JPS6215247A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPS6215247A
JPS6215247A JP15578085A JP15578085A JPS6215247A JP S6215247 A JPS6215247 A JP S6215247A JP 15578085 A JP15578085 A JP 15578085A JP 15578085 A JP15578085 A JP 15578085A JP S6215247 A JPS6215247 A JP S6215247A
Authority
JP
Japan
Prior art keywords
weight
component
parts
resin
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15578085A
Other languages
Japanese (ja)
Other versions
JPH0647642B2 (en
Inventor
Rikio Yonaiyama
米内山 力男
Michio Kasai
笠井 三千雄
Nobukazu Atsumi
渥美 信和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP15578085A priority Critical patent/JPH0647642B2/en
Publication of JPS6215247A publication Critical patent/JPS6215247A/en
Publication of JPH0647642B2 publication Critical patent/JPH0647642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a composition giving a molded article having excellent mechanical strengrh, rigidity and thermal deformation resistance and remarkably suppressed warpage, by compounding a modified polypropylene, a specific polyamide, an amorphous thermoplastic resin and glass fiber at specific ratios. CONSTITUTION:The objective composition can be produced by compounding (A) a polypropylene modified with an unsaturated carboxylic acid (anhydride) or a polypropylene containing >=1pt.(wt.) of the above resin with (B) a polyamide resin produced by the polycondensation of m-xylylenediamine and adipic acid, (C) an amorphous thermoplastic resin having benzene ring in the recurring molecular unit and (D) glass fiber. The amount of the component C is 5-40pts.(wt.) per 100pts. of the sum of the components A+B wherein the components A and B account for 95-50wt% and 5-50wt%, respectively. The amount of the component D is 5-100pts. per 100pts. of the components A+B+C.

Description

【発明の詳細な説明】 本発明はガラス繊維強化熱可塑性樹脂組成物に関する。[Detailed description of the invention] The present invention relates to glass fiber reinforced thermoplastic resin compositions.

さらに詳しくは、不飽和カルボン酸もしくはその無水物
で変性した変性ポリプロピレン(以下、変性PPという
。)または該変性PP 1重量部以上を含有したポリプ
ロピレン、特定のポリアミド、非結晶性の熱可塑性樹脂
およびガラス繊維の各所定量を含有せしめた熱可塑性樹
脂組成物に関する。
More specifically, modified polypropylene modified with an unsaturated carboxylic acid or its anhydride (hereinafter referred to as modified PP) or polypropylene containing 1 part by weight or more of the modified PP, a specific polyamide, an amorphous thermoplastic resin, The present invention relates to a thermoplastic resin composition containing a predetermined amount of glass fiber.

近年、自動車部品、電気製品、その他の各種工業製品の
分野では原材料として使用する熱可塑性樹脂の性能とし
て高剛性、高強度のものが要求されてきている。このた
め、各種の熱可塑性樹脂にガラス繊維を配合したいわゆ
るガ2ス゛繊維強化熱可塑性樹脂(以下、FRTPとい
う。)の開発が行なわれ、市販されている。これらのF
RTPOうち、ポリアミド、ポリブチレンテレフタレー
ト、ポリアセタールなどの結晶性樹脂にガラス繊維を配
合したFRTPは、非結晶性樹脂にガラス繊維を配合し
たFRTPにくらべ、−般にガラス繊維による補強効果
が大きく、機械的強度、剛性、耐熱性、耐薬品性などに
優れており、各種の用途に使用されている。
In recent years, in the fields of automobile parts, electrical appliances, and various other industrial products, thermoplastic resins used as raw materials have been required to have high rigidity and strength. For this reason, so-called glass fiber reinforced thermoplastic resins (hereinafter referred to as FRTP), in which glass fibers are blended with various thermoplastic resins, have been developed and are commercially available. These F
Among RTPOs, FRTP, which is made by blending glass fiber with crystalline resin such as polyamide, polybutylene terephthalate, or polyacetal, generally has a greater reinforcing effect due to glass fiber than FRTP, which has glass fiber blended with amorphous resin. It has excellent physical strength, rigidity, heat resistance, and chemical resistance, and is used for a variety of purposes.

しかしながら、これらの結晶性樹脂にガラス繊維を配合
したF’RTPは上述のように多くの利点を有している
ものの、ポリカーボネート、変性ポリフェニレンオキサ
イド、変性ポリフェニレンエーテル、ABS樹脂などの
非結晶性樹脂にガラス繊維を配合したFRTPにくらべ
、成形品としたときに該成形品の反り変形性が大きく、
寸法安定性が劣るという欠点を有している。
However, although F'RTP, which is a combination of these crystalline resins with glass fibers, has many advantages as mentioned above, it is not suitable for non-crystalline resins such as polycarbonate, modified polyphenylene oxide, modified polyphenylene ether, and ABS resin. Compared to FRTP containing glass fiber, the molded product has greater warp deformability when made into a molded product,
It has the disadvantage of poor dimensional stability.

このため、寸法精度がきびしく要求される用途には、は
とんど非結晶性樹脂にガラス繊維を配合したFRTPが
使用されているのが現状である。
For this reason, FRTP, which is a mixture of amorphous resin and glass fiber, is currently used in applications that require strict dimensional accuracy.

ところで、一般にポリプロピレン(以下、PPという。By the way, polypropylene (hereinafter referred to as PP) is generally used.

)は物理的、化学的に優れた性能を有しているうえ、汎
用樹脂として大量に生産されかつ価格も安価であるとこ
ろから、PPにガラス繊維を配合したガラス繊維強化ポ
リプロピレン(以下、FRPPという)も広範な用途に
使用されている。しかしながら、PPは結晶性樹脂であ
るため、そのFRPPも他の結晶性樹脂にガラス繊維を
配合したFRTPと同様反シ変形性が大きいという欠点
を有している。かかるFRPPの反シ変形性を改善する
ために、PPに板状の無機質フィラーとガラス繊維とを
配合することが試みられている。この無機質フィラーと
ガラス繊維とを併用した樹脂組成物を用いた成形品は反
り変形性が著るしく改善されるが板状の無機質フィラー
を多量に配合する必要があるため、射出成形法による成
形品のウェルド部の機械的強度が著るしく低下するとい
う欠点を有している。
) has excellent physical and chemical performance, is produced in large quantities as a general-purpose resin, and is inexpensive. ) are also used in a wide range of applications. However, since PP is a crystalline resin, FRPP also has the disadvantage of high resistance to deformation, similar to FRTP, which is a combination of other crystalline resins and glass fibers. In order to improve the deformation resistance of such FRPP, attempts have been made to blend plate-shaped inorganic fillers and glass fibers into PP. Molded products using resin compositions that use a combination of inorganic fillers and glass fibers have markedly improved warp deformability, but since it is necessary to incorporate a large amount of plate-shaped inorganic fillers, molding is done by injection molding. This has the disadvantage that the mechanical strength of the weld portion of the product is significantly reduced.

また、PPにEPRのようなゴム成分とガラス繊維とを
配合することも試みられているが、配合したゴム成分に
起因して、成形品の機械的強度、剛性、耐熱変形性、表
面硬度などの諸性質が著るしく悪化するという欠点があ
る。
In addition, attempts have been made to blend rubber components such as EPR and glass fibers into PP, but due to the blended rubber components, the mechanical strength, rigidity, heat deformation resistance, surface hardness of the molded product, etc. The disadvantage is that the properties of

さらに、現在市販されているFRPPは成形品としたと
きに該成形品の機械的強度や剛性の点で今1つ性能不足
であシ、金属代替用途すなわち高強度、高剛性が要求さ
れる分野ではその用途が著るしく制限されるといった欠
点を有している。
Furthermore, FRPP currently on the market lacks performance in terms of mechanical strength and rigidity when made into molded products, and is used as a substitute for metals, i.e. in fields where high strength and high rigidity are required. However, it has the disadvantage that its uses are severely limited.

