JPS6215477A - Ultrasonic position measuring instrument - Google Patents

Ultrasonic position measuring instrument

Info

Publication number
JPS6215477A
JPS6215477A JP15540285A JP15540285A JPS6215477A JP S6215477 A JPS6215477 A JP S6215477A JP 15540285 A JP15540285 A JP 15540285A JP 15540285 A JP15540285 A JP 15540285A JP S6215477 A JPS6215477 A JP S6215477A
Authority
JP
Japan
Prior art keywords
ultrasonic
measured
circuit
ultrasonic transducer
position measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15540285A
Other languages
Japanese (ja)
Inventor
Masayuki Tone
利根 昌幸
Tsutomu Yano
屋野 勉
Nobuhisa Atoji
跡地 信久
Shuhei Konishi
周平 小西
Shoji Nakajima
正二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15540285A priority Critical patent/JPS6215477A/en
Publication of JPS6215477A publication Critical patent/JPS6215477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure with high accuracy the position of an object to be measured having a minute size such as an eyelet, by outgoing an ultrasonic pulse at a prescribed time interval and calculating the position of an object to be measured by an arithmetic circuit from the sequence of a transmitting pulse by which its reflected wave level becomes maximum. CONSTITUTION:In the scanning period of an ultrasonic transmitter-receiver 11, an ultrasonic pulse is transmitted at a prescribed time interval. A receiving signal reflected from the object to be measured and received by the ultrasonic transmitter-receiver 11 is amplified by an amplifying circuit 13 and also detected and smoothed by a detecting and smoothing circuit 14 and thereafter, the maximum amplitude of this receiving signal is held in a peak holding circuit 15 at every one transmitting pulse. The maximum amplitude of the receiving signal which is A/D-converted by an A/D converting circuit 16 is stored in a memory at every one transmitting pulse and thereafter, the maximum value in one scan is detected and from its result, the position of the object to be measured is calculated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、動電型スピーカのコーン紙面内に配置されて
いるノ・トメなどの微小な被測定物の位置を検出する超
音波位置計測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic position measuring device for detecting the position of a minute object such as a toe placed within the cone surface of an electrodynamic speaker. It is something.

従来の技術 3 ・\− 最近、超音波位置計測装置は工業用「フボノトなどの分
野で盛んに利用されるようになってきた。
Conventional technology 3 ・\- Recently, ultrasonic position measuring devices have been widely used in fields such as industrial "fubonoto".

この超音波位置計′6111装置としては、例えば精機
学会講演論文集(昭和56年秋季大会55〜57頁)等
に記載されているように超音波送波器と超音波受波器を
回転させ、被測定物からの反射波レベルのピーク値によ
り被岨]定物表面の突起状物体の位置を測定するように
した構成が知られている。
This ultrasonic position meter '6111 device rotates an ultrasonic transmitter and an ultrasonic receiver, as described in, for example, the Proceedings of the Japan Society of Precision Machinery Engineers (Autumn Conference of 1981, pp. 55-57). A configuration is known in which the position of a protruding object on the surface of an object to be measured is measured based on the peak value of the level of reflected waves from the object to be measured.

以下、第8図を参照して従来の超音波位置計側装置につ
いて説明する。第8図において、1旧は被測定物106
に超音波パルスを放射する円板状の超音波送波器、1.
02は被測定物106の表面で反射された超音波パルス
を受波する円板状の超音波受波器、103は超音波送波
器101に送信パルスを印加するパルス発生回路、10
4は超音波受波器102の出力を増幅する増幅器、]0
5はパルス発生回路[13において発生ずるパルスのタ
イミングに同1tJ]して反射波レベルに対応した増幅
器10/Iの出力を記憶するメモリ・−である。
Hereinafter, a conventional ultrasonic position measuring device will be explained with reference to FIG. In Fig. 8, 1 old is the object to be measured 106
a disc-shaped ultrasonic transmitter that emits ultrasonic pulses to the area; 1.
02 is a disk-shaped ultrasonic receiver that receives ultrasonic pulses reflected from the surface of the object to be measured 106; 103 is a pulse generation circuit that applies transmission pulses to the ultrasonic transmitter 101;
4 is an amplifier that amplifies the output of the ultrasonic receiver 102,]0
Reference numeral 5 denotes a memory for storing the output of the amplifier 10/I corresponding to the reflected wave level by the pulse generating circuit [1tJ at the same timing as the pulse generated in 13].

