JPS62155925A - Method for removing mercury contained in gas - Google Patents

Method for removing mercury contained in gas

Info

Publication number
JPS62155925A
JPS62155925A JP60296080A JP29608085A JPS62155925A JP S62155925 A JPS62155925 A JP S62155925A JP 60296080 A JP60296080 A JP 60296080A JP 29608085 A JP29608085 A JP 29608085A JP S62155925 A JPS62155925 A JP S62155925A
Authority
JP
Japan
Prior art keywords
resin
gas
mercury
adsorbed
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60296080A
Other languages
Japanese (ja)
Other versions
JPH0586247B2 (en
Inventor
Masafumi Moriya
雅文 守屋
Tomio Imachi
井町 臣男
Kazuo Hosoda
和夫 細田
Akira Nishimura
朗 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Yushi KK
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Yushi KK
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Yushi KK, Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Yushi KK
Priority to JP60296080A priority Critical patent/JPS62155925A/en
Publication of JPS62155925A publication Critical patent/JPS62155925A/en
Publication of JPH0586247B2 publication Critical patent/JPH0586247B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To remove mercury contained in gas to a low concn. and to enable treatment of large amounts of gas by bringing mercury-contg. gas into contact with cation exchange resin adsorbed with metallic ion or chelate resin adsorbed with metallic ion. CONSTITUTION:For example, the copper salt type chelate resin wherein Cu is adsorbed by immersing chelate resin having epoxy resin as a resin base body and having sodium iminopropionate group as a functional group into a copper sulfate aq. soln. or the resin having silver salt group which is adsorbed with Ag by passing a silver nitrate aq. soln. through cation exchange resin having acrylic resin as a base body and having carboxylic acid group as the functional group is packed in a column, and mercury-contg. gas is passed through the resin layer. Mercury contained in gas is adsorbed on the resin by forming amalgam with metal on the resin and removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガス中の水銀の除去方法に関する。さらに詳し
くは、金属イオンを吸着した陽イオン交換樹脂およびま
たは金属イオンを吸着したキレート樹脂を用いてガス中
の水銀を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for removing mercury from gas. More specifically, the present invention relates to a method for removing mercury from gas using a cation exchange resin that has adsorbed metal ions and/or a chelate resin that has adsorbed metal ions.

〔従来の技術〕[Conventional technology]

水銀は金属の中でも蒸発し易い金属で1例えばゴミの中
に乾電池や蛍光灯の破片などが混入することにより都市
ゴミ焼却場の排ガス中に含まれることがあり、それらが
大気中に排出され環境を汚染する恐れがある。
Mercury is a metal that evaporates easily among metals. For example, it may be included in the exhaust gas from municipal garbage incinerators when debris from dry cell batteries or fluorescent lamps gets mixed into the garbage, and these are emitted into the atmosphere and become environmentally friendly. There is a risk of contaminating the

通常水銀を含むガスの処理方法を検討する上での問題点
は、水銀の存在形態を特定することができないこと、ガ
スの排出量が多いのに比べ水銀の含有量が低いこと等が
ある。即ちガス中に水銀がどの様な形態で含まれていて
も除去することができ、低濃度の水銀を完全に、また効
率良く除去することが望まれる。
Normally, problems in considering methods for treating gases containing mercury include the inability to specify the form in which mercury exists, and the fact that the mercury content is low compared to the large amount of gas discharged. That is, it is desirable to be able to remove mercury in any form contained in the gas, and to completely and efficiently remove low-concentration mercury.

従来、このようなガス中の水銀を除去する方法としては
大別して9.洗浄法と吸着法の2種類がある。すなわち
、洗浄法としては、酸化洗浄法(特公昭42−2244
4.同47−46270)があり、吸着法としては活性
炭、活性アルミナ、活性ボーキサイトなどの吸着剤に吸
着させる方法が一般的に良く知られているが、これら無
機吸着剤に銅塩を含浸させた吸着剤による吸着法も開発
されている(特開昭49−74195)。
Conventionally, methods for removing mercury from such gas can be broadly classified into 9. There are two types: washing method and adsorption method. That is, as a cleaning method, the oxidation cleaning method (Japanese Patent Publication No. 42-2244
4. 47-46270), and methods of adsorption using adsorbents such as activated carbon, activated alumina, and activated bauxite are generally well known. An adsorption method using an agent has also been developed (Japanese Unexamined Patent Publication No. 74195/1983).

f発明が解決しようとする問題点〕 しかしながら、従来から行われている除去方法には除去
能力、経済性、運転のし易さなどの点から種々の問題点
があった。例えば酸化洗浄法は水銀に対する除去下限が
非常に低い(0,1■/ボ以下)上に、設備費およびラ
ンニングコストが高く。
f Problems to be Solved by the Invention] However, conventional removal methods have had various problems in terms of removal ability, economic efficiency, ease of operation, etc. For example, the oxidation cleaning method has a very low removal limit for mercury (below 0.1 .mu./bo) and also has high equipment and running costs.