本発明者らは、FRPPの上述の欠点を改善するべく鋭
意研究した。その結果、不飽和カルボン酸もしくはその
無水物で変性した変性PPまたは変性PP1重量部以上
を含有したPP(以下、(A)成分という。)に特定の
ポリアミド(以下、(B)成分という。)、分子くり返
し単位中にベンゼン環を有する非結晶性熱可塑性樹脂(
以下、(C)成分という。)およびガラス繊維(以下、
(D)成分という。)の特定量を配合してなる熱可塑性
樹脂組成物が、成形品としたときに該成形品の機械的強
度、剛性、耐熱変形性が優れかつ反シ変形性が大巾に改
善された成形品を与えることを見い出し、この知見にも
とすき本発明を完成した。
The present inventors have conducted extensive research to improve the above-mentioned drawbacks of FRPP. As a result, modified PP modified with an unsaturated carboxylic acid or its anhydride or PP containing 1 part by weight or more of modified PP (hereinafter referred to as component (A)) was combined with a specific polyamide (hereinafter referred to as component (B)). , an amorphous thermoplastic resin with a benzene ring in its molecular repeating unit (
Hereinafter, it will be referred to as component (C). ) and glass fiber (hereinafter referred to as
(D) Component. ) A molded article in which a thermoplastic resin composition containing a specific amount of Based on this knowledge, the present invention was completed.

以上の記述から明らかなように本発明の目的は、成形品
としたときに、該成形品の機械的強度、剛性、耐熱変形
性が優れ、反シ変形性が大巾に改善された成形品を与え
る熱可塑性樹脂組成物を提供することである。
As is clear from the above description, an object of the present invention is to produce a molded product that has excellent mechanical strength, rigidity, and heat deformation resistance, and has greatly improved resistance to deformation. An object of the present invention is to provide a thermoplastic resin composition that provides the following properties.

本発明は以下の構成を有する。The present invention has the following configuration.

(4)不飽和カルボ/酸もしくはその無水物で変性した
ポリプロピレンまたは不飽和カルボン酸もしくはその無
水物で変性したポリプロピレンを少なくとも1重量部含
有したポリプロピレン、(ハ)メタキシレンジアミンと
アジピン酸との重縮合により得られるポリアミド樹脂、 (C)分子くシ返し単位中にベンゼン環を有する非結晶
性の熱可塑性樹脂およびp)ガラス繊維とからなる熱可
塑性樹脂組成物において、囚が95〜50重量%、但)
が5〜50重量%とからなり、(A)と(B)の合計1
00重量部に対し、(C)を5〜40重量部含有せしめ
てなる配合物100重量部に口を5〜100重量部含有
せしめたことを特徴とする熱可塑性樹脂組成物。
(4) Polypropylene modified with unsaturated carboxylic acid or its anhydride, or polypropylene containing at least 1 part by weight of polypropylene modified with unsaturated carboxylic acid or its anhydride, (c) Polypropylene containing metaxylene diamine and adipic acid In a thermoplastic resin composition consisting of a polyamide resin obtained by condensation, (C) an amorphous thermoplastic resin having a benzene ring in its molecular repeating unit, and p) glass fiber, the carbon content is 95 to 50% by weight. , however)
is 5 to 50% by weight, and the total of (A) and (B) is 1
1. A thermoplastic resin composition characterized in that 100 parts by weight of a compound containing 5 to 40 parts by weight of (C) and 5 to 100 parts by weight of (C) to 00 parts by weight.

本発明で用いる(B)成分すなわちメタキシレンジアミ
ンとアジピン酸との重縮合によシ得られるポリアミド樹
脂は下記CD式で示される構造を有し、分子鎖中に芳香
族環(ベンゼン環)を持った特殊なポリアミド樹脂であ
り、ナイロンMXD6の商品名で市販されている。
The component (B) used in the present invention, that is, the polyamide resin obtained by polycondensation of metaxylene diamine and adipic acid, has a structure represented by the following CD formula, and has an aromatic ring (benzene ring) in the molecular chain. It is a special polyamide resin with nylon MXD6 and is commercially available under the trade name nylon MXD6.

上述の構造を有する特殊ポリアミド樹脂(以下、ナイロ
ンW■6という。)は、他のポリアミド樹脂例えばナイ
ロン6、ナイロン66などにくらべて著るしく高強度、
高剛性であるのみならず、分子くり返し単位中にベンゼ
ン環を有する非結晶性樹脂(以下、非結晶性樹脂という
。)との相溶性に極めて優れているといった特性を有し
ている。本発明者らはナイロンMXD 6が非結晶性樹
脂との相溶性に優れていることを見い出したが、このこ
とはナイロンW■6が主鎖骨格にベンゼン環を有してい
るためと考えられ、この点が他のポリアミド樹脂にはな
い大きな特徴である。
The special polyamide resin (hereinafter referred to as nylon W6) having the above structure has significantly higher strength than other polyamide resins such as nylon 6 and nylon 66.
It not only has high rigidity but also has extremely excellent compatibility with amorphous resins having benzene rings in their molecular repeating units (hereinafter referred to as amorphous resins). The present inventors found that nylon MXD 6 has excellent compatibility with amorphous resins, and this is thought to be because nylon W 6 has a benzene ring in its main chain skeleton. This is a major feature not found in other polyamide resins.

また、ナイロンW■6は単独で用いられるほか、ナイロ
ンMXD 6を主成分として他Oポリアミド樹脂例えば
ナイロン6、ナイロン66、ナイロン11、ナイロン1
2、ナイロン610、ナイロン612などと混合して用
いることもできる。
In addition to being used alone, nylon W■6 can also be used as a main component and other O polyamide resins such as nylon 6, nylon 66, nylon 11, and nylon 1.
2. It can also be used in combination with nylon 610, nylon 612, etc.

本発明に用いる(B)成分すなわちナイロン■■6の配
合量は、(A)成分95〜50重量%、(B)成分5〜
50重量%であり、特に好ましくは(A)成分90〜6
0重量%、(B)成分10〜40重量%である。(B)
成分の配合量が5重量%未満では(C)成分との相溶性
が不充分となり、成形品としたときに該成形品の反υ変
形性の改善効果が得られないうえ、機械的強度、剛性の
改善効果もとぼしいので好ましくない。
The amount of component (B) used in the present invention, that is, nylon
50% by weight, particularly preferably component (A) 90-6
0% by weight, and 10 to 40% by weight of component (B). (B)
If the blending amount of the component is less than 5% by weight, the compatibility with component (C) will be insufficient, and when formed into a molded product, the effect of improving the anti-υ deformability of the molded product will not be obtained, and the mechanical strength and It is not preferable because the effect of improving rigidity is small.

本発明で用いられる(A)成分を構成する変性PPはP
Pを不飽和カルボ/酸もしくはその無水物(以下、不飽
和カルボン酸類という。)で変性したものである。
The modified PP constituting component (A) used in the present invention is P
P is modified with unsaturated carboxylic acids or their anhydrides (hereinafter referred to as unsaturated carboxylic acids).