次にその動作について説明する。パルス発生回路103
より一定の時間間隔で超音波送波器101にパルスを印
加l〜、超音波送波器101、あるいd、超音波送波器
1.01及び超音波受波器1.02をそれらの垂直軸1
.0]a、 H)2aを回転軸として回転きせながら超
音波送波器101より被測定物106に超音波パルスを
放射する。このとき、被測定物106からの反射波レベ
ルは第9図に示すように超音波送波器]01、超音波受
波器102の回転角が0°のときに極太を示し、回転角
が大きくなるにつれて次第に低下する。この反射波レベ
ルの極太は被測定物J06の突起1(〕7からの反射に
」:るものであるので、反射波レベルが極大を示す超音
波送受波器1()2の回転角の大きさから突起107の
位置を測定することができる。
Next, its operation will be explained. Pulse generation circuit 103
Applying pulses to the ultrasonic transmitter 101 at more constant time intervals l~, the ultrasonic transmitter 101, or d, the ultrasonic transmitter 1.01 and the ultrasonic receiver 1.02. vertical axis 1
.. 0]a, H) Ultrasonic pulses are emitted from the ultrasonic transmitter 101 to the object to be measured 106 while rotating about the rotation axis 2a. At this time, as shown in FIG. 9, the reflected wave level from the object to be measured 106 is extremely thick when the rotation angle of the ultrasonic transmitter]01 and the ultrasonic receiver 102 is 0°; It gradually decreases as it gets bigger. This extremely thick reflected wave level is due to the reflection from the protrusion 1 () 7 of the object to be measured J06, so the rotation angle of the ultrasonic transducer 1 () 2 at which the reflected wave level is maximum is The position of the protrusion 107 can be measured from the outside.

なお、ここで用いられている超音波送波器101の周波
数は約150KH2である。
Note that the frequency of the ultrasonic transmitter 101 used here is approximately 150KH2.

発明が解決しようとする問題点 しかし、以上のような従来の構成の超音波位置計測装置
を用いて第2図(σ)、(h)に示す動電型スピーカ(
以下、単にスピーカと称す)のコーン紙15 ベーン の面内に位置する被測定物である・・トメ4の位置計測
を行なう場合、次のような問題点があった。
Problems to be Solved by the Invention However, the electrodynamic speaker (σ) shown in FIGS.
When measuring the position of the toe 4, which is an object to be measured located within the plane of the cone paper 15 vane (hereinafter simply referred to as a speaker), the following problems occurred.

即ち、ハトメ4の大きさは高々直径15mrnz長さ3
mm程度であり、従来の使用周波数150KHzにおけ
る超音波の波長2.3mmに対し同程度であるため、・
・トメ4からの反射波レベルは極めて低く、S/N比を
十分に取ることができないため、超音波送波器101、
超音波受波器102を走査しても反射波レベルの変化が
緩やかとなり、極太位置を精度よく検出することが困難
であった。!た従来の超音波送波器101及び超音波受
波器】02は円板状であり、集束されていないため、超
音波ビーム幅が広く、測定対象となる・・トメ4以外の
部分、例えば第2図(h)に示すボイスコイルボビン2
の先端部2aやフレーム3の端部からの反射波を受波す
るため、・・トメ4からの反射波を識別することができ
なかった。
That is, the size of the eyelet 4 is at most 15 mrnz in diameter and 3 m in length.
mm, which is about the same as the wavelength of ultrasonic waves of 2.3 mm at the conventional frequency of 150 KHz.
- The level of the reflected wave from the tome 4 is extremely low and it is not possible to obtain a sufficient S/N ratio, so the ultrasonic transmitter 101,
Even when the ultrasonic wave receiver 102 scans, the reflected wave level changes slowly, making it difficult to accurately detect the extremely thick position. ! [Conventional ultrasonic transmitter 101 and ultrasonic receiver] 02 is disk-shaped and is not focused, so the ultrasonic beam width is wide and the measurement target is the part other than the tome 4, for example. Voice coil bobbin 2 shown in Fig. 2 (h)
Since the reflected waves from the tip 2a of the frame 3 and the end of the frame 3 are received, the reflected waves from the tome 4 could not be identified.

そこで、本発明は、従来技術の以上のような問題点を解
決するもので、ハトメなどの微小な被測定物の位置を精
度よく測定することができるよう6 ・\−7 にした超音波位置計測装置を提供しようとするものであ
る。
Therefore, the present invention solves the above-mentioned problems of the prior art, and has an ultrasonic position set to 6 \-7 so that the position of a minute object such as an eyelet can be accurately measured. The aim is to provide a measuring device.

