JPS62153739A - High-frequency irradiation apparatus in nuclear magnetic resonance apparatus - Google Patents

High-frequency irradiation apparatus in nuclear magnetic resonance apparatus

Info

Publication number
JPS62153739A
JPS62153739A JP60295769A JP29576985A JPS62153739A JP S62153739 A JPS62153739 A JP S62153739A JP 60295769 A JP60295769 A JP 60295769A JP 29576985 A JP29576985 A JP 29576985A JP S62153739 A JPS62153739 A JP S62153739A
Authority
JP
Japan
Prior art keywords
frequency
time series
signal
inverse fourier
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60295769A
Other languages
Japanese (ja)
Other versions
JPH0455269B2 (en
Inventor
Hideo Shino
英雄 志野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP60295769A priority Critical patent/JPS62153739A/en
Publication of JPS62153739A publication Critical patent/JPS62153739A/en
Publication of JPH0455269B2 publication Critical patent/JPH0455269B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To irradiate high-frequency waves having a large number of frequency components by a single oscillator, by performing inverse Fourier transformation on the basis of data relating to indicated plural frequency values and intensities and modulating high-frequency waves on the basis of the obtained time series data. CONSTITUTION:An operator inputs a plurality of frequency values necessary for decoupling and the intensity ratio thereof to a computer 12. An inverse Fourier transformation circuit 16 performs inverse Fourier transformation on the basis of said input data to obtain time series data for generating a necessary spectrum and the obtained data are stored in a register 17. A reading circuit 18 repeatedly reads said time series data at a high speed to send the same to a D-A converter 9. The high frequency signal from an oscillator 21 is modulated on the basis of said time series signal in a modulator 20 and, if the high frequency signal after modulation is supplied to an irradiation coil 4, a high frequency magnetic field having frequency components for decoupling a desired peak can be allowed to irradiate a specimen.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は核磁気共鳴装置(NMR装置)に関し、特にデ
カップリングのために高周波磁場を照射する高周波照射
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a nuclear magnetic resonance apparatus (NMR apparatus), and particularly to a high-frequency irradiation apparatus that irradiates a high-frequency magnetic field for decoupling.

[従来技術] NMR装置を用いた測定においては、互いに結合関係に
ある複数のスピン系の結合を切ったり、NOE (核オ
ーバーハウザー効果)を測定する場合、2台の高周波発
振器を用い、夫々の発振周波数を例えば第5図に示すよ
うなNMRスペクトルにおけるピークP+ 、P2に対
応する周波数fl。
[Prior art] In measurements using an NMR device, when disconnecting multiple spin systems that are in a coupling relationship with each other or measuring NOE (nuclear Overhauser effect), two high-frequency oscillators are used and each The oscillation frequency is, for example, the frequency fl corresponding to the peak P+, P2 in the NMR spectrum as shown in FIG.

fzに設定し、このf+、fzの高周波を試料の周囲に
巻回される照射コイルへ供給し、高周波磁場として照射
することが行なわれている。
fz, and the high frequency waves of f+ and fz are supplied to an irradiation coil wound around the sample to irradiate it as a high frequency magnetic field.

[発明が解決しようとする問題点] 結合を切るべきピークの数が更に多く、しかもノイズ変
調などで広い周波数帯域を与えた高周波によりすべての
ピークの結合を一度に切ることができない場合、高周波
発振器の数もそれに対応して増さねばならず、コスト的
に不利となるし、その複数の発振器の周波数を夫々設定
しなければならないので調整に時間がかかつてしまう。
[Problems to be solved by the invention] When there are many more peaks to be disconnected, and it is not possible to disconnect all the peaks at once using a high frequency wave that has a wide frequency band due to noise modulation, etc., a high frequency oscillator is used. The number of oscillators must be correspondingly increased, which is disadvantageous in terms of cost, and since the frequencies of the plurality of oscillators must be set individually, adjustment takes time.