不飽和カルボン酸類としては例えばアクリル酸、メタク
リル酸、マレイン酸、イタコン酸、フマル酸、シトラコ
ン酸、クロトン酸、無水マレイン酸、無水シトラコン酸
、無水イタコン酸などをあげることができる。
Examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, citraconic acid, crotonic acid, maleic anhydride, citraconic anhydride, and itaconic anhydride.

変性PPに用いられる原料PPは特に制限がなく、通常
のプロピレン単独重合体、プロピレンを主成分とするプ
ロピレン−エチレン共重合体、プロピレン−エチレン−
ブテン共重合体、プロピレン−エチレン−ヘキセン共重
合体す、!l”が好ましく用いられる。また、変性PP
の製造方法としては特に制限はなく、種々の公知の方法
を用いることができる。例えばPP粉末に上述の不飽和
カルボン酸類およびラジカル発生剤例えばジ−t−ブチ
ルパーオキサイド、ジクミルパーオキサイド、ベンゾイ
ルパーオキサイド、2.5−ジメチル−2,5−ジ(t
−ブチルパーオキシ)ヘキセン、1,3−ビス(1−ブ
チルパーオキシイソプロビル)ベンゼンなどのラジカル
発生剤を加え混合したのち、該混合物を押出機を用いて
温度180〜300℃、好ましくは200〜250℃で
溶融混練する方法が好適に用いられる。
The raw material PP used for modified PP is not particularly limited, and may include ordinary propylene homopolymer, propylene-ethylene copolymer containing propylene as the main component, propylene-ethylene copolymer, etc.
Butene copolymer, propylene-ethylene-hexene copolymer! l” is preferably used.Also, modified PP
There are no particular restrictions on the manufacturing method, and various known methods can be used. For example, PP powder is mixed with the above-mentioned unsaturated carboxylic acids and radical generators such as di-t-butyl peroxide, dicumyl peroxide, benzoyl peroxide, 2,5-dimethyl-2,5-di(t
After adding and mixing a radical generator such as -butylperoxy)hexene or 1,3-bis(1-butylperoxyisopropyl)benzene, the mixture is extruded at a temperature of 180 to 300°C, preferably 200°C. A method of melt-kneading at ~250°C is preferably used.

また本発明で用いる変性PPには、未変性のPPを混合
して用いることができる。該未変性PPとしては%に制
限はなく、変性PP用の原・料PPと同じものを用いる
ことができるほが異なったPPを用いることもできる。
Further, the modified PP used in the present invention can be mixed with unmodified PP. There is no limit to the percentage of the unmodified PP, and it is possible to use the same raw material PP as the raw material PP for the modified PP, or a different PP.

変性PPに未変性PPを混合して用いる場合、変性PP
の混合割合は1重量部以上であればよく、また全量変性
PPを用いることもできる。
When using a mixture of modified PP and unmodified PP, the modified PP
The mixing ratio may be 1 part by weight or more, and the entire amount of modified PP can also be used.

本発明に用いる(C)成分すなわち分子くり返し単位中
にベンゼン環を有する非結晶性の熱可塑性樹脂としては
、アクリロニトリル−ブタジェン−スチレン樹脂(AB
8樹脂)、アクリロニトリル−スチレン樹脂(As樹脂
)、アクリロニトリル−アクリル酸エステル−スチレン
樹脂(AA8樹脂)、メチルメタクリレート−ブタジェ
ン−スチレン樹脂(MB8樹脂)、ポリスチレン樹脂、
ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、
ポリフェニレンオキサイド樹脂、変性ポリフェニレンオ
キサイド樹脂、ポリエーテルスルホン樹脂およびこれら
の2以上の混合物などを例示することができる。
As the component (C) used in the present invention, that is, the amorphous thermoplastic resin having a benzene ring in the molecular repeating unit, acrylonitrile-butadiene-styrene resin (AB
8 resin), acrylonitrile-styrene resin (As resin), acrylonitrile-acrylic acid ester-styrene resin (AA8 resin), methyl methacrylate-butadiene-styrene resin (MB8 resin), polystyrene resin,
polycarbonate resin, polyphenylene ether resin,
Examples include polyphenylene oxide resin, modified polyphenylene oxide resin, polyether sulfone resin, and mixtures of two or more of these resins.

また、該(C)成分の配合量は、前記(A)、(B)成
分の合計量100重量部に対し、5〜40重量部、より
好ましくは10〜40重量部、特に好ましくは10〜3
0重量部である。配合量が5重量部未満では、成形品と
したときの該成形品の反シ変形性の改善効果がとほしく
、また、40重量部を超えて配合しても上述の反り変形
性の改善効果のさらなる向上が達成されず、逆に耐熱変
形性の低下が顕著となるので好ましくない。
The amount of component (C) to be blended is 5 to 40 parts by weight, more preferably 10 to 40 parts by weight, particularly preferably 10 to 40 parts by weight, based on 100 parts by weight of the total amount of components (A) and (B). 3
It is 0 parts by weight. If the blending amount is less than 5 parts by weight, it is desirable to have a good effect of improving the warp deformability of the molded product when it is made into a molded product, and even if the blending amount exceeds 40 parts by weight, the above-mentioned improvement in warp deformability is desired. This is not preferable because further improvement in the properties of heat deformation cannot be achieved and, on the contrary, the heat deformation resistance deteriorates significantly.

本発明に用いる(D)成分すなわちガラス繊維としては
、通常の樹脂強化用に使用されているガラス繊維たとえ
ばガラスロービング、ガラスチョップトストランド、ガ
ラスミルドファイバーなどのガラス繊維が用いられる。
As component (D), that is, glass fiber used in the present invention, glass fibers commonly used for reinforcing resins, such as glass rovings, glass chopped strands, and glass milled fibers, are used.

該(D)成分であるガラス繊維の配合量は、前記の所定
量の(A)、(B)、(C)各成分の合計量100重量
部に対して5〜100重量部、特に好ましくは10〜8
0重量部である。
The blending amount of the glass fiber as component (D) is 5 to 100 parts by weight, particularly preferably 5 to 100 parts by weight, based on 100 parts by weight of the predetermined amounts of each component (A), (B), and (C). 10-8
It is 0 parts by weight.

(D)成分の配合量が5重量部未満では、充分な機械的
強度、耐熱変形性についての補強効果が得られず、また
100重量部を超えると配合混合物の溶融混線が著るし
く困難となり、かつ溶融流動性が悪化して成形、加工性
が低下するので好ましくない。
If the amount of component (D) is less than 5 parts by weight, a sufficient reinforcing effect on mechanical strength and heat deformation resistance cannot be obtained, and if it exceeds 100 parts by weight, melt mixing of the blended mixture becomes extremely difficult. , and the melt fluidity deteriorates, resulting in poor moldability and processability, which is not preferable.

さらに本発明の組成物にあっては、通常熱可塑性樹脂に
添加される各種の添加剤例えば酸化防止剤、熱安定剤、
紫外線吸収剤、滑剤、顔料、無機質充填剤などを併用す
ることができる。
Furthermore, the composition of the present invention contains various additives that are usually added to thermoplastic resins, such as antioxidants, heat stabilizers,
Ultraviolet absorbers, lubricants, pigments, inorganic fillers, etc. can be used in combination.