問題点を解決するだめの手段 そして上記問題点を解決するだめの本発明の技術的な手
段は、超音波パルスの送受波を行なう超音波送受波器と
、この超音波送受波器を走査する走査装置と、上記超音
波送受波器に加える送信パルスを一定の時間間隔で発生
する送信回路と、」1記超音波送受波器の受信信号を増
幅する増幅回路と、この増幅回路により増幅した受信信
号の振幅をホールドするピークホールド回路と、このピ
ークホールド回路の出力をA/D変換するA/D変換回
路と、複数個の受信信号のうち振幅の最大となる送信パ
ルスの順序を検出し、被測定物の位置を演算する演算回
路とを具備したものである。
Means for solving the problems and technical means of the present invention for solving the above problems include an ultrasonic transducer for transmitting and receiving ultrasonic pulses, and a scanning method for this ultrasonic transducer. a scanning device, a transmission circuit that generates transmission pulses to be applied to the ultrasonic transducer at regular time intervals, an amplifier circuit that amplifies the received signal of the ultrasonic transducer described in 1. A peak hold circuit that holds the amplitude of the received signal, an A/D conversion circuit that A/D converts the output of this peak hold circuit, and a detecting order of the transmitted pulses having the maximum amplitude among the plurality of received signals. , and an arithmetic circuit that calculates the position of the object to be measured.

作用 」=記技術的手段による作用は次のようになる。action ” = The effect of the technical means is as follows.

即ち、超音波送受波器により等速走査し、この間に送信
回路より一定の時間間隔で送信パルスを超音波送受波器
に印加する。これにより超音波送受7、−3−7 波器より超音波パルスを放射し、被測定物から反射され
、超音波送受波器によって受波された受信信号を増幅回
路により増幅する。この受信信号を検波平滑回路で検波
平滑し、この受信信号の最大振幅を1回の送信パルスご
とにピークホールド回路にホールドする。A/D変換回
路によってA/D変換された受信信号の最大振幅は演算
回路により1回の送信パルスごとにメモリに格納した後
、1回の走査における最大値を検出し、その結果から被
測定物の位置の演算を行なう。従って・刈・メのような
微小寸法の被測定物の位置を高精度に計測することがで
きる。
That is, the ultrasonic transducer performs constant speed scanning, and during this period, the transmitting circuit applies transmission pulses to the ultrasonic transducer at regular time intervals. As a result, an ultrasonic pulse is emitted from the ultrasonic transducer 7, -3-7, and the received signal reflected from the object to be measured and received by the ultrasonic transducer is amplified by the amplifier circuit. This received signal is detected and smoothed by a detection smoothing circuit, and the maximum amplitude of this received signal is held in a peak hold circuit for each transmission pulse. The maximum amplitude of the received signal that has been A/D converted by the A/D conversion circuit is stored in the memory for each transmission pulse by the arithmetic circuit, and then the maximum amplitude in one scan is detected, and the maximum amplitude of the received signal is determined based on the result. Perform calculations on the position of objects. Therefore, it is possible to measure the position of a very small object to be measured, such as a cutter, with high precision.

実施例 以下、図面を参照しながら本発明の実施例について説明
する。第1図は本発明の第1実施例における超音波位置
計測装置を示すブロック回路図、第2図はスピーカのハ
トメを被測定物として測定する場合のスピーカに対する
超音波送受波器の配置を示し、第2図(a)は要部の平
面図、第2図(h)は要部の一部切欠正面図である。先
ず、スピーカについて説明すると、1はコーン紙、2は
ボイスコイルボビン、3はフレーム、4はコーン紙1の
面内に位置する・・トメである。次に超音波位置計測装
置について説明すると、第1図においで、11は超音波
送受波器で、曲面型振動子を有し、走査装置(図示省略
)により第2図(a)に示すようにコーン紙1の中心点
0を中心として・・トメ4を通る半径Rの円弧A上で矢
印B方向にS。からSlまでの角度2θ0の範囲で走査
される。12は超音波送受波器J1に一定の時間間隔で
送信パルスを印加する送信回路、J3は超音波送受波器
11より放射された超音波パルスがコーン紙]、あるい
はハトメ4から反射され、超音波送受波器11によって
受波された受信信号を増幅する増幅回路、14は受信信
号の検波平滑回路、15は検波平滑回路14で検波平滑
された受信信号の最大振幅を1回の送信パルスごとにホ
ールドするピークホールド回路、】6は受信信号をA/
D (アナログ−ディジタル)変換するA/D変換回路
、17はA/D変換回路16によってA/D変換された
受信信号91=−:・ の最大振幅を1回の送信パルスごとにメモリに格納した
後、1回の走査第2図(a)のS。からSlまでにおけ
る最大値を検出し、その結果からハトメ4位置の演算を
行なう演算回路である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig. 1 is a block circuit diagram showing an ultrasonic position measuring device according to a first embodiment of the present invention, and Fig. 2 shows the arrangement of an ultrasonic transducer with respect to a speaker when measuring an eyelet of a speaker as an object to be measured. , FIG. 2(a) is a plan view of the main part, and FIG. 2(h) is a partially cutaway front view of the main part. First, to explain the speaker, 1 is a paper cone, 2 is a voice coil bobbin, 3 is a frame, and 4 is a tome located within the plane of the paper cone 1. Next, to explain the ultrasonic position measuring device, in Fig. 1, reference numeral 11 is an ultrasonic transducer, which has a curved transducer. Centering on the center point 0 of the paper cone 1... S in the direction of arrow B on the arc A of radius R passing through the toe 4. The range of angle 2θ0 from S1 to S1 is scanned. 12 is a transmission circuit that applies transmission pulses to the ultrasonic transducer J1 at regular time intervals; J3 is a transmission circuit that applies transmission pulses to the ultrasonic transducer J1 at regular intervals; An amplifier circuit for amplifying the received signal received by the acoustic wave transducer 11, 14 a detection and smoothing circuit for the received signal, and 15 the maximum amplitude of the received signal detected and smoothed by the detection and smoothing circuit 14 for each transmission pulse. ]6 is a peak hold circuit that holds the received signal at A/
D (analog-digital) A/D conversion circuit 17 stores the maximum amplitude of the received signal 91=-:・ A/D converted by the A/D conversion circuit 16 in memory for each transmission pulse. After that, one scan S in Fig. 2(a). This is an arithmetic circuit that detects the maximum value from S1 to S1, and calculates the four eyelet positions from the result.