又、低周波発振器を複数設け、その出力を合成した信号
を1つの高周波信号と混合して複数の8周波成分を得る
ことも考えられ、そうすれば高周波回路が1つでづむの
でコスト的に右利であるが、複数の発掘器を用意しなけ
ればならない問題は依然として残る。
It is also possible to obtain multiple 8-frequency components by providing multiple low-frequency oscillators and mixing their combined outputs with a single high-frequency signal, which would reduce the cost since only one high-frequency circuit would be required. However, the problem of having to prepare multiple excavators still remains.

本発明はこの点に鑑みてなされたものであり、高周彼琵
系器の数を増−すことなくしかも簡単に数多くの周波数
成分を持つ高周波を照射することのできる高周波照射装
置を提供することを目的としている。
The present invention has been made in view of this point, and provides a high-frequency irradiation device that can easily irradiate high-frequency waves having a large number of frequency components without increasing the number of high-frequency helical devices. The purpose is to

[問題点を解決するための手段] この目的を達成するため、本発明は、複数の周波数成分
を持つ高周波を試料の回りに巻回した照射コイルへ供給
し、高周波磁場として試料に照射する核磁気共鳴装置に
おける高周波照射装置において、複数の周波数値と夫々
の強度に関する情報を指定する入力手段と、該入力手段
からの周波数情報及び強度情報に基づき時系列情報を得
る逆フーリエ変換手段と、該逆フーリエ変換手段から得
られた時系列情報に基づき基準周波数信号を変調する変
調手段とを設け、該変調手段の出力信号を前記照射コイ
ルへ供給するようにしたことを特徴としている。
[Means for Solving the Problems] In order to achieve this object, the present invention supplies a high frequency wave having a plurality of frequency components to an irradiation coil wound around a sample, and irradiates the sample as a high frequency magnetic field. A high-frequency irradiation device in a magnetic resonance apparatus includes an input means for specifying information regarding a plurality of frequency values and respective intensities, an inverse Fourier transform means for obtaining time series information based on the frequency information and intensity information from the input means, and A modulation means for modulating the reference frequency signal based on time series information obtained from the inverse Fourier transform means is provided, and an output signal of the modulation means is supplied to the irradiation coil.

以下、図面を用いて本発明の一実施例を詳説する。Hereinafter, one embodiment of the present invention will be explained in detail using the drawings.

[実施例] 第1図は本発明の一実施例の構成を示すブロック図であ
り、図において1は静磁場を発生するための磁石である
。この静磁場内には試料管2が配置され、更にこの試料
@2の周囲には、観測用の送受信コイル3及び照射コイ
ル4が巻回されている。
[Embodiment] FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, and in the figure, 1 is a magnet for generating a static magnetic field. A sample tube 2 is disposed within this static magnetic field, and a transmitting/receiving coil 3 for observation and an irradiation coil 4 are further wound around the sample @2.

観測用高周波発振器5で生成された高周波は、増幅器6
.ゲート7を介して送受信コイル3へ送られ、観測用高
周波パルス磁場として試料に照(ト)される。この高周
波パルスv11揚照!)1後送受信コイル3に誘起され
た自由誘導減衰信号(FID信号)は、ゲート8.増幅
器9.復調器10を介して取出され、A−D変換器11
を介してコンピュータ12へ取込まれ、付属するメモリ
13に格納される。14はFID信号をフーリエ変換し
て得たNMRスペク1−ルを表示するための表示装置、
15はコンピュータに付属する入力装置である。
The high frequency generated by the observation high frequency oscillator 5 is transmitted to the amplifier 6.
.. The signal is sent to the transmitter/receiver coil 3 via the gate 7, and is applied to the sample as a high-frequency pulsed magnetic field for observation. This high frequency pulse v11 light! )1, the free induction damped signal (FID signal) induced in the transmitting/receiving coil 3 is passed through the gate 8. Amplifier 9. taken out via the demodulator 10 and sent to the A-D converter 11
The data is taken into the computer 12 via the computer 12 and stored in the attached memory 13. 14 is a display device for displaying the NMR spectrum obtained by Fourier transforming the FID signal;
15 is an input device attached to the computer.