本発明の熱可塑性樹脂組成物の製造方法としては種々の
方法をあげることができる。
Various methods can be used for producing the thermoplastic resin composition of the present invention.

例えば、 (1)  (A)、(B)、(C)、(D)の各成分の
所定量を混合器に入れて混合したのち、溶融混線ペレタ
イズする方法。
For example, (1) A method in which predetermined amounts of each component (A), (B), (C), and (D) are put into a mixer, mixed, and then melted and mixed and pelletized.

(2)  (A)、(B)、(C)の各成分の所定量を
混合し溶融混練ペレタイズして得たペレットに(D)成
分の所定量を添加して溶融混練ペレタイズする方法。
(2) A method in which a predetermined amount of component (D) is added to pellets obtained by mixing predetermined amounts of each component (A), (B), and (C), and melt-kneading and pelletizing the mixture, followed by melt-kneading and pelletizing.

(3)  (A)、(B)各成分の所定量を混合し、溶
融混線ペレタイズして得たペレツ) K (C)、(D
)各成分の所定量を混合し、溶融混線ペレタイズする方
法。
(3) (A), (B) Pellets obtained by mixing predetermined amounts of each component and melting and cross-fertilizing the mixture) K (C), (D
) A method in which predetermined amounts of each component are mixed and then melted and mixed and pelletized.

(4)  (B)、(C)各成分の所定量を混合し、溶
融混線ペレタイズして得たペレットに(A)、(D)各
成分の所定量を混合し、溶融混練ペレタイズする方法。
(4) A method of mixing predetermined amounts of each component (B) and (C) and melt-mixing and pelletizing the resulting pellets with a predetermined amount of each component (A) and (D), followed by melt-kneading and pelletizing.

などいずれの方法によっても製造することができる。な
お、押出機を用いて溶融混練ペレタイズする場合には、
(A)、(B)、(C)、(D)各成分の所定量を混合
したのち、押出機の同一の供給口よシ該混合物を供給し
てもかまわないが、通常の原料供給口のほかに、シリン
ダ一部に原料供給口をそなえた押出機を用いる場合には
、上述の(A)、(B)、(C)、(D)各成分のうち
、ある成分(複数成分であってもよい。)を通常の原料
供給口から供給し、残りの成分をシリンダ一部に設けら
れた供給口から供給するといったように分割して供給す
ることも可能である。
It can be manufactured by any method. In addition, when melt-kneading pelletizing using an extruder,
After mixing predetermined amounts of each component (A), (B), (C), and (D), the mixture may be supplied through the same supply port of the extruder, but it is possible to supply the mixture through the same supply port of the extruder, but it is possible to In addition, when using an extruder with a raw material supply port in a part of the cylinder, a certain component (multiple components) among the above-mentioned components (A), (B), (C), ) may be supplied from a normal raw material supply port, and the remaining components may be supplied from a supply port provided in a part of the cylinder.

また上述の(A)、(B)、(C)、(D)各成分を混
合する混合装置としてはヘンセルミキサー(商品名)、
スーパーミキサーなどの高速撹拌機付混合器、リボンプ
レンダー、タンブラ−ミキサーなど通常の混合装置を用
いればよく、溶融混練は単軸もしくは2軸の押出機、パ
ンバリミキサー、ロールなどが用いられるが上述の押出
機を用いるのが好適である。溶融混練温度は245〜3
00℃、好ましくは250〜280℃である。
In addition, as a mixing device for mixing the above-mentioned components (A), (B), (C), and (D), Hensel mixer (trade name),
Normal mixing equipment such as a mixer with a high-speed agitator such as a super mixer, a ribbon blender, or a tumbler mixer may be used. For melt kneading, a single or twin-screw extruder, panburi mixer, roll, etc. may be used. Preference is given to using the extruder described above. Melt kneading temperature is 245-3
00°C, preferably 250-280°C.

本発明のガラス繊維強化熱可塑性樹脂組成物は、(A)
、(B)、(C)各樹脂成分間の相溶性がきわめて良好
であるためこれに(D)成分を配合した場合、きわめて
均一な組成物が°捗1得られ、また本発明の組成物を用
いて成形した成形品は、高剛性、高い機械的強度、高耐
熱変形性を有し、かつ反シ変形性が大巾に改善されるの
で、良好な方法安定性を有しておシ、高剛性、高強度、
高耐熱変形性、高寸法安定性が要求される自動車用部品
、電気製品部品、各種工業製品部品の用途に好適に使用
することができる。
The glass fiber reinforced thermoplastic resin composition of the present invention comprises (A)
, (B), and (C), and therefore when component (D) is blended therewith, an extremely uniform composition can be obtained, and the composition of the present invention Molded products made using this method have high rigidity, high mechanical strength, high heat deformation resistance, and greatly improved resistance to deformation, so they have good process stability and are , high rigidity, high strength,
It can be suitably used for automotive parts, electrical product parts, and various industrial product parts that require high heat deformation resistance and high dimensional stability.

以下、実施例および比較例によって本発明を具体的に説
明する。なお、実施例および比較例で用いた原料樹脂は
以下のものを用いた。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. In addition, the following raw material resins were used in Examples and Comparative Examples.

ナイロンMXD6:  三菱瓦斯化学(樽製 レニー6
001ナイロン6 :東し■製アミ2ンCM1017ナ
イロン66:  東 し■製アミランCM3007AB
S樹脂  : 旭化成■製スタイラック181As  
樹脂  : 無化成■製スタイラック783変性PPO
樹脂  : エンジニアリングプラスチック−ノリル7
31J−701 また本発明の効果の評価方法は次の方法によった。
Nylon MXD6: Mitsubishi Gas Chemical (barrel made Lenny 6)
001 Nylon 6: Amin 2 CM1017 made by Toshi ■ Nylon 66: Amiran CM3007AB made by Toshi ■
S resin: Stylerac 181As manufactured by Asahi Kasei ■
Resin: Non-chemical Stylac 783 modified PPO
Resin: Engineering plastic - Noryl 7
31J-701 The effects of the present invention were evaluated by the following method.

(イ)機械的強度 機械的強度の測定として、引張強度の測定(JIS K
 7113に準拠)および曲げ強度の測定(JIS K
 7203に準拠)を行なった。
(a) Mechanical strength As a measurement of mechanical strength, tensile strength measurement (JIS K
7113) and bending strength measurement (JIS K
7203) was carried out.

(ロ)剛 性 曲げ弾性率の測定(JIS K 7203に準拠)を行
なった。
(b) Rigidity and flexural modulus were measured (according to JIS K 7203).

(ハ)耐熱変形性 熱変形温度の測定(JIS K 7207に準拠)、高
荷重(18,6kg/C7/L、)で行なった。
(c) Heat deformation resistance Measurement of heat deformation temperature (according to JIS K 7207) was carried out under a high load (18.6 kg/C7/L).

に)反り変形性 円板の中心部をゲートとして樹脂温度280℃で射出成
形して得た直径150朋、厚さ2龍の円板を試料とし、
該試料を温度23℃、相対湿度50チの条件下で48時
間状態調節を行なったのち、試料の反り変形率を次式よ
り求めた。
2) A disk with a diameter of 150mm and a thickness of 2mm obtained by injection molding at a resin temperature of 280°C using the center part of the warp-deformable disk as a gate was used as a sample.
After conditioning the sample for 48 hours at a temperature of 23° C. and a relative humidity of 50° C., the warping deformation rate of the sample was determined from the following equation.