さらに水銀を捕集した洗浄廃液を無害化処理して廃棄し
なければならない等の欠点がある。また無機系吸着剤に
よる吸着法は物理吸着による吸着のため、吸着能力が非
常に悪く、設備の構造が簡単で、設備費が安く、また吸
着剤が固体であるため取り扱い易い等の点で洗浄法より
優れている。また無機系吸着剤に銅塩を含浸させた吸着
剤による吸着法は排ガス中の水銀を0.02〜0.06
■/n?まで処理できるが、水銀の吸着量が少なく長時
間使用することができないという欠点がある。
Furthermore, there are drawbacks such as the need to detoxify and dispose of cleaning waste liquid that has collected mercury. In addition, the adsorption method using an inorganic adsorbent has very poor adsorption capacity because it uses physical adsorption, and the equipment structure is simple, the equipment cost is low, and since the adsorbent is solid, it is easy to handle, etc. Better than the law. In addition, the adsorption method using an inorganic adsorbent impregnated with copper salt reduces mercury in exhaust gas by 0.02 to 0.06.
■/n? However, the drawback is that the amount of mercury adsorbed is small and it cannot be used for a long time.

本発明は上記の点に着目してなされたもので金属を吸着
した陽イオン交換樹脂およびまたは金属を吸着したキレ
ート樹脂を用いてガス中の水銀を除去する方法を提供す
ることを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for removing mercury from gas using a cation exchange resin that has adsorbed metals and/or a chelate resin that has adsorbed metals.

〔問題点を解決するための手段〕 本発明者らは上記課題を解決するため鋭意研究した結果
、陽イオン交換樹脂およびもしくはキレート樹脂に、金
属イオンを吸着させた後、これを水銀含有ガスと接触さ
せることによって、ガス中の水銀を除去することができ
ることを見い出し。
[Means for Solving the Problems] As a result of intensive research in order to solve the above problems, the present inventors have found that after adsorbing metal ions to a cation exchange resin and/or chelate resin, this is mixed with a mercury-containing gas. It was discovered that mercury in gas can be removed by contacting the gas.

本発明を完成するに至った。The present invention has now been completed.

即ち本発明は金属イオンを吸着した陽イオン交換樹脂お
よびまたは金属イオンを吸着したキレート樹脂と水銀含
有ガスとを接触し、ガス中の水銀を樹脂に吸着せしめて
除去するガス中の水銀の除去方法であ不。
That is, the present invention provides a method for removing mercury from a gas by contacting a cation exchange resin that has adsorbed metal ions and/or a chelate resin that has adsorbed metal ions with a mercury-containing gas so that the mercury in the gas is adsorbed onto the resin and removed. It's not good.

本発明において用いる陽イオン交換樹脂またはキレート
樹脂は、樹脂単独あるいは樹脂と無機物の複合物を樹脂
母体とし、陽イオン交換基、キレート形成基を官能基と
して有するものである。
The cation exchange resin or chelate resin used in the present invention uses a resin alone or a composite of a resin and an inorganic substance as a resin matrix, and has a cation exchange group or a chelate forming group as a functional group.

樹脂母体としてはジビニル埼ンゼン系共重合体。The resin base is divinyl saitene copolymer.

エポキシ樹脂、フェノール樹脂、レゾルシン樹脂。Epoxy resin, phenolic resin, resorcinol resin.

塩化ビニル樹脂、塩化ビニリデン樹脂、アクリル樹脂、
尿素樹脂のいずれかが用いられ、ジビニルベンゼン系共
重合体としては、スチレン−ジビニルベンゼン共重合体
、アクリル酸メチル−ジビニルベンゼン共重合体、メタ
クリル酸メチル−ジビニルベンゼン共重合体、アクリロ
ニトリル−ジビニルベンゼン共重合体等が挙げられる。
Vinyl chloride resin, vinylidene chloride resin, acrylic resin,
Either urea resin is used, and examples of the divinylbenzene copolymer include styrene-divinylbenzene copolymer, methyl acrylate-divinylbenzene copolymer, methyl methacrylate-divinylbenzene copolymer, and acrylonitrile-divinylbenzene copolymer. Examples include copolymers.