16はコンピュータ12から送られる周波数データを時
系列データに変換するための逆フーリエ変換回路で、得
られた時系列データはレジスタ17に格納される。この
時系列データは、読出し回路18により繰返し読出され
、読出された時系列信号はD−△変換器1つを介して変
調器20へ送られる。発掘器21からの高周波信号はこ
の時系列信号によって変調された後、増幅器22を介し
て前記照射コイル4へ送られる。
16 is an inverse Fourier transform circuit for converting the frequency data sent from the computer 12 into time series data, and the obtained time series data is stored in the register 17. This time series data is repeatedly read out by the readout circuit 18, and the read time series signal is sent to the modulator 20 via one D-Δ converter. The high frequency signal from the excavator 21 is modulated by this time series signal and then sent to the irradiation coil 4 via the amplifier 22.

上記構成において、最初にデカップリングなしで測定を
行う。測定は、ゲート7を所定期間ONにすることによ
り観測パルスを作成し、この観測パルスを送受信コイル
3へ送って試料に照射し、その後ゲート8をONにして
族1tllパルスの照q寸に(Vっで送受信コイル3に
誘起されるFED信号をIB出し、メモリ13に格納す
るという手順で行われる。そして、このFID信号をコ
ンピュータ12でフーリエ変換すれば、例えば第2図(
a)に示すようなNMRスペクトルが得られる。
In the above configuration, measurement is first performed without decoupling. For measurement, an observation pulse is created by turning on the gate 7 for a predetermined period of time, and this observation pulse is sent to the transmitter/receiver coil 3 to irradiate the sample.Then, the gate 8 is turned on and the irradiation pulse is The procedure is to output the FED signal induced in the transmitter/receiver coil 3 by V and store it in the memory 13.Then, if this FID signal is Fourier-transformed by the computer 12, for example, as shown in Fig. 2 (
An NMR spectrum as shown in a) is obtained.

オペレータがこのスペクトルを詳細に検討し、この内の
ビークpH,PI3. PI3の核についてデカップリ
ングを行うと判断した場合、オペレータはキーボード1
5を用いて各ピークに相当する周波数f11. f12
. f13の値と、各周波数の強度比を例えば1 :2
:1のようにコンピュータ12に入力する。この入力デ
ータは、即ち、第2図(b>に示すように周波数f11
.  f12.  f13の各周波数成分を持ち、その
強度比が1=2:1の高周波を試料に照射することを意
味しており、この入力データは逆フーリエ変換回路16
へ送られる。逆フーリエ変換回路16はこの入力データ
に基づいて逆フーリエ変換を行うことにより、第2図(
b)のスペクトルを発生するための例えば第2図(C)
に示すような時系列データを得、得られた時系列データ
はレジスタ17に格納される。
The operator examines this spectrum in detail and determines the peak pH, PI3. If it is determined that the core of PI3 is to be decoupled, the operator
5 is used to calculate the frequency f11.5 corresponding to each peak. f12
.. For example, set the value of f13 and the intensity ratio of each frequency to 1:2.
:1 into the computer 12. This input data has a frequency f11 as shown in FIG.
.. f12. This means that the sample is irradiated with high frequency waves that have each frequency component of f13 and whose intensity ratio is 1=2:1, and this input data is sent to the inverse Fourier transform circuit 16.
sent to. The inverse Fourier transform circuit 16 performs an inverse Fourier transform based on this input data, thereby converting the data into the form shown in FIG.
For example, FIG. 2(C) for generating the spectrum of b)
Time series data as shown in is obtained, and the obtained time series data is stored in the register 17.

