬による脱炭効率の向上を図り、また鋼
浴中を浮上する気泡によるCOガス分圧低下効果
としてのC脱酸(溶鋼中のCとOとの反応)を図
ることによつて、終点炭素含有量等を高精度で制
御することができる。この複合吹錬においては羽
口からの底吹ガスにより溶鋼が冷却されるという
欠点があるが、スラグのフオーミングが上吹転炉
精錬に比して軽度であるため上吹ランスは比較的
高い位置に設定することができる。このため上吹
ランスからの酸素ジエツトにより火点で発生した
COガスが酸化されてCO2ガスとなり、この酸化
反応によつて発生する熱を溶鋼顕熱として捉える
ことにより、底吹ガスによる溶鋼冷却を補償する
ことができる。然るに上吹ランス位置が高い程
CO2ガスの生成量が増加するのであるが、これが
高過ぎる場合は炉内上方で燃焼して生成するCO2
ガス量が増大し、反応熱を溶鋼顕熱として捉えら
れないのに対し、転炉の排ガス中に含まれている
COガスを回収して熱源として利用する排ガス回
収システムにおけるCOガスの回収量低下、及び
上吹ランスから吹込まれる酸素ガスが有効に溶鋼
の脱炭反応に寄与する割合、即ち反応効率の低下
をもたらすという不都合が生ずる。またランス高
さが低い場合は底吹ガスによる溶鋼冷却を補償す
るに十分なCOガスの燃焼が起きない。 本発明は斯かる技術的背景のもとになされたも
のであつて、転炉内に生成するスラグレベルを計
測して該スラグレベルに基きランス高さを調節す
ることにより、FeO生成量を精細に制御してスラ
グのフオーミング過剰等を招来することなく適切
に滓化制御し得、また酸素ジエツトによるCO2
ス生成量を徒らに増加させて種々の不都合をもた
らすことなく、必要最小限のCOガス燃焼により
溶鋼顕熱を効率良く得ることができる転炉精錬法
を提供することを目的とする。 本発明に係る転炉精錬法は、転炉の上部開口か
らランスを挿入し該ランスから酸素ガスを溶鋼に
吹付けて精錬する転炉精錬法において、転炉の上
方に距離計を設置してスラグレベルを計測し、こ
の計測結果に基いて前記ランスのスラグレベルに
対する相対位置を調節することを特徴とする。 上述した如く滓化制御又は溶鋼顕熱のコントロ
ールを行うべくランス高さを高めに調節すると、
スラグがフオーミング過剰になり易く、またCO
ガスの燃焼熱のうち溶鋼顕熱として捉えられず、
無駄に廃棄されるものが増加し易いという不都合
が生ずるのであるが、本願発明者はこのような不
都合が生ずる原因について種々検討した結果、従
来の転炉精錬法においては精錬条件、特にランス
高さがランスと溶鋼湯面との距離を指標として決
定されており、ランスと溶鋼湯面上に浮遊してい
る溶融スラグの面(スラグレベル)との距離につ
いては全く考慮されていなかつたことが主原因で
あることに想到した。更に詳述すると転炉スラグ
は吹錬の進行とともに増量し、またその生成量は
精錬条件又は溶銑若しくは造滓剤の組成等により
変動するため、ランス高さが溶鋼湯面位置を基準
にして一定の場合はランスとスラグレベルとの距
離が各吹錬チヤージについて、また吹錬の進行と
ともに変化するのであるが、これによつてFeO生
成量及び酸素ジエツトにより火点で発生したCO
ガスの酸化される割合が変動するため、従来のよ
うにランス高さの決定にスラグレベルを考慮しな
い場合は上述の如き不都合が生ずるのである。 第1図は横軸にランスとスラグレベルとの距離
をとり(ランスがスラグ湯面より上方にある場合
を正数で、また下方にある場合を負数で表わ
す)、また縦軸にFe/C酸素分配比、即ち上吹ラ
ンスから溶鋼に吹付けられた酸素ガスにおける溶
鋼中のFe分の酸化に消費される量とCの酸化に
消費される量との比をとつて、ランス高さが一定
である場合の両者の関係を示したグラフである。
図中実線はランスと溶鋼湯面との距離が2m、破
線は3mである場合夫々についての関係である。
このようにランス位置が高い方が、即ちランス高
さが2mの場合よりも3mの場合の方がFe/C
酸素分配比は高く、従つてFeOの生成量は多いの
であるが、ランス高さが同一であつても、ランス
とスラグレベルとの距離が変化するとFe/C酸
素分配比は変化し、特にランスがスラグレベルよ
りも上方にある場合と下方にある場合とでFe/
C酸素分配比は極端に異なり、適切な滓化制御を
行うためにはスラグレベルの把握が不可欠である
ことがわかる。また第2図は横軸に転炉内の雰囲
気ガス中に露出している酸素ジエツトの長さ、即
ちランスとスラグレベルとの距離をとり、また縦
軸に脱炭により生じたCOガスが酸素ジエツトに
より酸化されてCO2ガスとなる割合をとつて、両
者の関係を示したものである。このようにスラグ
湯面上に露出している酸素ジエツトの長さ、即ち
上吹ランスからの酸素ジエツトが雰囲気中を通過
する長さとCO2に酸化されるCOガスの割合とは
強い相関関係があり、酸素ジエツトの長さが長い
程CO2ガス生成量は増加する。従つてスラグレベ
ルを把握し、ランスとスラグレベルとの距離を適
切に調節することが、無駄なCO2ガスの生成を抑
制し熱量の損失を可及的に少くするために必要で
ある。上述の如く適切な滓化制御又は溶鋼顕熱の
コントロールを行うためには、スラグレベルの把
握及びランスの上下位置をランスとスラグレベル
との距離に基いて調節することが不可欠である。 本発明方法は上述の如き見地に立つてランス高
さをスラグレベルを考慮して調節するものであ
る。即ち上吹転炉又は複合吹錬炉等の転炉内のス
ラグレベルを検出すべく、転炉の上部開口からそ
の検出方向を炉内のスラグ湯面に向けてマイクロ
波距離計等の距離計を設置し、吹錬期間中継続し
てスラグレベルを計測し、この計測結果を例えば
操作室内に表示してオペレータへの視認情報とす
る。オペレータは第1図又は第2図に示した如き
ランス−スラグレベル間の距離とFe/C酸素分
配比又は酸化されるCOガスの割合との関係並び
に上吹ランスからの酸素ガスの脱炭効率及び鋼浴
の撹拌力とランス−溶鋼湯面間の距離との関係等
に基いて鋼種毎に予め定められたランス−スラグ
レベル間距離の標準パターンに従いランス操作を
行う。またこのランス−スラグレベル間距離の標
準パターンを転炉操業を管理しているプロセス制
御コンピユータ(以下プロコンという)等に予め
設定しておき、前記距離計の検出信号をプロコン
に取り込んでランス−スラグレベル間距離がその
標準パターンに従うようランス操作をプロコンに
より自動的に行わせることも可能である。 次に本発明方法の効果を実証するために行つた
比較試験結果について、上吹転炉における精錬と
複合吹錬炉における精錬とに分けて説明する。 (A) 上吹転炉 (1) 操業条件 転炉容量:160T(トン) 主原料装入量:170T、(内)溶銑150T,屑鉄
20T 媒溶剤:生石灰7T,ホタル石0.5Tを吹錬開始
時に炉内に装入 溶銑組成及び温度:第1表「溶銑」欄記載のと
おり (2) ランス操作 実施例1:初期滓化の促進のために吹錬当初ラ
ンスを溶鋼湯面の上方2mと比較的高めに
設置した。そして本発明方法によりスラグ
レベルを連続計測していたところ、吹錬開
始後5分経過した時点でスラグレベルがラ
ンス下端と同一レベルに達したため、ラン
スを下降させてランス−溶鋼湯面間距離を
1.5mに減じ、ランスをスラグ中に0.5m浸
漬した。 比較例1:吹錬当初のランス−溶鋼湯面間距離
は実施例1同様2mとしたが、スラグレベ
ルの上昇に拘らずランス高さを変更せず吹
錬を継続した。つまり吹錬期間中ランス高
さは溶鋼湯面の上方2mに保持した。 (3) 精錬結果 実施例1:スラグレベルは溶鋼湯面上2mのま
ま増減せず、スロツピングが発生すること
なく吹錬が終了した。また精錬後の溶鋼組
成を第1表「実施例1」欄に記載の如く燐
濃度が十分に低下し、脱燐が良好に行われ
た。出鋼歩留は95.5%と極めて高い。 比較例1:スラグレベルが上昇し過ぎて吹錬開