ここでdは試料の円板の直径を、h、、h2は第1図に
示すそれぞれの反り高さを表わす。
Here, d represents the diameter of the sample disk, and h, , h2 represent the respective warp heights shown in FIG.

実施例1〜3、比較例1〜5 実施例1〜3として、メルトフローレート(温度230
℃で荷重2.16kgを加えたときの10分間における
溶融樹脂の吐出量)2.0g/10分のプロピレン単独
重合体粉末9867重量部に無水マレイン酸0.5重量
部、2,6−ジーt−ブチルパラクレゾール0.1重量
部、1,3−ビス(t−プ□   チルパーオキシイソ
グロビル)ベンゼン0. I M置部および水酸化マグ
ネシウム0.6重量部を加え、ヘンセルミキサー(商品
名)で3分間撹拌混合し、該混合物を口径45龍、L/
D=30の2軸押出機で溶融混線温度200℃で溶融混
線押出しペレタイズしてメルトフローレート1ロ5(A
)成分として上述の変性PP70重量部、(B)成分と
してナイロンMXD6を30重量部および実施例1は(
C)成分としてABS樹脂20重量部、実施例2は(C
)成分としてA8樹脂20重量部、実施例3は(C)成
分として変性ポリフェニレンオキサイド20重量部をそ
れぞれ用い、(A)、(B)、(C)各成分の所定量を
タンブラ−ミキサーに入れ10分間混合し、該混合物を
口径4 5mm, L/D=3 0の2軸押出機の通常
の原料供給口より供給し、ガラス繊維各60重量部をシ
リンダ一部に設けられた別の供給口よりそれぞれ計量し
ながら供給し、溶融混線温度250℃で溶融混線押出し
ペレタイズした。
Examples 1 to 3, Comparative Examples 1 to 5 As Examples 1 to 3, melt flow rate (temperature 230
Discharge amount of molten resin in 10 minutes when a load of 2.16 kg is applied at 0.1 part by weight of t-butyl para-cresol, 0.1 part by weight of 1,3-bis(t-butylperoxyisoglobil)benzene. Add IM and 0.6 parts by weight of magnesium hydroxide, stir and mix for 3 minutes using a Hensel mixer (trade name), and mix the mixture with a caliber 45 dragon, L/
Pelletizing by melt cross-extrusion with a D=30 twin-screw extruder at a melt cross-wire temperature of 200°C to achieve a melt flow rate of 1 RO 5 (A
70 parts by weight of the above-mentioned modified PP as component (B), 30 parts by weight of nylon MXD6 as component (B), and Example 1 (
20 parts by weight of ABS resin as component C), Example 2 (C)
20 parts by weight of A8 resin as the component (A), and 20 parts by weight of modified polyphenylene oxide as the (C) component in Example 3, and predetermined amounts of each component (A), (B), and (C) were placed in a tumbler mixer. After mixing for 10 minutes, the mixture was fed through a normal raw material feed port of a twin-screw extruder with a diameter of 45 mm and L/D=30, and 60 parts by weight of each glass fiber was fed into a separate feed provided in a part of the cylinder. The mixture was metered and fed from the mouth, and the mixture was melt-cross-extruded and pelletized at a melt-cross-wire temperature of 250°C.

また比較例1〜5として、比較例1は(A)成分として
実施例1〜3で用いたと同様の変性ポリプロピレン10
0重量部、(B)成分は使用せず、(C)成分としてA
BS樹脂20重量部を、として変性ポリプロピレン70
重量部、(B)成例4は(B)成分のナイロンMXD6
に替えてナイ実施例1〜3の方法に準拠して混合し、実
施例例1〜3と同様シリンダ一部に設けられた別の供給
口よりそれぞれ計量しながら供給し、比較例1〜4では
溶融混線温度250℃で溶融混練押出しペレタイズした
。また比較例5は溶融混練温度270℃で溶融混練押出
しペレタイズした。
In addition, as Comparative Examples 1 to 5, Comparative Example 1 is a modified polypropylene 10 similar to that used in Examples 1 to 3 as the (A) component.
0 parts by weight, component (B) is not used, and component (C) is A.
BS resin 20 parts by weight, modified polypropylene 70
Parts by weight, (B) Example 4 is nylon MXD6 of component (B)
Comparative Examples 1 to 4 Then, the material was melt-kneaded, extruded, and pelletized at a melt-blending temperature of 250°C. In Comparative Example 5, the material was melt-kneaded, extruded, and pelletized at a melt-kneading temperature of 270°C.

実施各側および比較各側で得られたペレットをそれぞれ
用いて射出成形法により樹脂温250℃(比較例5は樹
脂温275℃)、金型温度50℃で所定の試験片を成形
し、該試験片を用いて各種の評価試験を行なった。その
結果を第1表にまとめて示した。
Predetermined test pieces were molded by injection molding at a resin temperature of 250°C (resin temperature of Comparative Example 5: 275°C) and a mold temperature of 50°C using the pellets obtained on each experimental side and each comparative side. Various evaluation tests were conducted using the test pieces. The results are summarized in Table 1.

実施例4、比較例6 (A)成分として実施例1〜3で用いたと同様の変性P
Pl0重量部、メルトフローレート20fI/10分の
未変性のプロピレン単独重合体(チッソポリプロに18
00)60重量部、(B)成分としてナイロンMXD6
を30重量部、(C)成分としてABS樹脂20重量部
を実施例1〜3に準拠して、混合し、該混合物を実施例
1〜3に準拠して通常の原料供給口よシ供給し、ガラス
繊維60重量部を実施例1〜3に準拠してシリンダ一部
に設けられた別の供給口より計量しながら供給し、実施
例1〜3に準拠して溶融混練押出しペレタイズした。ま
た比較例6として、(A)成分の変性PPを用いずに実
施例4で用いして混合し、該混合物を実施例1〜3に準
拠して通常の原料供給口より供給し、ガラス繊維60重
量部をシリンダ一部に設けられた別の供給口より計量し
ながら供給し、実施例1〜3に準拠して溶融混線押出し
ペレタイズした。
Example 4, Comparative Example 6 Modified P similar to that used in Examples 1 to 3 as component (A)
Pl0 parts by weight, melt flow rate 20 fI/10 min unmodified propylene homopolymer (18
00) 60 parts by weight, nylon MXD6 as component (B)
and 20 parts by weight of ABS resin as component (C) were mixed according to Examples 1 to 3, and the mixture was fed through a normal raw material supply port according to Examples 1 to 3. In accordance with Examples 1 to 3, 60 parts by weight of glass fibers were metered and fed from another supply port provided in a part of the cylinder, and the mixture was melt-kneaded, extruded, and pelletized in accordance with Examples 1 to 3. In addition, as Comparative Example 6, the modified PP of component (A) was used in Example 4 and mixed without using it, and the mixture was supplied from a normal raw material supply port in accordance with Examples 1 to 3, and the glass fiber 60 parts by weight was metered and fed from another feed port provided in a part of the cylinder, and pelletized by melt cross-extrusion according to Examples 1 to 3.

得られたペレットを用いて実施例1〜3に準拠して射出
成形法により各種試験片を成形し、該試験片を用いて評
価試験を行なった。その結果を第2表に示した。
Using the obtained pellets, various test pieces were molded by injection molding according to Examples 1 to 3, and evaluation tests were conducted using the test pieces. The results are shown in Table 2.