さらに。moreover.

耐熱性を上げるためにこれらの樹脂母体に、フッ・素や
塩素を置換導入した樹脂も使用可能である。
In order to increase heat resistance, resins in which fluorine or chlorine is substituted into these resin bases can also be used.

またプラスチック、活性炭、ゼオライトセライト、白土
、ベントナイト、モンモリナイト、骨炭などの無機物を
担体とし、これ6と上記の樹脂を。
In addition, inorganic materials such as plastic, activated carbon, zeolite celite, white clay, bentonite, montmolinite, and bone charcoal are used as carriers, and this and the above resins are used as carriers.

コーティングした物も1本発明に使用できる。Coated materials can also be used in the present invention.

また、これらを樹脂母体とする陽イオン交換樹脂および
もしくはキレート樹脂は、ゲル型であるより、多孔質型
(MR型)であることが好ましい。
Further, the cation exchange resin and/or chelate resin having these as a resin matrix is preferably of a porous type (MR type) rather than a gel type.

それは、多孔質型の方が表面積が大きいためガス中の水
銀と金属塩型樹脂との接触効率が良く、樹脂内部まで水
銀を吸着でき、水銀吸着量が大きくなるためである。 
       ゛ ′  ・樹脂に結合する陽イオン交
換基としては、リン酸基またはその塩、アルキレン′リ
ン酸基またはその塩、スルホン酸基またはその塩、カル
ボン酸基ま゛たはその塩が挙げられ、キレート形成基と
してはイミノ酢酸基またはその塩、イミノジ酢酸基また
はその塩、イミノプロピオン酸基またはその塩。
This is because the porous type has a larger surface area, so the contact efficiency between the mercury in the gas and the metal salt type resin is better, and the mercury can be adsorbed to the inside of the resin, increasing the amount of mercury adsorbed.
゛ ′ - Examples of the cation exchange group that binds to the resin include phosphoric acid groups or salts thereof, alkylene phosphoric acid groups or salts thereof, sulfonic acid groups or salts thereof, carboxylic acid groups or salts thereof, The chelate-forming group is an iminoacetic acid group or a salt thereof, an iminodiacetic acid group or a salt thereof, an iminopropionic acid group or a salt thereof.

イミノジプロピオン酸基またはその塩等のアミノカルボ
ン酸基またはその塩、アミノアルキレンリン酸基または
その塩、イミノアルキレンリン酸基またはその塩、ジチ
オカルバミン酸基またはその塩、チオール基またはその
塩、オキシム基、アミドオキシム基、ヒドロキサム酸基
、ポリアミノ基。
Aminocarboxylic acid groups or salts thereof such as iminodipropionic acid groups or salts thereof, aminoalkylene phosphate groups or salts thereof, iminoalkylene phosphate groups or salts thereof, dithiocarbamic acid groups or salts thereof, thiol groups or salts thereof, oximes group, amidoxime group, hydroxamic acid group, polyamino group.

ヒドラジド基、酸ヒドラジド基等が挙げられる。Examples include hydrazide group and acid hydrazide group.

本発明において陽イオン交換樹脂またはおよびキレート
樹脂に吸着せしめる金属としては、陽イオン交換樹脂ま
たはおよびキレート樹脂に吸着できうるちのであれば特
に限定されることはないが。
In the present invention, the metal to be adsorbed to the cation exchange resin or chelate resin is not particularly limited as long as it can be adsorbed to the cation exchange resin or chelate resin.

なかでも水銀とアマルガムを形成しやすい金属。Among these, metals that easily form amalgams with mercury.

□例えば、’ Li、 Na門’ K、’ Rh、 C
s、 Mg、 Ca、 Ba、^l。
□For example, 'Li, Na' K, 'Rh, C
s, Mg, Ca, Ba, ^l.

La、 Sn、 pb、 As、 sb、 Bi、 C
u、 Ag+ Au、 Zn、 Cd。
La, Sn, pb, As, sb, Bi, C
u, Ag+Au, Zn, Cd.

In、 T1. Cr、 Mn、 Fe、 Co、 N
i、 Pt等が挙げられ。
In, T1. Cr, Mn, Fe, Co, N
i, Pt, etc.

これらの金属から遼ばれた少なくとも一種を用いること
が好ましい。
It is preferable to use at least one metal made from these metals.