次に上記実施例の動作について説明する。超音波送受波
器1】により円弧A上をS。からS、までの角度2θ。
Next, the operation of the above embodiment will be explained. S on arc A using ultrasonic transducer 1]. The angle 2θ from to S.

の範囲で等速走査し、この間に送信口、路12より一定
の時間間隔で送信パルスを超音波送受波器11に印加す
る。これにより超音波送受波器】】より超音波パルスを
放射し、コーン紙l、あるいはハトメ4から反射され、
超音波送受波器11によって受波された受信信号を増幅
回路13により増幅する。この受信信号を検波平滑回路
14で検波平滑し、この受信信号の最大振幅を1回のは
演算回路17により1回の送信パルスごとにメモリに格
納した後、1回の走査における最大値を検出し、その結
果から・・トメ4の位置の演算を行なう。
During this period, transmission pulses are applied to the ultrasonic transducer 11 from the transmission port 12 at regular time intervals. As a result, ultrasonic pulses are emitted from the ultrasonic transducer] and are reflected from the cone paper l or eyelet 4,
A reception signal received by the ultrasonic transducer 11 is amplified by an amplifier circuit 13. This received signal is detected and smoothed by the detection smoothing circuit 14, and the maximum amplitude of this received signal is stored in memory for each transmitted pulse by the arithmetic circuit 17, and then the maximum value in one scan is detected. Then, from the result, the position of tome 4 is calculated.

10  へ− 今、超音波送受波器11は周波数IMH2,曲率半径3
0mmz直径1. (l mmの凹面形振動子を有して
いるとすると、焦点位置における超音波ビームのビーム
幅(直径)2bは下記の(1)式により得ることができ
る。
10 - Now, the ultrasonic transducer 11 has a frequency of IMH2 and a radius of curvature of 3.
0mmz diameter 1. (Assuming that it has a concave transducer of 1 mm, the beam width (diameter) 2b of the ultrasonic beam at the focal position can be obtained from the following equation (1).

2h−2λZ/(πα)      ・・・・・・(1
>λ:波長 Z:焦点距離 a:凹面振動子の半径 従って本実施例において、焦点位置における超音波ビー
ム幅2hは約]、、 3 mmであり、ノ・トメ4の寸
法とほぼ同程度となる。そして上記超音波送受波器11
はノ・トメ4に対向するときの距離dがほぼ凹面の曲率
半径に一致する高さで、円弧A上をSoからS、−1で
の角度2θ0範囲で等速走査し、この間に一定の時間間
隔で送信回路12により2回0回の送信パルスを超音波
送受波器11に印加するものとする。これによりS。か
らS、の走査期間における反射波レベルは第3図に示す
ようになる。
2h−2λZ/(πα) ・・・・・・(1
>λ: Wavelength Z: Focal length a: Radius of concave transducer Therefore, in this example, the ultrasonic beam width 2h at the focal position is approximately 3 mm, which is approximately the same as the size of the hole 4. Become. and the ultrasonic transducer 11
At a height where the distance d when facing the tome 4 almost matches the radius of curvature of the concave surface, the arc A is scanned at a constant speed in the angle 2θ0 range from So to S, -1, and during this period, a constant It is assumed that the transmission circuit 12 applies two and zero transmission pulses to the ultrasonic transducer 11 at time intervals. This allows S. The reflected wave level during the scanning period from S to S is as shown in FIG.