実施例5〜6、比較例7〜8 実施例5〜6として、(A)成分として実施例1〜3で
用いたと同様の変性PP70重量部、(B)成分として
ナイロンMXD630重量部および実施例5は(C)成
分としてABS樹脂10重量部、実施例6は(C)成分
としてABS樹脂30重量部をそれぞれ用い、(A)、
(B)、(C)各成分の所定量をタンブラ−ミキサーで
10分間混合し、該混合物を実施例1〜3に準拠して通
常の原料供給口より供給し、実施例5は(D)成分とし
てガラス繊維55重量部を実施例6は(D)成分として
ガラス繊維65重量部をシリンダ一部に設けられた別の
供給口より計量しながらそれぞれ供給し、実施例1〜3
に準拠して溶融混練押出しペレタイズした。
Examples 5 to 6, Comparative Examples 7 to 8 As Examples 5 to 6, 70 parts by weight of the same modified PP as used in Examples 1 to 3 as the (A) component, 630 parts by weight of nylon MXD as the (B) component, and Examples In Example 5, 10 parts by weight of ABS resin was used as the component (C), and in Example 6, 30 parts by weight of ABS resin was used as the component (C).
A predetermined amount of each component (B) and (C) is mixed in a tumbler mixer for 10 minutes, and the mixture is supplied from a normal raw material supply port according to Examples 1 to 3. In Example 5, (D) In Example 6, 55 parts by weight of glass fiber was added as the component (D), and 65 parts by weight of glass fiber was added as the component (D) while being measured from a separate supply port provided in a part of the cylinder.
The material was melt-kneaded, extruded, and pelletized in accordance with the following.

また、比較例7〜8として、(A)成分として実施例1
〜3で用いたと同様の変性PP 70重量部、(B)成
分としてナイロンMXD6を30重量部および比較例7
は(C)成分としてAB8樹脂3重量部を、比較例8は
(C)成分としてABS樹脂50重量部を用い、(A)
、(B)、(C)各成分の所定量をタンブラ−ミキサー
で10分間混合し、該混合物を実施例1〜3に準拠して
通常の原料供給口よりそれぞれ供給し、比較例7は(D
)成分としてガラス繊維を51.5重量部を、比較例7
は(D)成分としてガラス繊維75重量部を、シリンダ
一部に設けられた別の供給口より計量しながらそれぞれ
供給し、実施例1〜3に準拠して溶融混練押出しペレタ
イズした。
In addition, as Comparative Examples 7 and 8, Example 1 was used as the component (A).
70 parts by weight of the same modified PP as used in ~3, 30 parts by weight of nylon MXD6 as component (B), and Comparative Example 7
In Comparative Example 8, 3 parts by weight of AB8 resin was used as the component (C), and 50 parts by weight of ABS resin was used as the component (C) in Comparative Example 8.
, (B), and (C) were mixed in a tumbler mixer for 10 minutes, and the mixture was supplied from the usual raw material supply ports in accordance with Examples 1 to 3, and Comparative Example 7 ( D
) 51.5 parts by weight of glass fiber as a component, Comparative Example 7
75 parts by weight of glass fibers as component (D) were each metered and fed from separate feed ports provided in a part of the cylinder, and melt-kneaded, extruded, and pelletized in accordance with Examples 1 to 3.

実施各側、比較各側で得られたペレットのそれぞれを用
いて、実施例1〜3に準拠して射出成形法によシ各種試
験片を成形し、該試験片を用いて評価試験を行なった。
Using each of the pellets obtained on each of the implementation and comparison sides, various test pieces were molded by injection molding according to Examples 1 to 3, and evaluation tests were conducted using the test pieces. Ta.

その結果を第3表にまとめて示した。The results are summarized in Table 3.

実施例7〜9、比較例9 実施例7は、(A)成分として実施例1〜3で用いたと
同様の変性PP 90重量部、(B)成分としてナイロ
ンMXD6を10重量部、(C)成分としてAB8樹脂
20重量部を、実施例8は、(A)成分として実施例1
〜3で用いたと同様の変性PP60重量部、(B)成分
としてナイロンMXD6を40重量部、(C)成分とし
てABS樹脂20重量部を、実施例9は(A)成分とし
て実施例1〜3で用いたと同様の変性PP50重量部、
(B)成分としてナイロンMXD6を50重量部、(C
)成分としてABS樹脂20重量部をそれぞれ用い、(
A)、(B)、(C)各成分の所定量をタンブラ−ミキ
サーに入れて、10分間混合し、該混合物を実施例1〜
3に準拠して通常の原料供給口よりそれぞれ供給し、(
D)成分としてガラス繊維各60重量部をシリンダ一部
に設けられた別の供給口よυそれぞれ計量しながら供給
し、実施例1〜3に準拠して溶融混線押出しペレタイズ
した。
Examples 7 to 9, Comparative Example 9 In Example 7, 90 parts by weight of the same modified PP as used in Examples 1 to 3 as the (A) component, 10 parts by weight of nylon MXD6 as the (B) component, and (C) Example 8 contains 20 parts by weight of AB8 resin as a component, and Example 1 contains 20 parts by weight of AB8 resin as a component (A).
60 parts by weight of the same modified PP as used in ~3, 40 parts by weight of nylon MXD6 as the (B) component, 20 parts by weight of ABS resin as the (C) component, Example 9 as the (A) component of Examples 1 to 3 50 parts by weight of modified PP similar to that used in
50 parts by weight of nylon MXD6 as component (B), (C
) using 20 parts by weight of ABS resin as the component, (
A), (B), and (C) A predetermined amount of each component was put into a tumbler mixer, mixed for 10 minutes, and the mixture was prepared in Examples 1 to 1.
3, feed each from the normal raw material supply port, (
As component D), 60 parts by weight of each glass fiber was metered and fed through separate feed ports provided in a part of the cylinder, and pelletized by melt coextrusion according to Examples 1 to 3.

また、比較例9として、(A)成分として実施例1〜3
で用いたと同様の変性PP97重量部、(B)成分とし
てナイロンMXD6を3重量部、(C)成分としてAB
S樹脂20重量部をタンブラ−ミキサーに入れて10分
間混合し、該混合物を実施例1〜3に準拠して通常の原
料供給口より供給し、(D)成分としてガラス繊維60
重量部をシリンダ一部に設けられた別の供給口よシ供給
し、実施例1〜3に準拠して溶融混線押出しペレタイズ
した。
In addition, as Comparative Example 9, Examples 1 to 3 were used as component (A).
97 parts by weight of the same modified PP as used in Component (B), 3 parts by weight of nylon MXD6 as component (C), AB as component (C)
20 parts by weight of S resin was placed in a tumbler mixer and mixed for 10 minutes, and the mixture was fed from a normal raw material supply port according to Examples 1 to 3, and 60 parts by weight of glass fiber was added as component (D).
The weight part was fed through another feed port provided in a part of the cylinder, and pelletized by melt coextrusion according to Examples 1 to 3.

実施各側および比較例で得られたペレットのそれぞれを
用いて、実施例1〜3に準拠して射出成形法により各種
試験片を成形し、該試験片を用いて評価試験を行なった
。その結果を第4表にまとめて示した。
Using the pellets obtained in each of the implementation and comparative examples, various test pieces were molded by injection molding according to Examples 1 to 3, and evaluation tests were conducted using the test pieces. The results are summarized in Table 4.