上記金属を陽イオン交換樹脂またはおよびキレート樹脂
に吸着せしめる方法としては、上記金属の硫酸塩、硝酸
塩、塩化物等の水溶液に陽イオン交換樹脂およびまたは
キレート樹脂を浸漬せしめるか、浸漬しさらに攪拌する
バッチ方式、陽イオン交換樹脂およびまたはキレート樹
脂を充填したカラムに金属塩の水溶液を一過せしめるカ
ラム方式等が挙げられる。カラム方式には一過方式と循
環方式があるがいずれの方式でもよく、さらに通液方法
として上向流、下向流のいずれの方法でも良い。
A method for adsorbing the above metals onto a cation exchange resin or chelate resin is to immerse the cation exchange resin and/or chelate resin in an aqueous solution of sulfates, nitrates, chlorides, etc. of the above metals, or to immerse and stir the cation exchange resin and/or chelate resin. Examples include a batch method, a column method in which an aqueous solution of a metal salt is passed through a column filled with a cation exchange resin and/or a chelate resin, and the like. Column methods include a transient method and a circulation method, and either method may be used, and the liquid passing method may be either an upward flow method or a downward flow method.

本発明に用いる金属を吸着した陽イオン交換樹脂または
および金属を吸着したキレート樹脂(以下金属吸着樹脂
と称する)は、上記のように金属がイオンの形で吸着さ
れた樹脂でも、また、そののち樹脂を還元処理して金属
として吸着した樹脂でも良い。また金属吸着樹脂の状態
は湿潤状態でも乾燥状態でも良い。
The cation exchange resin that has adsorbed metal or the chelate resin that has adsorbed metal (hereinafter referred to as metal adsorption resin) used in the present invention may be a resin that has metal adsorbed in the form of ions as described above. A resin obtained by reducing a resin and adsorbing it as a metal may also be used. Further, the state of the metal adsorbing resin may be either a wet state or a dry state.

本発明において水銀含有ガスと金属吸着樹脂とを接触せ
しめる方法としては、金属吸着樹脂を充填した塔に、水
銀含有ガスを通過せしめるカラム式方法、水銀含有ガス
中に金属吸着樹脂を添加し。
In the present invention, methods for bringing the mercury-containing gas into contact with the metal-adsorbing resin include a column method in which the mercury-containing gas is passed through a column filled with the metal-adsorbing resin, and a method in which the metal-adsorbing resin is added to the mercury-containing gas.

混合攪拌するバッチ式方法が挙げられ、またカラム式の
場合には、−過方式と循環方式があるがいずれの方式で
もよく、さらに通過方法として上下。
Examples include a batch method in which mixing and stirring are performed, and in the case of a column method, there are two methods: a passing method and a circulation method, but either method may be used.

左右、斜向流のいずれの方法も採用できる。Either side-to-side or diagonal flow methods can be adopted.

本発明の方法は例えば、都市ゴミ焼却場の排ガス、電解
水素ガス、天然ガス、水銀取扱い工場ガス等の水銀を含
有したガスから容易に水銀を除去することができ、水銀
を除去したガスは安全に大気中に放出することができる
とともに、水銀を吸着した樹脂から加熱することにより
水銀を回収することができる。
The method of the present invention can easily remove mercury from gas containing mercury, such as exhaust gas from municipal waste incinerators, electrolyzed hydrogen gas, natural gas, and gas from factories that handle mercury, and the gas from which mercury has been removed is safe. In addition to being able to release mercury into the atmosphere, mercury can be recovered by heating the resin that has adsorbed mercury.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

〔実施例〕〔Example〕

実施例1 粒度14〜18メツシユのエポキシ樹脂を樹脂母体とし
、イミノプロピオン酸ナトリウム塩およびイミノジプロ
ピオン酸ナトリウム塩基を官能基とするキレート樹脂1
00m1をCu”濃度5.000ppmの硫酸銅水溶液
300m1中に添加し、25℃で5時間攪拌した後、樹
脂を分離し十分水洗して銅を15■/ m 1−Res
 i n (We t)吸着した銅塩型キレート樹脂(
IPA−CaOと略す)を得た。
Example 1 Chelate resin 1 using an epoxy resin with a particle size of 14 to 18 mesh as a resin matrix and having iminopropionate sodium salt and iminodipropionate sodium base as functional groups
00ml was added to 300ml of a copper sulfate aqueous solution with a Cu" concentration of 5.000ppm, and after stirring at 25℃ for 5 hours, the resin was separated and thoroughly washed with water to remove copper at 15μ/m 1-Res.
in (We t) adsorbed copper salt type chelate resin (
(abbreviated as IPA-CaO) was obtained.