即ち、コーン紙lと超音波送受波器11の中心軸11 
・・ 。
That is, the central axis 11 of the cone paper l and the ultrasonic transducer 11
・・・ .

ばかなり大きな傾斜角をなしているためコーン紙lから
の反射波は超音波送受波器11に殆んど受波されず、極
めて低いものであり、ハトメ4の位置を通過するP点で
反射波レベルはピークとなる。
Since the angle of inclination is quite large, the reflected wave from the cone paper l is hardly received by the ultrasonic transducer 11 and is extremely low, and is reflected at point P passing through the position of the eyelet 4. The wave level is at its peak.

従ってコーン紙1の中心点Oを原点(0,0)とし、ハ
トメ4の位置P点の座標をxX yとしたとき、反射レ
ベルのピークがN番目の送信パルスに現われるものとす
ると1.z’、  yは次式で与えられる。
Therefore, if the center point O of the paper cone 1 is the origin (0,0) and the coordinates of the position P of the eyelet 4 are xXy, and the peak of the reflection level appears at the Nth transmitted pulse, then 1. z' and y are given by the following equations.

Nは反射波レベルの測定結果から得られる値であり、N
ONa3及びRは定数として予め演算回路17にストア
しておくことによって(2)式のxX yを演算回路】
7で演算し、ハトメ4の位置を求めることができる。
N is the value obtained from the measurement results of the reflected wave level, and N
By storing ONa3 and R as constants in the arithmetic circuit 17 in advance, xX y in equation (2) can be calculated by the arithmetic circuit]
7 to find the position of the eyelet 4.

このように本実施例によれば、超音波ビーム径がハトメ
4の位置においてハトメ4の寸法とほぼ等しい凹面型振
動子を有する超音波送受波器11を使用し、その凹面の
焦点距離にほぼ等しい距離だけ離してハトメ4を含む円
の上方を走査しているため、ハトメ4の位置においてン
ヤープな反射波レベルのピークが現われるので、高精度
で7・トメ4の位置計測を行なうことができる。
As described above, according to the present embodiment, the ultrasonic transducer 11 having a concave transducer whose ultrasonic beam diameter is approximately equal to the size of the eyelet 4 at the position of the eyelet 4 is used, and the focal length of the concave surface is approximately equal to the diameter of the eyelet 4. Since the upper part of the circle including eyelet 4 is scanned at an equal distance apart, a peak of the reflected wave level appears at the position of eyelet 4, so the position of eyelet 7 and eyelet 4 can be measured with high accuracy. .

次に本発明の第2実施例における超音波位置計測装置に
ついて説明する。第4図は本発明の第2実施例のブロッ
ク回路図、第5図はスピーカに対する超音波送受波器の
配置を示し、第5図(a)は要部の平面図、第5図(勾
は要部の一部切欠正面図である。本実施例にあって、上
記第1実施例の構成と異なる点は第5図(’7.)、(
h)に示すように超音波送受波器1】が・・トメ4を見
込む一定の角度をもってコーン紙】の中心点Oを中心と
する半径Rs (R。
Next, an ultrasonic position measuring device according to a second embodiment of the present invention will be described. FIG. 4 is a block circuit diagram of the second embodiment of the present invention, FIG. 5 shows the arrangement of the ultrasonic transducer with respect to the speaker, FIG. 5(a) is a plan view of the main part, and FIG. is a partially cutaway front view of the main part.The difference in the configuration of this embodiment from the above-mentioned first embodiment is shown in FIG. 5 ('7.), (
As shown in h), the ultrasonic transducer 1] is held at a certain angle looking toward the toe 4 with a radius Rs (R) centered on the center point O of the cone paper].

>R)の円弧A上で矢印B方向にS。からS11での角
度2θ。の範囲で走査するようにし、寸だ送信回路12
の送信パルスから一定の遅延時間を持って、即ち、ハト
メ4からの反射波を受信した後、・・トメ以外からの反
射波を受信する寸での期間にA/D変換回路J6がA/
D変換をスタートする13S−/゛ ように制御するだめのパルスを与える遅延パルス発生回
路Iを備えた構成にある。
>R) on arc A in the direction of arrow B. Angle 2θ at S11 from . The transmission circuit 12 scans within the range of
After a certain delay time from the transmitted pulse, that is, after receiving the reflected wave from the eyelet 4, the A/D converter circuit J6 converts the
The configuration includes a delay pulse generation circuit I that provides a pulse for controlling 13S-/' to start D conversion.