読出し回路18は、この時系列データを高速度で繰返し
読出し、D−A変換器19へ送るため、D−A変換器1
9の出力としては、第2図(d)に示すような時系列信
号が得られる。そして、変調器20においてこの時系列
信号で発振器21からの高周波信号を変調ずれば、その
出力として得られる変調後の高周波信号は、第2図(b
)に示すような周波数成分を持つことになり、この変調
後の高周波信号を照射コイル4へ供給すれば、所望のビ
ークP11. PI3. PI3をデカップリングする
ためのfll、  f12. f13の周波数成分を持
つ高周波磁場を試料に照射することができる。
The readout circuit 18 repeatedly reads this time series data at high speed and sends it to the DA converter 19.
As the output of 9, a time series signal as shown in FIG. 2(d) is obtained. If the modulator 20 modulates the high-frequency signal from the oscillator 21 with this time-series signal, the modulated high-frequency signal obtained as the output is as shown in FIG.
), and if this modulated high-frequency signal is supplied to the irradiation coil 4, the desired peak P11. PI3. fll for decoupling PI3, f12. A high frequency magnetic field having a frequency component of f13 can be irradiated onto the sample.

本実施例では時系列信号で高周波信号を直接変調したが
、時系列信号で比較的低い周波数の信号を変調し、変調
後の信号を高い周波数の信号と混合して周波数を共鳴周
波数まで上昇させるようにしても良い。
In this example, the high-frequency signal was directly modulated with the time-series signal, but a relatively low-frequency signal is modulated with the time-series signal, and the modulated signal is mixed with a high-frequency signal to raise the frequency to the resonant frequency. You can do it like this.

変調器による変調の種類としては、振幅変調を始め周波
数変調1位相変調などが利用できる。
As the types of modulation by the modulator, amplitude modulation, frequency modulation, single phase modulation, etc. can be used.

尚、核磁気共鳴現象における核スピンのふるまいを解析
するにあたっては、90°位相の異なる2つの検出系か
ら親書することが好ましく、現在のNMR装置では、観
測系においてFID信号を取出す際、90”位相の責な
る2つの復調器によって2種類のFID信号を得る直角
位相検波方式(所謂QD方式)が採用されている。
When analyzing the behavior of nuclear spins in nuclear magnetic resonance phenomena, it is preferable to use two detection systems with a 90° phase difference, and in current NMR equipment, when extracting FID signals in the observation system, 90" A quadrature phase detection method (so-called QD method) is adopted in which two types of FID signals are obtained using two demodulators responsible for the phase.

照射系は、核スピンから高周波位相情報を取出す観測系
とは逆に、高周波磁場を核スピンに与えるものであるが
、その際にも90’位相の異なる2つの系から高周波磁
場を照射することが好ましい。
The irradiation system applies a high-frequency magnetic field to the nuclear spins, contrary to the observation system that extracts high-frequency phase information from the nuclear spins.In this case, high-frequency magnetic fields are also irradiated from two systems with different 90' phases. is preferred.

第3図の実施例はこの考え方に基づく構成となっている
。第3図において、観測系は復調器を10s、iocと
2チャンネル持つ(当然、A−D変換器も”+is、i
icと2つ備えている>QD方式を採用している。23
は参照信号の位相を90°ずらすための移相器である。
The embodiment shown in FIG. 3 has a configuration based on this idea. In Figure 3, the observation system has two demodulator channels, 10s and ioc (of course, the A-D converter also has "+is, ioc").
It uses the QD system, which has two ICs. 23
is a phase shifter for shifting the phase of the reference signal by 90°.

逆フーリエ変換回路16は、第1図の実施例と同様に、
コンピュータ12から送られるオペレータからの入力デ
ータに基づき複素フーリエ変換を行い、得られた時系列
データのsin成分(位相0°、第2図(C))とCO
S成分(位相90°。
The inverse Fourier transform circuit 16 is similar to the embodiment shown in FIG.
A complex Fourier transform is performed based on the input data from the operator sent from the computer 12, and the sine component (phase 0°, Fig. 2 (C)) of the obtained time series data and CO
S component (phase 90°.