始から10分後にスロツピングが発生し、吹
錬の一時中断を余儀なくされた。このため
第1表「比較例1」欄記載の如く出鋼歩留
が92.1%と実施例1における歩留95.5%に
比して低値である。
The present invention relates to a method for refining molten steel in a converter such as a pure oxygen top-blowing converter (so-called LD converter) or a combined blowing furnace. To refining molten steel in a top-blown converter, a lance is vertically inserted into the furnace through the upper opening of the converter, and pure oxygen gas is sprayed onto the molten steel from the lance to agitate and decarburize the molten steel. Dephosphorization, desulfurization, etc. are carried out through a reaction with the molten slag produced by turning the introduced solvent into a slag. By the way, in converter refining, decarburization and stirring of molten steel are the main control targets, so the distance between the lance and the molten steel surface calculated from the weight of the main raw material such as hot metal charged into the converter, and the conveyance Refining conditions are determined using the blow strength of oxygen gas from the lance, such as the acid rate, as an index. Therefore, in order to control the dephosphorization reaction, it is necessary to control slag formation, but in order to promote slag formation, a so-called soft blow method is used in which the lance position is raised and the distance between the lance and the molten steel surface is increased. By conducting operations,
The aim is to increase the ratio of the amount of oxygen gas blown in from the lance consumed for oxidizing Fe in the steel to the amount consumed for oxidizing C in the steel, that is, the oxygen distribution ratio to Fe/C. A method is adopted in which a large amount of FeO is generated in the slag to increase the oxidation degree of the slag and lower the melting point. However, in this case, if the soft blowing is excessive, iron loss into the slag will increase unnecessarily and the refining yield will decrease, and the slag will become excessively foamed, causing sloping or the slag line. There is a disadvantage that the refractory material is subject to severe erosion. On the other hand, refining in a composite blowing furnace, in which a tuyere is fitted to the bottom of the top-blown converter so that gas for stirring the molten steel can be introduced, is similar to refining in a top-blown converter. Mainly decarburization is achieved using oxygen gas blown from the lance, and dephosphorization is achieved through reaction with slag.
Desulfurization is attempted, but furthermore, there is a
By stirring the steel bath by introducing gases such as Ar, CO 2 , O 2 , and hydrocarbons, we can strengthen the stirring power of the steel bath and improve the decarburization efficiency through oxygen blowing. By deoxidizing C (reaction between C and O in molten steel) as a result of the effect of lowering the partial pressure of CO gas by floating bubbles, the end point carbon content, etc. can be controlled with high precision. This combined blowing has the disadvantage that the molten steel is cooled by the bottom blowing gas from the tuyere, but since the slag forming is milder than in top blowing converter refining, the top blowing lance is placed at a relatively high position. Can be set to . As a result, oxygen was generated at the fire point due to the oxygen jet from the top blowing lance.