以下、」1記第2実施例の動作について説明する。Hereinafter, the operation of the second embodiment described in section 1 will be explained.

上記第1実施例と同様に超音波送受波器J1は半径Rs
なる円弧Aの上方をS。からS、まで角度2θ0の範囲
で等速走査し、その間に送信回路12より一定の時間間
隔で2No回の送信パルスを送信するものとする。この
とき、超音波送受波器J1は斜め上方からコーン紙1の
中央部を見込むように配置されているため、ボイスコイ
ルボビン2の上端部2aが超音波ビームの内に入り、レ
ベルの高い反射波を生ずる場合がある。従って超音波送
受波器11がハトメ4を見込む位置に走査されたとき、
第6図に示すようにノ・トメ4からの反射波Cに対して
時間遅れTdを持ってボイスコイルボビン2の上端部2
aからの反射波りが生じる。この時間遅れはハトメ4と
ボイスコイルボビン上端部2aとの距離差に相当する。
As in the first embodiment, the ultrasonic transducer J1 has a radius Rs
The upper part of the arc A is S. It is assumed that constant speed scanning is performed in the range of angle 2θ0 from S to S, and during that period, the transmission circuit 12 transmits 2No transmission pulses at regular time intervals. At this time, since the ultrasonic transducer J1 is arranged to look at the center of the paper cone 1 from diagonally above, the upper end 2a of the voice coil bobbin 2 enters the ultrasonic beam, causing a high-level reflected wave. may occur. Therefore, when the ultrasonic transducer 11 is scanned to a position where the eyelet 4 is expected,
As shown in FIG. 6, the upper end 2 of the voice coil bobbin 2
A reflected wave is generated from a. This time delay corresponds to the distance difference between the eyelet 4 and the voice coil bobbin upper end 2a.

反射波りは・・トメ4の位置計測には不要な反射波であ
り、誤差の原因となる力;、遅延パルス発生回路18に
よって、反射波C14・、− を受波し、反射波りを受波する以前にA/D変換回路1
6にA/D変換スタートさせるだめのパルスを発生さぜ
るので、A/D変換された値はA/D変換回路16の出
力ポートにラッチされる。従ってA/D変換回路16の
出力は・・トメ4からの反射波Cの振幅に対応した値と
なり、ボイスコイルボビン2の上端部2aからの反射波
りを除外することができ、・・トメ4の位置測定の誤差
を軽減することができる。本実施例において、ハトメ4
の座標(−rsy)は第7図から明らかなように次式で
与えられる。
The reflected wave is a reflected wave that is unnecessary for the position measurement of the tome 4 and causes an error.The delayed pulse generation circuit 18 receives the reflected wave C14, - and generates the reflected wave. A/D conversion circuit 1 before receiving the wave
6, a pulse is generated to start the A/D conversion, so the A/D converted value is latched at the output port of the A/D conversion circuit 16. Therefore, the output of the A/D conversion circuit 16 is a value corresponding to the amplitude of the reflected wave C from the tome 4, and the reflected wave from the upper end 2a of the voice coil bobbin 2 can be excluded. position measurement errors can be reduced. In this example, eyelet 4
As is clear from FIG. 7, the coordinates (-rsy) of is given by the following equation.

従ってR,R8、No1θ。の値を予め演算回路17に
ストアしておくことによって、反射波レベルの測定結果
からNを求め、(3)式を用いてxl yの値を演算回
路17で演算し、・・トメ4の位置を求めるときができ
る。
Therefore, R, R8, No1θ. By storing the values of in the arithmetic circuit 17 in advance, N is calculated from the measurement results of the reflected wave level, and the values of xl and y are calculated in the arithmetic circuit 17 using equation (3). It is possible to find the position.