実施例10〜12、比較例10〜12 実施例10〜12として、(A)成分として実施例1〜
3で用いたのと同様の変性PP70重量部、(B)成分
としてナイロンMXD6を30重量部、(C)成分とし
てABS樹脂20重量部をそれぞれ用い、(A)、(B
)、(C)各成分の所定量をタンブラ−ミキサーに入れ
て10分間混合し、該混合物を実施例1〜3に準拠して
通常の原料供給口よシそれぞれ供給し、(D)成分とし
てガラス繊維を実施例10では12重量部を、実施例1
1では30重量部を、実施例12では120重量部を、
シリンダ一部に設けられた別の供給口より計量しながら
それぞれ供給し、実施例1〜3に準拠して溶融混線押出
しペレタイズした。
Examples 10 to 12, Comparative Examples 10 to 12 As Examples 10 to 12, Examples 1 to 12 as component (A)
Using 70 parts by weight of the same modified PP as used in 3, 30 parts by weight of nylon MXD6 as the (B) component, and 20 parts by weight of ABS resin as the (C) component, (A) and (B) were used.
), (C) A predetermined amount of each component was placed in a tumbler mixer and mixed for 10 minutes, and the mixture was fed through the usual raw material supply ports according to Examples 1 to 3, and as the component (D). In Example 10, 12 parts by weight of glass fiber was used, and in Example 1,
In Example 1, 30 parts by weight, in Example 12, 120 parts by weight,
They were respectively fed while being metered from separate feed ports provided in a part of the cylinder, and pelletized by melt coextrusion according to Examples 1 to 3.

また比較例10〜12として、(A)成分とじて実施例
1〜3で用いたのと同様の変性PP70重量部、(B)
成分としてナイロンMXD6を30重量部をタンブラ−
ミキサーに入れて10分間混合し、該混合物を実施例1
〜3に準拠して通常の原料供給口よりそれぞれ供給し、
(D)成分としてガラス繊維を比較例10は10重量部
を、比較例11は25重量部を、比較例12は100重
量部を、シリンダ一部に設けられた別の供給口より、計
量しながらそれぞれ供給し、実施例1〜3に準拠して溶
融混練押出しペレタイズした。
In addition, as Comparative Examples 10 to 12, 70 parts by weight of the same modified PP as used in Examples 1 to 3 as the (A) component, and (B)
Tumble 30 parts by weight of nylon MXD6 as a component.
Place the mixture in a mixer and mix for 10 minutes.
In accordance with ~3, each is supplied from a normal raw material supply port,
(D) Component (D): 10 parts by weight of glass fiber in Comparative Example 10, 25 parts by weight in Comparative Example 11, and 100 parts by weight in Comparative Example 12, were weighed from a separate supply port provided in a part of the cylinder. The mixture was melt-kneaded, extruded, and pelletized in accordance with Examples 1 to 3.

実施各側および比較各側により得られたペレットを用い
て、実施例1〜3に準拠して射出成形法により各種試験
片を成形し、該試験片を用いて評価試験を行なった。そ
の結果を第5表にまとめて示した。
Using the pellets obtained from each experimental side and each comparative side, various test pieces were molded by injection molding according to Examples 1 to 3, and evaluation tests were conducted using the test pieces. The results are summarized in Table 5.

第1表から明らかなように、変性PPl!:ABs樹脂
の両者に相溶性の良好なナイロンMXD 6を使用せず
、変性PPとABS樹脂の2成分系にガラス繊維を配合
した比較例1では、得られた成形品は機械的強度および
熱変形温度のいずれも著るしく低い値を示し、がっ反シ
変形率も非常に大きく寸法安定性がわるいものであった
。また溶融混練押出時にもストランド切れが頻発した。
As is clear from Table 1, modified PPl! : In Comparative Example 1, in which glass fiber was blended into the two-component system of modified PP and ABS resin without using nylon MXD 6, which has good compatibility with both ABs resins, the obtained molded product had poor mechanical strength and thermal strength. All of the deformation temperatures showed extremely low values, and the bulk deformation rate was also very large, resulting in poor dimensional stability. Strand breakage also frequently occurred during melt-kneading extrusion.

一方、非結晶性樹脂を使用せず、変性PPとナイロンM
XD6tたはナイロン6の2成分系にガラス繊維を配合
した比較例2および比較例3では、溶融混練押出しペレ
タイズするときにはなんら支障がなく、得られた成形品
は機械的強度、剛性、耐熱変形性も良好であったが反シ
変形性がきわめてわるくなることが判明した。
On the other hand, without using amorphous resin, modified PP and nylon M
In Comparative Examples 2 and 3, in which glass fiber was blended with a two-component system of XD6t or nylon 6, there was no problem when melt-kneading, extruding, and pelletizing, and the resulting molded products had good mechanical strength, rigidity, and heat deformation resistance. However, it was found that the anti-shock deformability was extremely poor.

また、ナイロンMXD6に替えて、変性PPのみに相溶
性が良好で、非結晶性樹脂とは相溶性のわるいナイロン
6、ナイロン66を使用した比較例4および比較例5で
は、比較例1と同様、ペレタイズするときにストランド
切れが多発したうえ、得られた成形品の機械的強度、耐
熱変形性、反り変形性のいずれも著るしく劣るものであ
った。これらの比較各側にくらべ、変性PP、ナイロン
MXD6および分子くシ返し単位中にベンゼン環を有す
る非結晶性樹脂の3成分系にガラス繊維を配合した実施
例1〜3では得られた成形品は反シ変形性が著るしく改
善されているうえ、機械的強度、剛性および耐熱変形性
にも優れていることが判明した。
In addition, in Comparative Examples 4 and 5, in which nylon 6 and nylon 66, which have good compatibility only with modified PP and poor compatibility with amorphous resins, were used instead of nylon MXD6, the results were the same as in Comparative Example 1. In addition, strand breakage occurred frequently during pelletizing, and the resulting molded product was significantly inferior in mechanical strength, heat deformation resistance, and warp deformability. Compared to these comparison sides, the molded products obtained in Examples 1 to 3 in which glass fiber was blended with a three-component system of modified PP, nylon MXD6, and an amorphous resin having a benzene ring in the molecular repeating unit It was found that the material had significantly improved resistance to shear deformation, and was also excellent in mechanical strength, rigidity, and heat deformation resistance.

第2表より明らかなように、変性PPに未変性PPを加
えた実施例4では、得られた成形品は反り変形性が小さ
くかつ機械的強度、剛性および耐熱変形性に優れたもの
であることが判明した。これに対して、変性PPを一切
使用しない比較例6では、配合した樹脂相互間の相溶性
が著るしくわるくなる結果、得られた成形品の機械的強
度、耐熱変形性および反シ変形性が著るしく悪化するこ
とが判明した。
As is clear from Table 2, in Example 4 in which unmodified PP was added to modified PP, the obtained molded product had low warp deformability and was excellent in mechanical strength, rigidity, and heat deformation resistance. It has been found. On the other hand, in Comparative Example 6 in which no modified PP was used, the compatibility between the blended resins deteriorated significantly, resulting in the mechanical strength, heat deformation resistance, and shrinkage resistance of the resulting molded product. was found to be significantly worse.

第3表より明らかなように、ABS樹脂の配合量が3重
量部と少ない比較例7では、得られた成形品の反シ変形
性の改善効果が不充分であり、またABS樹脂の配合量
が50重量部と多い比較例8では、得られた成形品の耐
熱変形性が著るしく低下することが判明した。
As is clear from Table 3, in Comparative Example 7, where the amount of ABS resin blended is as small as 3 parts by weight, the effect of improving the anti-shock deformation of the obtained molded product was insufficient, and the amount of ABS resin blended was It was found that in Comparative Example 8 in which the amount of carbon dioxide was as high as 50 parts by weight, the heat deformation resistance of the obtained molded article was significantly reduced.

これらの比較各側にくらべ、実施例5〜6で得られた成
形品は機械的強度、剛性、耐熱変形性反り変形性のいず
れにも優れていた。
Compared to these comparisons, the molded products obtained in Examples 5 and 6 were superior in mechanical strength, rigidity, heat deformation resistance, and warp deformability.

また第4表よシわかるように、ナイロンMXD6の配合
量が3重量部と少ない比較例9では、ナイロンMXD6
の配合量が少なすぎるために、ABS樹脂が均一に分散
されず、全体として不均一な組成となる結果、得られた
成形品は機械的強度、剛性、耐熱変形性、反)変形性の
いずれも低下したものになった。
Furthermore, as can be seen from Table 4, in Comparative Example 9, where the amount of nylon MXD6 blended is as small as 3 parts by weight, nylon MXD6
Because the blending amount is too small, the ABS resin is not uniformly dispersed, resulting in a non-uniform composition as a whole, and the resulting molded product has poor mechanical strength, rigidity, heat deformation resistance, and anti-deformability. has also declined.

これに対して実施例7〜9では、得られた成形品は機械
的強度、剛性、耐熱変形性、反シ変形性のいずれも優れ
ていた。
On the other hand, in Examples 7 to 9, the obtained molded products were excellent in all of mechanical strength, rigidity, heat deformation resistance, and shrinkage resistance.

第5表かられかるように、ガラス繊維の配合量を変えて
も本発明の組成範囲の実施例10〜12では、得られた
成形品は反り変形性が、比較例10〜12で得られた成
形品の反り変形性にくらべて著るしく優れていることが
判明した。
As can be seen from Table 5, even if the blending amount of glass fiber was changed, in Examples 10 to 12 having the composition range of the present invention, the obtained molded products had no warping deformability, but in Comparative Examples 10 to 12. It was found that the warpage deformability of the molded product was significantly superior to that of the molded product.

以上の記述からも明らかなように、本発明に係わる組成
物は、成形品としたときに優れた機械的強度、剛性、耐
熱変形性を有しかつ反り変形性が小さく寸法安定性に優
れた成形品を与える組成物であることが確認された。
As is clear from the above description, the composition according to the present invention has excellent mechanical strength, rigidity, and heat deformation resistance when formed into a molded product, and has low warp deformation and excellent dimensional stability. It was confirmed that the composition gave a molded article.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反り変形性を測定する円板試料の反シ変形した
形を表わしたもので、dは円板試料の直径を、h、、h
、はそれぞれ端部の反り高さを表わす。また1は円板試
料の表を、2は裏を表わしたものである。 以上
Figure 1 shows the shape of the disk sample whose warp deformability is measured, where d is the diameter of the disk sample, h, h,
, respectively represent the warp height of the end. Further, 1 represents the front side of the disk sample, and 2 represents the back side. that's all

Claims (1)

【特許請求の範囲】[Claims] (1)(A)不飽和カルボン酸もしくはその無水物で変
性したポリプロピレンまたは不飽和カルボン酸もしくは
その無水物で変性したポリプロピレンを少なくとも1重
量部含有したポリプロピレン、 (B)メタキシレンジアミンとアジピン酸との重縮合に
より得られるポリアミド樹脂、 (C)分子くり返し単位中にベンゼン環を有する非結晶
性の熱可塑性樹脂および (D)ガラス繊維とからなる熱可塑性樹脂組成物におい
て、(A)が95〜50重量%、(B)が5〜50重量
%とからなり、(A)と(B)の合計100重量部に対
し、(C)を5〜40重量部含有せしめてなる配合物1
00重量部に(D)を5〜100重量部含有せしめたこ
とを特徴とする熱可塑性樹脂組成物。
(1) (A) polypropylene modified with an unsaturated carboxylic acid or its anhydride, or polypropylene containing at least 1 part by weight of polypropylene modified with an unsaturated carboxylic acid or its anhydride; (B) metaxylene diamine and adipic acid; (A) is 95 to Formulation 1 comprising 50% by weight, 5-50% by weight of (B), and 5-40 parts by weight of (C) based on a total of 100 parts by weight of (A) and (B).
1. A thermoplastic resin composition comprising 5 to 100 parts by weight of (D) in 00 parts by weight.
JP15578085A 1985-07-15 1985-07-15 Thermoplastic resin composition Expired - Lifetime JPH0647642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15578085A JPH0647642B2 (en) 1985-07-15 1985-07-15 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15578085A JPH0647642B2 (en) 1985-07-15 1985-07-15 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS6215247A true JPS6215247A (en) 1987-01-23
JPH0647642B2 JPH0647642B2 (en) 1994-06-22

Family

ID=15613245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15578085A Expired - Lifetime JPH0647642B2 (en) 1985-07-15 1985-07-15 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH0647642B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225584A (en) * 1989-02-17 1990-06-06 Ici Plc Polymeric blends
JP2001064450A (en) * 1999-08-31 2001-03-13 Achilles Corp Flame retardant resin composition
CN109722018A (en) * 2018-12-21 2019-05-07 金旸(厦门)新材料科技有限公司 A kind of high rigidity low water absorbable PA/ABS alloy material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225584A (en) * 1989-02-17 1990-06-06 Ici Plc Polymeric blends
JP2001064450A (en) * 1999-08-31 2001-03-13 Achilles Corp Flame retardant resin composition
CN109722018A (en) * 2018-12-21 2019-05-07 金旸(厦门)新材料科技有限公司 A kind of high rigidity low water absorbable PA/ABS alloy material and preparation method thereof

Also Published As

Publication number Publication date
JPH0647642B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
JPH0618929B2 (en) Glass fiber reinforced polypropylene composition
JP2015147428A (en) Fiber reinforced thermoplastic resin molded article
JPH02173047A (en) Fiber-reinforced thermoplastic resin composition
JPH10152607A (en) Method and composition for reinforcing polyester resin
JP3169951B2 (en) High strength polyamide resin composition and method for producing the same
JP2011148997A (en) Polyamide resin composition
JPS5956443A (en) Resin composition for molding material
JPH0565410A (en) Polyamide resin composition
JPS58117250A (en) Reinforced resin composition with excellent moldability and its preparation
JPH0425541A (en) Polypropylene resin composition
JP3530536B2 (en) Glass fiber reinforced polyamide resin composition and molding method thereof
JPS6215247A (en) Thermoplastic resin composition
JPH05500980A (en) Polyolefin/thermoplastic blends
JP2000273300A (en) Polyamide resin composition and injection molded product therefrom
JPH039952A (en) Thermoplastic resin composition
JPS6411218B2 (en)
JPS60104136A (en) Glass fiber-reinforced polypropylene composition
JPH10147710A (en) Polyamide resin composition, production thereof and automobile parts produced therefrom
JPH0352952A (en) Polyamide resin composition
JP3871745B2 (en) Polyamide resin composition
JPS61250055A (en) Injection molding resin composition
JPH02167366A (en) Polyamide resin composition
JP3019196B2 (en) Polycarbonate plate injection molding
JPH0238457A (en) Fiber-reinforced resin composition
JPS6351466B2 (en)