第4図)をレジスタ173,170に夫々格納する。格
納された各データは、読出し回路18S。
4) are stored in registers 173 and 170, respectively. Each stored data is read out by a readout circuit 18S.

18cによって高速度で繰返し読出され、D−A変換器
19s、19cを介して時系列信号として変調器20s
 、20cへ送られる。変調器20s。
18c, the signal is read out repeatedly at high speed, and sent to the modulator 20s as a time-series signal via the D-A converters 19s and 19c.
, 20c. Modulator 20s.

20cには、発振器21からの高周波信号が一方はその
まま、他方は90”移相器24を介して供給されており
、各高周波信号は上記時系列信号によって変調された後
、加算回路25において加算され、増幅器22を介して
照射コイル4に送られる。
20c, one of the high frequency signals from the oscillator 21 is supplied as is, and the other is supplied via a 90'' phase shifter 24, and after each high frequency signal is modulated by the above time series signal, it is added in the adder circuit 25. and sent to the irradiation coil 4 via the amplifier 22.

尚、本実施例においても、発振器21の発振周波数を比
較的低く設定し、時系列信号でこの比較的低い周波数の
第1の信号を変調し、変調後の信号を高い周波数の第2
の信号と混合して周波数を共鳴周波数まで上昇させるよ
うにしても良い。
In this embodiment as well, the oscillation frequency of the oscillator 21 is set relatively low, the first signal with a relatively low frequency is modulated with a time-series signal, and the modulated signal is used as the second signal with a high frequency.
The frequency may be raised to the resonant frequency by mixing with the signal of

[効果1 以上の説明から明らかなように、本発明では、オペレー
タが指定した複数の周波数値と強度に関する情報に基づ
いて逆フーリエ変換を行い、時系列データを作成し、そ
の時系列データに基づいて高周波を変調するようにした
ため、基本となる発振器は単一で、しかも任意の数で任
意の強度の周波数成分を持つ高周波を作成し、試料に照
射することのできる照射装置が実現される。
[Effect 1] As is clear from the above description, in the present invention, time series data is created by performing inverse Fourier transform based on multiple frequency values and intensity information specified by the operator, and based on the time series data, By modulating the high frequency, an irradiation device is realized that uses a single basic oscillator and can create high frequency waves with any number of frequency components of any intensity and irradiate the sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第3図は夫々本発明の一実施例の構成を示すブ
ロック図、第2図は第1図の実施例の動作を説明するた
めの図、第4図は時系列データのCOS成分を説明する
ための図、第5図は測定により得られたNMRスペクト
ルを示ず図である。 1:磁石      2:試料管 3:送受信コイル  4:照射コイル 5:11測用高周波発振器 7.8:ゲート   10:復調器 11:A−D変換器 12:コンピュータ13:メモリ
    14:表示装置 15:入力装置 16:逆フーリエ変換回路 17:レジスタ   18;続出し回路19:D−A変
換器 20:変調器 21:発撮器
1 and 3 are block diagrams showing the configuration of an embodiment of the present invention, FIG. 2 is a diagram for explaining the operation of the embodiment of FIG. 1, and FIG. 4 is a COS of time series data. FIG. 5, which is a diagram for explaining the components, does not show the NMR spectrum obtained by measurement. 1: Magnet 2: Sample tube 3: Transmission/reception coil 4: Irradiation coil 5: High frequency oscillator for measurement 7.8: Gate 10: Demodulator 11: A-D converter 12: Computer 13: Memory 14: Display device 15: Input device 16: Inverse Fourier transform circuit 17: Register 18; Continuation circuit 19: D-A converter 20: Modulator 21: Image generator

Claims (1)