なお、上記第1、第2実施例においては超音波送受波器
11の走査を円弧状に行なうようにしたが、直線状に走
査する場合も全く同様である。寸外超音波送受波器11
の走査速度は全走査幅にわたって等速走査になると仮定
して説明しているが、走査幅の始点S。、終点S1の近
傍では、低速になる場合があるので、この時は走査幅を
S。、81間より広く両側に走査1〜、送信パルスをS
。からS、の区間だけで超音波送受波器1Jに印加する
」:うに設定すれば走査速度の低下による1111]定
誤差を小さくすることができる。更に凹面型振動子に代
えて平板型振動子を用でも位置測定の精度はやや低下す
るが、従来に比べて高精度に位置測定を行なうことがで
きる。
In the first and second embodiments described above, the ultrasonic transducer 11 scans in an arc shape, but the same applies to the case where it scans in a straight line. Ultrasonic transducer 11
The explanation is based on the assumption that the scanning speed is constant over the entire scanning width, but the starting point S of the scanning width. , near the end point S1, the speed may be slow, so at this time the scanning width is set to S. , scan on both sides wider than 1 to 81, send pulse S
. If the setting is made as follows, it is possible to reduce the constant error caused by the decrease in scanning speed. Furthermore, even if a flat plate type vibrator is used in place of the concave type vibrator, the accuracy of position measurement is slightly lowered, but position measurement can be performed with higher precision than in the past.

発明の効果 以上のように本発明によれば、超音波送受波器の走査期
間中に一定の時間間隔で超音波パルスを発信し、その反
射波レベルが最大となる発信パルスの順序から被測定物
の位置を演算回路により演算するので、ハトメのような
微小寸法の被測定物の位置を高精度に計測することがで
きる。
Effects of the Invention As described above, according to the present invention, ultrasonic pulses are emitted at regular intervals during the scanning period of an ultrasonic transducer, and the measurement target is determined in the order of the emitted pulses that have the highest reflected wave level. Since the position of the object is calculated by the arithmetic circuit, the position of a minute object to be measured, such as an eyelet, can be measured with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1実施例における超音波
位置計測装置を示し、第1図はブロック回路図、第2図
(a)はスピーカに対する超音波送受波器の配置を示す
平面図、同図(h)はその一部切欠正面図、第3図は走
査方向に対する反射波レベルの一例を示す特性図、第4
図及び第5図は本発明の第2実施例における超音波位置
計測装置を示し、第4図はブロック回路図、第5図(a
)はスピーカに対する超音波送受波器の配置を示す平面
図、同図(A)はその一部切欠正面図、第6図は反射波
の説明図、第7図は被測定物の位置計算式の説明図、第
8図は従来の超音波位置計測装置のブロック図、第9図
はその反射波レベルの一例を示す特性図である。 ]1・・・超音波送受波器、12・・・送信回路、J3
・・・増幅回路、15・・・ピークホールド回路、16
・・・A/D変換回路、J7・・・演算回路。
1 and 2 show an ultrasonic position measuring device according to a first embodiment of the present invention, FIG. 1 is a block circuit diagram, and FIG. 2 (a) shows the arrangement of an ultrasonic transducer with respect to a speaker. FIG. 3 is a characteristic diagram showing an example of the level of reflected waves in the scanning direction, FIG.
5 and 5 show an ultrasonic position measuring device according to a second embodiment of the present invention, FIG. 4 is a block circuit diagram, and FIG.
) is a plan view showing the arrangement of the ultrasonic transducer with respect to the speaker, (A) is a partially cutaway front view, Fig. 6 is an explanatory diagram of reflected waves, and Fig. 7 is a formula for calculating the position of the object to be measured. FIG. 8 is a block diagram of a conventional ultrasonic position measuring device, and FIG. 9 is a characteristic diagram showing an example of the reflected wave level. ] 1... Ultrasonic transducer, 12... Transmission circuit, J3
...Amplification circuit, 15...Peak hold circuit, 16
... A/D conversion circuit, J7... arithmetic circuit.

Claims (5)