次にこの樹脂50m1を105℃で3時間加熱し、乾燥
した状態の銅塩型キレート樹脂(IPA−CaOと略す
)を得た。
Next, 50 ml of this resin was heated at 105° C. for 3 hours to obtain a dry copper salt type chelate resin (abbreviated as IPA-CaO).

このようにして得られた2種Φ銅塩型キレート樹脂15
m1を各々ガラス製カラム(内径15開φ)に充填し、
樹脂層に水銀20■/イを含む空気(空気の温度30℃
)を2通気速度5V14,400で通気しガス中の水銀
の除去試験を行なった。樹脂層を通過したガス中の水銀
濃度を一定時間ごとに測定し、水銀の除去率を求め、そ
の結果を表−1に示す。
Two kinds of Φ copper salt type chelate resins obtained in this way 15
ml was packed into a glass column (inner diameter 15 mm),
Air containing 20 μ/a of mercury in the resin layer (air temperature 30°C)
) was aerated at an aeration rate of 5V14,400 to perform a test for removing mercury from the gas. The mercury concentration in the gas that passed through the resin layer was measured at regular intervals to determine the mercury removal rate, and the results are shown in Table 1.

なお、比較例として、105℃で乾燥したヤシガラ活性
炭(20〜32メツピユ)を用い、上記と同様にガス中
の水銀除去試験を行4った。その結果を表−1に示す。
As a comparative example, a test for removing mercury from gas was carried out in the same manner as above using coconut shell activated carbon (20 to 32 meth) dried at 105°C. The results are shown in Table-1.

表−1 樹脂層を通過したガス中に水銀が0.01■/rrr漏
出するまで通気した時、水銀の吸着量はI PA−Ca
Oで78.2[/m1−Re、sin、  I PA 
−CaOで92.4mg/m1−Resir+、であっ
た。また1、PA−CaOで100時間迄、IPA−C
u■で200時間迄の処理ガス中の水銀濃度はすでて0
.005■/イ以下であった。
Table 1: When aeration is carried out until 0.01 μ/rrr of mercury leaks into the gas that has passed through the resin layer, the amount of mercury adsorbed is I PA-Ca
78.2 [/m1-Re, sin, I PA
-CaO was 92.4 mg/ml-Resir+. Also 1. Up to 100 hours with PA-CaO, IPA-C
The mercury concentration in the treated gas for up to 200 hours at u■ is already 0.
.. It was below 005■/A.

ヤシガラ活性炭はガス中の水銀を0.01■/ポ以下ま
で処理することがで、きなかった。
Coconut shell activated carbon was unable to treat mercury in gas to less than 0.01 μ/Po.

比較例1 ヤシガラ活性炭(粒度20〜32メツシユ、)21を硫
酸銅(50g / l )水溶液51に添加し、1時間
浸漬した後、100℃で5時間攪、けして塩化第二銅を
13wt%含浸した活性炭(Cu含浸活性炭と略す)を
調製した。
Comparative Example 1 Coconut shell activated carbon (particle size 20-32 mesh) 21 was added to copper sulfate (50 g/l) aqueous solution 51, immersed for 1 hour, stirred at 100°C for 5 hours, and then cupric chloride was added to 13 wt%. Impregnated activated carbon (abbreviated as Cu-impregnated activated carbon) was prepared.

ヤシガラ活性炭(未処理活性炭と略す)及びCu含浸活
性炭各々1pをアクリル樹脂製カラム(内径120mm
φ)に充填し、これに水銀15nv/rrrを含む空気
(空気の温度30℃)を1通気速度5V14,400で
通気し、゛ガス中の水銀の除去試験を行なった。
1 p each of coconut shell activated carbon (abbreviated as untreated activated carbon) and Cu-impregnated activated carbon was added to an acrylic resin column (inner diameter 120 mm).
φ), and air containing 15 nv/rrr of mercury (air temperature: 30° C.) was vented therein at an air flow rate of 5V14,400 to conduct a test for removing mercury from the gas.

その結果を表−2に示す。The results are shown in Table-2.