【特許請求の範囲】[Claims] 複数の周波数成分を持つ高周波を試料の回りに巻回した
照射コイルへ供給し、高周波磁場として試料に照射する
核磁気共鳴装置における高周波照射装置において、複数
の周波数値と夫々の強度を指定する入力手段と、該入力
手段からの周波数情報及び強度情報に基づき時系列情報
を得る逆フーリエ変換手段と、該逆フーリエ変換手段か
ら得られた時系列情報に基づき基準周波数信号を変調す
る変調手段とを設け、該変調手段の出力信号を前記照射
コイルへ供給するようにしたことを特徴とする核磁気共
鳴装置における高周波照射装置。
An input that specifies multiple frequency values and their respective strengths in a high-frequency irradiation device in a nuclear magnetic resonance apparatus that supplies high-frequency waves with multiple frequency components to an irradiation coil wound around the sample and irradiates the sample as a high-frequency magnetic field. means, inverse Fourier transform means for obtaining time series information based on the frequency information and intensity information from the input means, and modulation means for modulating the reference frequency signal based on the time series information obtained from the inverse Fourier transform means. A high-frequency irradiation device for a nuclear magnetic resonance apparatus, characterized in that the output signal of the modulation means is supplied to the irradiation coil.
JP60295769A 1985-12-27 1985-12-27 High-frequency irradiation apparatus in nuclear magnetic resonance apparatus Granted JPS62153739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60295769A JPS62153739A (en) 1985-12-27 1985-12-27 High-frequency irradiation apparatus in nuclear magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295769A JPS62153739A (en) 1985-12-27 1985-12-27 High-frequency irradiation apparatus in nuclear magnetic resonance apparatus

Publications (2)

Publication Number Publication Date
JPS62153739A true JPS62153739A (en) 1987-07-08
JPH0455269B2 JPH0455269B2 (en) 1992-09-02

Family

ID=17824927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295769A Granted JPS62153739A (en) 1985-12-27 1985-12-27 High-frequency irradiation apparatus in nuclear magnetic resonance apparatus

Country Status (1)

Country Link
JP (1) JPS62153739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031673A (en) * 2000-05-25 2002-01-31 Bruker Sa Multi-frequency rf signal generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031673A (en) * 2000-05-25 2002-01-31 Bruker Sa Multi-frequency rf signal generator

Also Published As

Publication number Publication date
JPH0455269B2 (en) 1992-09-02

Similar Documents

Publication Publication Date Title
US4992736A (en) Radio frequency receiver for a NMR instrument
Bauer et al. Gaussian pulses
US5063348A (en) Magnetic resonance imaging system
US4502008A (en) Method and apparatus for nuclear magnetic resonance spectroscopy
JPS62153739A (en) High-frequency irradiation apparatus in nuclear magnetic resonance apparatus
US4757260A (en) Method of producing nuclear magnetic resonance of an object and an apparatus therefor
US5719499A (en) Device for excitation and detection of magnetic resonance using orthogonal transmitter probe coils
SU600430A1 (en) Method of observing nuclear magnetic resonance
US7132830B2 (en) Radiofrequency wave transmission circuit using arbitrary waveform generator and NMR apparatus using the same
US3215930A (en) Spin decoupling magnetic resonance apparatus and method
US5412321A (en) Magnetic resonance imaging method and apparatus
Dorn et al. A simple spectrometer modification for multinuclide FT operation
JP3526347B2 (en) Magnetic resonance imaging system
JPH05317285A (en) Magnetic resonance imaging device
JPH0475638A (en) Magnetic resonance imaging device
JP3337797B2 (en) Magnetic resonance imaging equipment
JP4318836B2 (en) Magnetic resonance imaging system
JPS63171546A (en) Nmr flow speed imaging method and apparatus
JPS63220852A (en) Method and apparatus for calculating chemical shift spectrum
JPH02272379A (en) Method and device for generating high frequency pulse and exciting nuclear magnetic resonance of sample
JPH06254063A (en) Magnetic resonance imaging system
JPH0453530A (en) Magnetic resonance image apparatus
Jazayeri-Rad et al. Intelligent instrumentation for selective pulse excitation in NMR imaging
JPS62257052A (en) Method for measuring tuning of high frequency coil of mri apparatus
JPH027939A (en) Method and apparatus for determining distribution of nuclear magnetization

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term