CO gas is oxidized to become CO 2 gas, and by capturing the heat generated by this oxidation reaction as sensible heat of the molten steel, it is possible to compensate for the cooling of the molten steel by the bottom blowing gas. However, the higher the upper blow lance position
The amount of CO 2 gas produced increases, but if this is too high, the CO 2 produced by combustion in the upper part of the furnace will increase.
The amount of gas increases and the heat of reaction cannot be captured as sensible heat of molten steel, but the heat of reaction is contained in the exhaust gas of the converter.
A decrease in the amount of CO gas recovered in the exhaust gas recovery system that recovers CO gas and uses it as a heat source, and a decrease in the rate at which oxygen gas blown from the top blowing lance effectively contributes to the decarburization reaction of molten steel, that is, the reaction efficiency. This brings about the inconvenience of causing problems. Furthermore, if the lance height is low, sufficient combustion of CO gas will not occur to compensate for the cooling of molten steel by bottom blowing gas. The present invention was made based on this technical background, and it is possible to precisely control the amount of FeO produced by measuring the slag level generated in the converter and adjusting the lance height based on the slag level. It is possible to appropriately control slag formation without causing excessive slag forming, etc., and to avoid unnecessary increases in the amount of CO 2 gas produced by oxygen jets, which may cause various inconveniences. The purpose of this invention is to provide a converter refining method that can efficiently obtain sensible heat of molten steel through CO gas combustion. The converter refining method according to the present invention is a converter refining method in which a lance is inserted through the upper opening of the converter and oxygen gas is sprayed onto the molten steel from the lance for refining, and a distance meter is installed above the converter. The method is characterized in that the slag level is measured and the relative position of the lance with respect to the slag level is adjusted based on the measurement result. As mentioned above, when the lance height is adjusted higher to control slag formation or sensible heat of molten steel,
Slag tends to form excessively, and CO
Of the combustion heat of gas, it is not captured as sensible heat of molten steel,
However, as a result of various studies on the causes of this inconvenience, the inventor of the present invention found that in the conventional converter refining method, the refining conditions, especially the lance height, was determined based on the distance between the lance and the molten steel surface, and the distance between the lance and the surface of molten slag floating on the molten steel surface (slag level) was not considered at all. I realized that it was the cause. More specifically, the amount of converter slag increases with the progress of blowing, and the amount produced varies depending on the refining conditions or the composition of the hot metal or slag forming agent, so the lance height is constant based on the molten steel surface position. In the case of , the distance between the lance and the slag level changes for each blowing charge and as the blowing progresses;