実施例2 イミノメチルリン酸基を官能基として有するスチレン−
ジビニルベンゼン共重合体樹脂(粒度14〜18メツシ
ユ) 100m1をCo”“濃度1%の硫酸コバルト水
溶液300m1中に添加し、30℃で4時間攪拌した後
、樹脂を分離し、十分水洗してコバルトを30mg/m
1−Resin(ilst)吸着したコバルト塩型キレ
ート樹脂を得た。さらにこの樹脂をロッセル塩水溶液(
S度260 g / ll 、 pH10)300ml
に添加し1次に37%ホルマリン水溶液20m1を添加
して還元処理を行なった。還元処理後、樹脂を分離し、
十分水洗した後、105℃で2時間加熱して、乾燥した
コバルト塩型キレート樹脂を得た。
Example 2 Styrene having iminomethyl phosphate group as a functional group
100 ml of divinylbenzene copolymer resin (particle size 14-18 mesh) was added to 300 ml of an aqueous cobalt sulfate solution with a concentration of 1%, and after stirring at 30°C for 4 hours, the resin was separated and thoroughly washed with water to remove the cobalt. 30mg/m
A cobalt salt type chelate resin adsorbed with 1-Resin (ilst) was obtained. Furthermore, this resin was added to a Rosselle salt aqueous solution (
Degree S 260 g/ll, pH 10) 300 ml
First, 20 ml of a 37% formalin aqueous solution was added to perform a reduction treatment. After reduction treatment, separate the resin,
After thoroughly washing with water, it was heated at 105° C. for 2 hours to obtain a dried cobalt salt type chelate resin.

上記乾燥樹脂15m1をガラス製カラム(151Ill
Ilφ)に充填し、水銀15■/dを含むガス(ガスの
温度35℃)を樹脂層に通気し、ガス中の水銀の除去試
験を行なった。
15ml of the above dry resin was poured into a glass column (151Ill).
A test for removing mercury from the gas was conducted by filling the resin layer with a gas containing 15 .mu./d of mercury (gas temperature: 35.degree. C.) and passing it through the resin layer.

カラム通過後のガス中に水銀が0.01■/ffr漏出
するまで通気した時の水銀吸着量は120■/m1−R
esinであった。
The amount of mercury adsorbed is 120■/m1-R when aerated until 0.01■/ffr of mercury leaks into the gas after passing through the column.
It was esin.

なお105℃で2時間加熱し乾燥したイミノメチルリン
酸基を官能基として有するスチレン−ジビニルベンゼン
共重合体樹脂(酸型)を用いて上記と同様の条件でガス
中の水銀の除去試験を行なったが、ガス中の水銀を13
.5■/ffrまでしか低下させることができず、また
カラム通過後のガス中に水銀が15■/n?となるまで
通気した時、水銀吸着量は0.5■/ m 1− Rで
あった。
A test for removing mercury from gas was conducted under the same conditions as above using a styrene-divinylbenzene copolymer resin (acid type) having an iminomethyl phosphate group as a functional group, which had been heated and dried at 105°C for 2 hours. However, the mercury in the gas was
.. The amount of mercury in the gas after passing through the column can be reduced to only 5■/ffr, and the concentration of mercury in the gas after passing through the column is 15■/n? When it was aerated until it became , the amount of mercury adsorbed was 0.5 ■/m 1-R.

実施例3 アクリル樹脂を母体とし、カルボン酸基を官能基として
有するカチオン交換・樹脂(粒度14〜48メツシユ)
 500m1をガラス製カラム(内、径40關φ)に充
填した後、イオン交換水11をSvl、0.下向流溶液
25ItをSV5.下向流で通液し、 Agを100w
/+nl−Rn1−Re5in(吸着した銀塩型樹脂を
得た。゛この樹脂をイオン交換水で十分水洗した後、1
05℃で3時間加熱して、乾燥した銀塩型樹脂を得た。
Example 3 Cation exchange resin having an acrylic resin as a matrix and a carboxylic acid group as a functional group (particle size 14-48 mesh)
After filling 500ml into a glass column (inner diameter: 40mm), ion-exchanged water 11 was added at Svl, 0. 25It of downward flow solution was added to SV5. The liquid is passed in a downward flow, and 100w of Ag is
/+nl-Rn1-Re5in (adsorbed silver salt type resin was obtained.゛After thoroughly washing this resin with ion exchange water, 1
A dried silver salt type resin was obtained by heating at 05° C. for 3 hours.