【特許請求の範囲】[Claims] (1)超音波パルスの送受波を行なう超音波送受波器と
、この超音波送受波器を走査する走査装置と、上記超音
波送受波器に加える送信パルスを一定の時間間隔で発生
する送信回路と、上記超音波送受波器の受信信号を増幅
する増幅回路と、この増幅回路により増幅した受信信号
の振幅をホールドするピークホールド回路と、このピー
クホールド回路の出力をA/D変換するA/D変換回路
と、複数個の受信信号のうち振幅の最大となる送信パル
スの順序を検出し、被測定物の位置を演算する演算回路
とを具備したことを特徴とする超音波位置計測装置。
(1) An ultrasonic transducer that transmits and receives ultrasonic pulses, a scanning device that scans this ultrasonic transducer, and a transmitter that generates transmission pulses to be applied to the ultrasonic transducer at regular time intervals. an amplifier circuit that amplifies the received signal of the ultrasonic transducer, a peak hold circuit that holds the amplitude of the received signal amplified by the amplifier circuit, and an A/D converter that converts the output of the peak hold circuit. An ultrasonic position measuring device comprising: a /D conversion circuit; and an arithmetic circuit that detects the order of transmitted pulses having the maximum amplitude among a plurality of received signals and calculates the position of an object to be measured. .
(2)超音波送受波器が凹面型振動子を有し、この超音
波送受波器を被測定物に対し上記凹面の曲率半径にほぼ
等しい距離を存して走査する特許請求の範囲第1項記載
の超音波位置計測装置。
(2) The ultrasonic transducer has a concave vibrator, and the ultrasonic transducer scans the object to be measured at a distance approximately equal to the radius of curvature of the concave surface. The ultrasonic position measuring device described in .
(3)凹面型振動子のビーム幅が被測定物のビーム位置
において被測定物の寸法とほぼ同程度である特許請求の
範囲第2項記載の超音波位置計測装置。
(3) The ultrasonic position measuring device according to claim 2, wherein the beam width of the concave transducer is approximately the same as the dimension of the object to be measured at the beam position of the object to be measured.
(4)超音波送受器の中心軸が被測定物を有する平面に
対し傾斜された状態で超音波送受波器が被測定物に対向
するように配置された特許請求の範囲第1項乃至第3項
のいずれかに記載の超音波位置計測装置。
(4) Claims 1 to 4, wherein the ultrasonic transducer is arranged so as to face the object to be measured with the central axis of the ultrasonic transducer being inclined with respect to the plane containing the object to be measured. The ultrasonic position measuring device according to any one of Item 3.
(5)A/D変換回路が被測定物からの反射波を受信し
た後、被測定物以外からの反射波を受信する前までの期
間にA/D変換をスタートするように制御される特許請
求の範囲第1項記載の超音波位置計測装置。
(5) A patent in which the A/D conversion circuit is controlled to start A/D conversion during the period after receiving the reflected wave from the object to be measured and before receiving the reflected wave from other than the object to be measured. An ultrasonic position measuring device according to claim 1.
JP15540285A 1985-07-15 1985-07-15 Ultrasonic position measuring instrument Pending JPS6215477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15540285A JPS6215477A (en) 1985-07-15 1985-07-15 Ultrasonic position measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15540285A JPS6215477A (en) 1985-07-15 1985-07-15 Ultrasonic position measuring instrument

Publications (1)

Publication Number Publication Date
JPS6215477A true JPS6215477A (en) 1987-01-23

Family

ID=15605184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15540285A Pending JPS6215477A (en) 1985-07-15 1985-07-15 Ultrasonic position measuring instrument

Country Status (1)

Country Link
JP (1) JPS6215477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2103639A1 (en) * 1994-05-31 1997-09-16 Consejo Superior Investigacion Procedure for recognizing and determining the position of objects.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2103639A1 (en) * 1994-05-31 1997-09-16 Consejo Superior Investigacion Procedure for recognizing and determining the position of objects.

Similar Documents

Publication Publication Date Title
US4733380A (en) Apparatus and method for acoustically investigating a casing set in a borehole
JPH0643945B2 (en) Non-contact online paper pattern strength measuring device
GB2153075A (en) The measurement of wall thicknesses by means of ultrasound pulses
US4285053A (en) Acoustic method and apparatus for measuring micron and submicron distances
US4453238A (en) Apparatus and method for determining the phase sensitivity of hydrophones
JPS6215477A (en) Ultrasonic position measuring instrument
JP6815786B2 (en) Ultrasonic displacement measuring device and ultrasonic displacement measuring method
JPS6264973A (en) Ultrasonic range finder
JP2501488B2 (en) Ultrasonic testing of pipes
JPH04274754A (en) Ultrasonic flaw detector for turbine rotor blade base
JPS58131560A (en) Method and apparatus for ultrasonic flaw detection
JPS63193085A (en) Ultrasonic range finder
JP6815785B2 (en) Ultrasonic displacement measuring device and ultrasonic displacement measuring method
SU1104408A1 (en) Method of determination of acoustic emission source coordinates
JPH01217287A (en) Positional accuracy enhancing method of structure searching apparatus
SU1029007A1 (en) Ultrasonic referenceless thickness gauge
SU900179A1 (en) Method and device for determination of directional pattern width in ultrasonic converters and flaw detectors
JPS61241685A (en) Ultrasonic range finder
CN114370931A (en) Method for rapidly calculating frequency of ultrasonic transducer
JPH05119150A (en) Sonar apparatus
JPS5960354A (en) Ultrasonic flaw detector
JPH01187485A (en) Ultrasonic distance measuring method
SU1252721A1 (en) Method of determining lead angle of inclined ultrasonic transducer
JPS63148398A (en) Ultrasonic type vehicle type discriminator
JPS5839972A (en) Doppler ground speed measuring device