Since the rate at which the gas is oxidized varies, the above-mentioned disadvantages occur if the slag level is not considered in determining the lance height as in the conventional method. In Figure 1, the distance between the lance and the slag level is plotted on the horizontal axis (a positive number indicates that the lance is above the slag level, and a negative number indicates that it is below), and the vertical axis indicates the distance between the lance and the slag level. The lance height is calculated by taking the oxygen distribution ratio, that is, the ratio of the amount consumed in the oxidation of Fe in the molten steel to the amount consumed in the oxidation of C in the oxygen gas blown onto the molten steel from the top blowing lance. It is a graph showing the relationship between the two when they are constant.
In the figure, the solid line shows the relationship when the distance between the lance and the molten steel surface is 2 m, and the broken line shows the relationship when the distance is 3 m.
In this way, the higher the lance position, that is, the higher the lance height is, the higher the Fe/C ratio is when the lance height is 3 m than the case where the lance height is 2 m.
The oxygen distribution ratio is high, and therefore the amount of FeO produced is large, but even if the lance height is the same, the Fe/C oxygen distribution ratio changes as the distance between the lance and the slag level changes, especially when the lance height is the same. Fe/
It can be seen that the C-oxygen distribution ratio is extremely different, and that it is essential to understand the slag level in order to perform appropriate slag control. In Figure 2, the horizontal axis shows the length of the oxygen jet exposed to the atmospheric gas in the converter, that is, the distance between the lance and the slag level, and the vertical axis shows the length of the oxygen jet exposed to the atmospheric gas in the converter, and the vertical axis shows the length of the oxygen jet exposed to the atmospheric gas in the converter. The relationship between the two is shown by measuring the rate at which CO2 gas is oxidized by the jet. In this way, there is a strong correlation between the length of the oxygen jet exposed above the slag surface, that is, the length that the oxygen jet from the top blowing lance passes through the atmosphere, and the proportion of CO gas that is oxidized to CO 2 . Yes, the longer the length of the oxygen jet, the greater the amount of CO 2 gas produced. Therefore, it is necessary to understand the slag level and appropriately adjust the distance between the lance and the slag level in order to suppress the production of wasteful CO 2 gas and minimize the loss of heat. In order to appropriately control slag formation or sensible heat of molten steel as described above, it is essential to know the slag level and adjust the vertical position of the lance based on the distance between the lance and the slag level. The method of the present invention is based on the above-mentioned considerations and adjusts the lance height in consideration of the slag level. That is, in order to detect the slag level in a converter such as a top-blown converter or a combined blowing furnace, a distance meter such as a microwave distance meter is used to detect the slag level from the upper opening of the converter toward the slag surface in the furnace. is installed to continuously measure the slag level during the blowing period, and the measurement results are displayed, for example, in the operating room to provide visual information to the operator. The operator can check the relationship between the distance between the lance and the slag level and the Fe/C oxygen distribution ratio or the proportion of oxidized CO gas as shown in Figure 1 or Figure 2, as well as the decarburization efficiency of the oxygen gas from the top blowing lance. The lance operation is performed according to a standard pattern of the distance between the lance and the slag level, which is predetermined for each steel type based on the relationship between the stirring force of the steel bath and the distance between the lance and the molten steel surface. In addition, the standard pattern of the distance between the lance and the slag level is set in advance in a process control computer (hereinafter referred to as a pro-computer) that manages the converter operation, and the detection signal from the distance meter is taken into the pro-control computer to control the distance between the lance and the slag level. It is also possible to have the lance operation automatically performed by the processor so that the distance between levels follows its standard pattern. Next, the results of comparative tests conducted to demonstrate the effects of the method of the present invention will be explained separately for refining in a top blowing converter and refining in a combined blowing furnace. (A) Top-blown converter (1) Operating conditions Converter capacity: 160T (tons) Main raw material charge: 170T, (of which) hot metal 150T, scrap iron
20T Solvent: Quicklime 7T and fluorite 0.5T are charged into the furnace at the start of blowing Hot metal composition and temperature: As stated in the "Hot metal" column of Table 1 (2) Lance operation Example 1: Promotion of initial slag formation Therefore, at the beginning of blowing, the lance was installed relatively high, 2 m above the molten steel surface. When the slag level was continuously measured using the method of the present invention, the slag level reached the same level as the lower end of the lance 5 minutes after the start of blowing, so the lance was lowered and the distance between the lance and the molten steel surface was measured.
The length was reduced to 1.5 m and the lance was immersed 0.5 m into the slag. Comparative Example 1: The distance between the lance and the molten steel surface at the beginning of blowing was 2 m as in Example 1, but blowing was continued without changing the lance height despite the rise in the slag level. In other words, the lance height was maintained at 2 m above the molten steel surface during the blowing period. (3) Refining results Example 1: The slag level remained at 2 m above the molten steel surface and did not increase or decrease, and blowing was completed without slopping occurring. Further, as shown in the molten steel composition after refining in the "Example 1" column of Table 1, the phosphorus concentration was sufficiently reduced, and dephosphorization was performed satisfactorily. The tapping yield is extremely high at 95.5%. Comparative Example 1: The slag level rose too high and slopping occurred 10 minutes after the start of blowing, forcing a temporary interruption of blowing. Therefore, as shown in the "Comparative Example 1" column of Table 1, the tapping yield was 92.1%, which is lower than the yield of Example 1, which was 95.5%.

【表】 (B) 複合吹錬炉 (1) 操業条件 転炉容量:160T 主原料装入量:180T、(内)溶銑170T,屑鉄
10T 媒溶量:生石灰7T,ホタル石2Tを吹錬開始時
に炉内に装入 羽口からの導入ガス:酸素ガス、ランスからの
酸素ガス量と羽口からの酸素ガス量と
の比2/3 溶銑組成及び温度:第2表「溶銑」欄記載のと
おり
[Table] (B) Combined blowing furnace (1) Operating conditions Converter capacity: 160T Main raw material charge: 180T, (of which) hot metal 170T, scrap iron
10T Amount of solvent: 7T of quicklime and 2T of fluorite are charged into the furnace at the start of blowing Gas introduced from the tuyere: Oxygen gas, ratio of the amount of oxygen gas from the lance to the amount of oxygen gas from the tuyere 2/ 3 Hot metal composition and temperature: As stated in the "Hot metal" column of Table 2

【表】 (2) ランス操作 実施例2:吹錬期間中スラグレベルを連続計測
し、スラグレベルの上昇に応じてランスを
スラグレベルの上方1.5mに保持すべくラ
ンス高さを調節した。 比較例2:スラグレベルの上昇に拘らずランス
−溶鋼湯面間距離が1.5mになるようにラ
ンス高さを固定した。 比較例3:スラグレベルの上昇に拘らずランス
−溶鋼湯面間距離が5mになるようにラン
ス高さを固定した。 (3) 精錬結果 実施例2:第2表「実施例2」欄記載の如く、
目標組成及び温度の溶鋼が得られた。また
第3表「実施例2」欄記載の如く、炉内で
発生したCOガスの30%がCO2に酸化さ
れ、この燃焼により発生した熱量の80%が
溶鋼顕熱として捉えられて溶鋼が昇温し、
これによつて冷却剤として屑鉄を溶鋼1T
当り10Kg更に投入することができ、主原料
中の溶銑比率を低下させることができた。
更に転炉排ガス中に含まれているCOガス
も、排ガスの燃焼エネルギが2000kcalであ
る場合に1Nm3のCOガスが含まれていると
してCOガス量に換算すると、溶鋼1T当り
82Nm3のCOガスが回収された。 比較例2:第3表「比較例2」欄記載の如く、
炉内で発生したCOガスの10%がCO2に酸
化された。これは上吹転炉精錬の場合と同
程度であるため、羽口から溶鋼中に導入さ
れるガスによる溶鋼冷却分と脱炭反応等の
精錬により起きる溶鋼昇温分とが相殺され
て冷却剤を投入できず、従つて主原料中の
溶銑比率の上昇を余儀なくされた。なお酸
化されるCOガス量が少ないため転炉排ガ
ス中に回収されるCOガス量は溶鋼1T当り
98Nm3と高い回収率を示している。 比較例3:第3表「比較例3」欄記載の如く、
炉内で発生したCOガスの70%がCO2に酸
化されたが、この燃焼により発生した熱量
のうち溶鋼顕熱として捉えられたのは僅か
に30%と低く、従つて冷却剤投入量は溶鋼
1T当り10Kgと実施例2と同程度に止まつ
た。一方上吹ランスからの酸素ガスはCO
ガスの酸化に徒費されてその反応効率が低
下し、吹錬期間が著しく長期化した。更に
転炉排ガス中に回収されるCOガス量は溶
鋼1T当り36Nm3と著しく低い値を示してい
る。 このように実施例1及び2は比較例1,2及び
3に比して極めて優れた効果を奏している。
[Table] (2) Lance operation Example 2: The slag level was continuously measured during the blowing period, and the lance height was adjusted according to the increase in the slag level so as to maintain the lance at 1.5 m above the slag level. Comparative Example 2: The lance height was fixed so that the distance between the lance and the molten steel surface was 1.5 m regardless of the rise in the slag level. Comparative Example 3: The height of the lance was fixed so that the distance between the lance and the molten steel surface was 5 m regardless of the rise in the slag level. (3) Refining results Example 2: As described in the "Example 2" column of Table 2,
Molten steel with the target composition and temperature was obtained. In addition, as shown in the "Example 2" column of Table 3, 30% of the CO gas generated in the furnace is oxidized to CO 2 , and 80% of the heat generated by this combustion is captured as sensible heat of the molten steel. The temperature rises,
This allows 1T of molten steel to be used as a coolant.
It was possible to input an additional 10 kg per unit, and the ratio of hot metal in the main raw material could be reduced.
Furthermore, the CO gas contained in the converter exhaust gas is equivalent to 1Nm3 of CO gas per 1T of molten steel if the combustion energy of the exhaust gas is 2000kcal.
82 Nm 3 of CO gas was recovered. Comparative Example 2: As described in the "Comparative Example 2" column of Table 3,
10% of the CO gas generated in the furnace was oxidized to CO2 . This is about the same as in the case of top-blown converter refining, so the amount of cooling of the molten steel by the gas introduced into the molten steel from the tuyere and the amount of temperature rise of the molten steel caused by refining such as decarburization are offset, and the cooling Therefore, the proportion of hot metal in the main raw material had to be increased. Furthermore, since the amount of CO gas oxidized is small, the amount of CO gas recovered in the converter exhaust gas is less than 1 ton of molten steel.
It shows a high recovery rate of 98Nm3 . Comparative Example 3: As described in the "Comparative Example 3" column of Table 3,
70% of the CO gas generated in the furnace was oxidized to CO 2 , but only 30% of the heat generated by this combustion was captured as sensible heat of the molten steel, so the amount of coolant input was Molten steel
The weight remained at 10 kg per 1T, which was the same level as in Example 2. On the other hand, the oxygen gas from the top blowing lance is CO
The reaction efficiency was wasted due to the oxidation of the gas, and the blowing period became significantly longer. Furthermore, the amount of CO gas recovered in the converter exhaust gas is extremely low at 36Nm 3 per 1T of molten steel. As described above, Examples 1 and 2 have extremely superior effects compared to Comparative Examples 1, 2, and 3.

【表】 以上詳述した如く本発明方法による場合は、従
来なされていなかつた転炉内のスラグレベルの計
測を吹錬期間中継続して行い、この計測結果に基
いて滓化制御又は溶鋼顕熱のコントロールのため
に最適なランス操作を行うから、スロツピング発
生による出鋼歩留の低下等を招来することなく脱
燐コントロールを行うことができ、またランスか
らの酸素ガスの反応効率の低下又は排ガス中の
COガス回収量の低下等をもたらすことなく、CO
ガスの燃焼熱を効率良く溶鋼顕熱として捉えるこ
とができる等、本発明は純酸素上吹転炉又は複合
吹錬炉等の転炉の精錬技術の向上に多大の貢献を
なすものである。
[Table] As detailed above, in the case of the method of the present invention, the slag level in the converter is continuously measured during the blowing period, which has not been done before, and slag control or molten steel visualization is performed based on the measurement results. Since the lance operation is optimal for heat control, dephosphorization can be controlled without reducing the yield of steel due to slopping, and it also prevents a decrease in the reaction efficiency of oxygen gas from the lance. in exhaust gas
CO
The present invention makes a significant contribution to improving the refining technology of converters such as pure oxygen top-blowing converters or combined blowing furnaces, as it is possible to efficiently capture the combustion heat of gas as sensible heat of molten steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はランス−スラグレベル間距離とFe/
C酸素分配比との関係、第2図はランスからの酸
素ジエツトの長さとCO2ガスに酸化されるCOガ
スの割合との関係を夫々示すグラフである。
Figure 1 shows the distance between lance and slug level and Fe/
Figure 2 is a graph showing the relationship between the length of the oxygen jet from the lance and the proportion of CO gas oxidized to CO 2 gas.

Claims (1)

【特許請求の範囲】[Claims] 1 転炉の上部開口からランスを挿入し該ランス
から酸素ガスを溶鋼に吹付けて精錬する転炉精錬
法において、転炉の上方に距離計を設置してスラ
グレベルを計測し、この計測結果に基いて前記ラ
ンスのスラグレベルに対する相対位置を調節する
ことを特徴とする転炉精錬法。
1 In the converter refining method, in which a lance is inserted through the upper opening of the converter and oxygen gas is sprayed onto the molten steel from the lance for refining, a distance meter is installed above the converter to measure the slag level, and the measurement results are A converter refining method characterized in that the relative position of the lance with respect to the slag level is adjusted based on.
JP2253981A 1981-02-17 1981-02-17 Refining method for converter Granted JPS57137411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2253981A JPS57137411A (en) 1981-02-17 1981-02-17 Refining method for converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2253981A JPS57137411A (en) 1981-02-17 1981-02-17 Refining method for converter

Publications (2)

Publication Number Publication Date
JPS57137411A JPS57137411A (en) 1982-08-25
JPS6215605B2 true JPS6215605B2 (en) 1987-04-08

Family

ID=12085602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2253981A Granted JPS57137411A (en) 1981-02-17 1981-02-17 Refining method for converter

Country Status (1)

Country Link
JP (1) JPS57137411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514628U (en) * 1991-08-09 1993-02-26 自動車機器株式会社 Lever mounting structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115217A (en) * 1975-04-03 1976-10-09 Nippon Steel Corp Device for controlling melt-surface level in converter
JPS54119316A (en) * 1978-03-09 1979-09-17 Sumitomo Metal Ind Ltd Slopping control method in converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115217A (en) * 1975-04-03 1976-10-09 Nippon Steel Corp Device for controlling melt-surface level in converter
JPS54119316A (en) * 1978-03-09 1979-09-17 Sumitomo Metal Ind Ltd Slopping control method in converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514628U (en) * 1991-08-09 1993-02-26 自動車機器株式会社 Lever mounting structure

Also Published As

Publication number Publication date
JPS57137411A (en) 1982-08-25

Similar Documents

Publication Publication Date Title
CN114150100B (en) Steelmaking method for smelting high-carbon low-phosphorus steel by converter
CN107974528B (en) Method for reducing nitrogen content of molten steel at converter end point
CN107502704B (en) Method for reducing alumina inclusions in semisteel steelmaking casting blank
US4001009A (en) Process for the manufacture of steels with a high chromium content
JPH044388B2 (en)
JPS58130216A (en) Refining method of high alloy steel and stainless steel
EP0033780B2 (en) Method for preventing slopping during subsurface pneumatic refining of steel
JPS6215605B2 (en)
JPH01127613A (en) Method and apparatus for refining molten metal
WO2020152945A1 (en) Method for producing low-carbon ferromanganese
CN102140567A (en) Argon-oxygen refining method for low-carbon ferrochromium alloy
CA1205290A (en) Method of increasing the cold material charging capacity in the top-blowing production of steel
JPH0477046B2 (en)
KR100225249B1 (en) Remaining slag control method of of slopping control
JPH0355538B2 (en)
Pehlke An overview of contemporary steelmaking processes
US3498783A (en) Method of refining a carbonaceous metal
JP2757761B2 (en) Method for producing molten stainless steel by smelting reduction
JPS6184311A (en) Method for heating molten iron by secondary combustion method
RU1775476C (en) Method for melting steel in hearth steel-melting unit
JP2004115910A (en) Method for refining molten iron
JPH0673426A (en) Method for decarburizing molten chromium-containing iron
JP3511685B2 (en) Bottom blow converter steelmaking
JP3902446B2 (en) Converter blowing method
JPS62116712A (en) Melting and smelting vessel having splash lance