上記樹脂15m1をガラス製カラム(15mmφ)に゛
充填し、それに水“銀10■/−を含むガス(ガスの麺
所40℃)を゛樹脂層に通気し、ガス中の水銀除去試験
を行なった。カラム通過後のガス中に水iが0.01■
/d漏出するまで通気した時の水銀吸着量は97■/m
1−Resinであった。
A glass column (15 mmφ) was filled with 15 ml of the above resin, and a gas containing 10 cm/- of water and silver (at a gas temperature of 40°C) was passed through the resin layer to conduct a test for removing mercury from the gas. The amount of water i in the gas after passing through the column was 0.01
/dThe amount of mercury adsorbed when vented until leakage is 97■/m
1-Resin.

゛なお、105℃で3時間加熱乾燥した力□ルボン酸゛
木を官能基として有する漬チオン交換i脂i酸型)を用
いて上記と同様にガス小の水銀の蜂去試験を行なったと
ころ、水銀の除去下限は、9.8■/rrr。
In addition, a gaseous mercury removal test was conducted in the same manner as above using a thione-exchanged fatty acid type having a carboxylic acid as a functional group, which had been heated and dried at 105°C for 3 hours. , the lower limit of mercury removal is 9.8 ■/rrr.

吸着量は0.2■/ m 1− Rであった。The adsorption amount was 0.2■/m1-R.

実施例4 発泡粒状ポリプロピレン樹脂(粒度5〜20メツシユ)
を担体とし、この表面にイミノ酢酸基およびイミノジ酢
酸基を官能基として有するエポキシ樹脂をコーティング
したキレート樹脂11をガラス製カラム(内径1100
nφ)に充填し、上部よりCu Z +とじ”’C10
,”OOOppm含む硫酸銅水溶液21をsv5、下向
流で通液した。この樹脂のCu吸着量は13mg/m1
−Resinであうた・ 次に上記i脂を105℃で2時間加熱乾燥して得た樹脂
11をアクリル樹脂製カラム(内径100mmφ)に充
填し、i脂層社水銀10■/耐を含む窒素ガス(′ガス
の温度30t)を通気速度5V14.400で通気しガ
ス中の水銀の除去試験を行なった。カラム通過後のガス
中に水銀が0.01■/d漏出するまで通気した時の水
銀吸着量は83■/m1−Resinであった。
Example 4 Expanded granular polypropylene resin (particle size 5-20 mesh)
A glass column (inner diameter 1100
nφ), then Cu Z + binding from the top”'C10
," A copper sulfate aqueous solution 21 containing OOO ppm was passed through in a downward flow at sv5. The amount of Cu adsorbed by this resin was 13 mg/ml.
- Heat with Resin Next, resin 11 obtained by heating and drying the above i fat at 105°C for 2 hours was packed into an acrylic resin column (inner diameter 100 mmφ), and nitrogen gas containing mercury 10 / resistant A test for removing mercury from the gas was conducted by aerating the gas at a gas temperature of 30 t at an aeration rate of 5V14.400. When aeration was carried out until 0.01 .mu./d of mercury leaked into the gas after passing through the column, the amount of mercury adsorbed was 83 .mu./m1-Resin.

なおここで用いたキレート樹脂を酸型で上記と同様にガ
ス中の水銀の除去試験を行なったところ。
In addition, the chelate resin used here was subjected to a test for removing mercury from gas in the same manner as above in the acid form.

水銀の除去下限は9.6■/n?、吸着量は0.3■/
m1−Rであった。
Is the lower limit of mercury removal 9.6■/n? , adsorption amount is 0.3■/
It was m1-R.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、金属を吸着した陽イオン
交換樹脂およびまたは金属を吸着したキレート樹脂を用
いて、これを水銀含有ガスと接触せしめてガス中の水銀
を樹脂に吸着せしめ、ガス中の水銀を除去する方法であ
り2本発明の方法によれば金属を吸着した樹脂を用いる
ため、ガス中の水銀が樹脂上の金属とアマルガムを形成
し易く。
As explained above, the present invention uses a cation exchange resin that has adsorbed a metal and/or a chelate resin that has an adsorbed metal, and brings this into contact with a mercury-containing gas so that the mercury in the gas is adsorbed to the resin. 2. Since the method of the present invention uses a resin that has adsorbed metal, the mercury in the gas tends to form an amalgam with the metal on the resin.

従来の活性炭等を使用する吸着法と比較して、ガス中の
水銀を非常に低濃度まで除去することができ、しかも水
銀の吸着量が大きく、大量のガスを処理することができ
る。また本発明の方法は水銀を含むガスを樹脂で直接処
理するため、処理設備が簡単で、処理操作も容易であり
、さらに湿式法と比べて水銀を吸着処理した液の再処理
工程が省ける等の効果を有する。
Compared to conventional adsorption methods that use activated carbon, etc., mercury in gas can be removed to a very low concentration, and the amount of mercury adsorbed is large, making it possible to process large amounts of gas. In addition, since the method of the present invention directly treats mercury-containing gas with resin, the treatment equipment is simple and the treatment operation is easy.Furthermore, compared to the wet method, the process of reprocessing the liquid that has been adsorbed with mercury can be omitted. It has the effect of

Claims (1)

【特許請求の範囲】[Claims] 1、金属イオンを吸着した陽イオン交換樹脂およびまた
は金属イオンを吸着したキレート樹脂と水銀含有ガスと
を接触し、ガス中の水銀を樹脂に吸着せしめて除去する
ことを特徴とするガス中の水銀の除去方法。
1. Mercury in a gas, which is characterized by contacting a cation exchange resin that has adsorbed metal ions and/or a chelate resin that has adsorbed metal ions with a mercury-containing gas so that the mercury in the gas is adsorbed to the resin and removed. How to remove.
JP60296080A 1985-12-27 1985-12-27 Method for removing mercury contained in gas Granted JPS62155925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60296080A JPS62155925A (en) 1985-12-27 1985-12-27 Method for removing mercury contained in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60296080A JPS62155925A (en) 1985-12-27 1985-12-27 Method for removing mercury contained in gas

Publications (2)

Publication Number Publication Date
JPS62155925A true JPS62155925A (en) 1987-07-10
JPH0586247B2 JPH0586247B2 (en) 1993-12-10

Family

ID=17828857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60296080A Granted JPS62155925A (en) 1985-12-27 1985-12-27 Method for removing mercury contained in gas

Country Status (1)

Country Link
JP (1) JPS62155925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018199128A (en) * 2017-05-26 2018-12-20 ケミカル アンド メタル テクノロジーズ リミテッド ライアビリティ カンパニーChemical And Metal Technologies Llc Broad-spectrum matrix for contaminated emission sorbent compound and method of use
US11534734B2 (en) 2014-07-25 2022-12-27 Chemical and Metal Technologies LLC CZTS sorbent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11534734B2 (en) 2014-07-25 2022-12-27 Chemical and Metal Technologies LLC CZTS sorbent
JP2018199128A (en) * 2017-05-26 2018-12-20 ケミカル アンド メタル テクノロジーズ リミテッド ライアビリティ カンパニーChemical And Metal Technologies Llc Broad-spectrum matrix for contaminated emission sorbent compound and method of use

Also Published As

Publication number Publication date
JPH0586247B2 (en) 1993-12-10

Similar Documents

Publication Publication Date Title
JP3383302B2 (en) Removal of cyanide from water
EP0433677B1 (en) Removal of mercury from liquid hydrocarbons
US5118655A (en) Water contaminant adsorption composition
Paudyal et al. Removal of fluoride by effectively using spent cation exchange resin
WO2017114354A1 (en) Method for preparing particulate form caesium-removal inorganic ion adsorbent and product and application thereof
JPS59160534A (en) Adsorbent for mercury vapor and treatment of mercury vapor-containing gas
US5187200A (en) Process for the selective absorption of anions
JPS62155925A (en) Method for removing mercury contained in gas
CN1008069B (en) Method for removal of hydrogen sulfide from gas mixture
JP2000342962A (en) Heavy metal adsorbent and production thereof
RU2131847C1 (en) Material for adding physiologically essential inorganic elements to water
JPS58223439A (en) Adsorbent for heavy metal, production thereof and adsorptive treatment
JP7212053B2 (en) How to remove heavy metals from liquids
RU2676977C1 (en) Method of obtaining filtering material for water purification from manganese and hydrosulfide ion
JPS6244995B2 (en)
JP3390148B2 (en) Purification treatment method for salt water for electrolysis
JPH0691988B2 (en) Removal method of arsenic and silicic acid from geothermal water
EP0493589A1 (en) Catalytic destruction of sulfur-oxygen anions.
JP2569432B2 (en) Lead ion treatment method
TWI314473B (en) High activity chemical filter, its preparation and use in removing hazard gas by adsorption
JPS62114632A (en) Adsorbent for mercury contained in gas
JP2001137701A (en) Adsorbent and deodorization method
JP4017380B2 (en) Gas treatment method using water-resistant spherical silica as an adsorbent
JPS6164388A (en) Removal of phosphorus in water
SU1318522A1 (en) Method for regenerating active carbon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees