JPS62148366A - Manufacture of carbon fiber reinforced carbon composite material - Google Patents

Manufacture of carbon fiber reinforced carbon composite material

Info

Publication number
JPS62148366A
JPS62148366A JP60291045A JP29104585A JPS62148366A JP S62148366 A JPS62148366 A JP S62148366A JP 60291045 A JP60291045 A JP 60291045A JP 29104585 A JP29104585 A JP 29104585A JP S62148366 A JPS62148366 A JP S62148366A
Authority
JP
Japan
Prior art keywords
carbon
powder
composite material
carbon composite
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60291045A
Other languages
Japanese (ja)
Inventor
田中 穂波
山崎 平馬
高力 雅人
糸賀 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
Original Assignee
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Oil Co Ltd filed Critical Koa Oil Co Ltd
Priority to JP60291045A priority Critical patent/JPS62148366A/en
Publication of JPS62148366A publication Critical patent/JPS62148366A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は炭素材料に関し、さらに詳しくは、炭素繊維と
炭素粉末との複合系からなる炭素繊維強化炭素複合材料
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to carbon materials, and more particularly to a method for producing a carbon fiber-reinforced carbon composite material comprising a composite system of carbon fibers and carbon powder.

(発明の背景〕 炭素II N強化炭素複合材料は、機械的特性、耐熱特
性、軽量性などに優れた特性を有することから、ディス
ク・ブレーキ、ロケットノズルなどの宇宙航空機用部材
等として、極めて有用なものである。
(Background of the Invention) Carbon II N-reinforced carbon composite materials have excellent mechanical properties, heat resistance properties, light weight, etc., and are therefore extremely useful as components for spacecraft such as disc brakes and rocket nozzles. It is something.

従来、この炭素繊維強化炭素複合材料(以下、炭素・炭
素複合材と略称する)の製造方法としては、炭素繊維成
形物に熱可塑性あるいは熱硬化性樹脂を含浸・炭化(黒
鉛化)する方法(樹脂含浸法)、あるいは炭素繊維成形
物に直接熱分解炭素を沈積させる方法(化学気相蒸着法
)などの方法が知られている。
Conventionally, the method for manufacturing carbon fiber-reinforced carbon composite materials (hereinafter abbreviated as carbon-carbon composite materials) has been to impregnate and carbonize (graphitize) a carbon fiber molded product with thermoplastic or thermosetting resin. Methods such as a resin impregnation method) or a method of depositing pyrolytic carbon directly onto a carbon fiber molded product (chemical vapor deposition method) are known.

しかしながら、上記樹脂含浸法においては、含浸樹脂の
炭化収率が低いため一工程ではボーラスかつ低強度のも
のしか得られない。したがって、この方法によって充分
な強度を有する炭素・炭素複合材を得るためには含浸・
炭化工程を繰り返し行うとともに高圧含浸あるいは高圧
加圧炭化などの強制手段も必要となり、工程が複雑にな
るだけでなく、多くの労力を要するとともに大形の複合
材を得るのは非常に困難となる。
However, in the above resin impregnation method, only a bolus and low strength product can be obtained in one step because the carbonization yield of the impregnated resin is low. Therefore, in order to obtain a carbon-carbon composite material with sufficient strength using this method, impregnation and
In addition to repeating the carbonization process, forced means such as high-pressure impregnation or high-pressure carbonization are also required, which not only complicates the process but also requires a lot of labor and makes it extremely difficult to obtain large-sized composite materials. .

一方、従来の化学気相蒸着法にあっては、熱分解炭素が
炭素II維成形物の外表面から選択的に沈積されやすく
、このため内部がポーラスとなった不均質な複合材にな
りやすいという問題がある。
On the other hand, in the conventional chemical vapor deposition method, pyrolytic carbon tends to be deposited selectively from the outer surface of the carbon II fiber molding, which tends to result in a heterogeneous composite material with a porous interior. There is a problem.

この化学気相蒸着法によって、熱分解炭素の沈積が内部
まで均質に行なわれた高強度の炭素・炭素複合材を得る
ために、温度勾配法あるいは圧力勾配法などの方法を用
いることが必要となるが、これらの方法は装置自体が大
がかりとなり不経済となるだけでなく長時間を要すると
ともに得られる複合体の大きさにも制約を受けるという
欠点がある。
In order to obtain a high-strength carbon-carbon composite material in which pyrolytic carbon is deposited homogeneously throughout the interior using this chemical vapor deposition method, it is necessary to use a method such as a temperature gradient method or a pressure gradient method. However, these methods have disadvantages in that the apparatus itself is large-scale and uneconomical, and also requires a long time and is subject to restrictions on the size of the resulting composite.

〔発明の概要〕[Summary of the invention]

本発明は上;ホした点に鑑みてなされたものであり、機
械的強度の向上した炭素・炭素複合材を簡略な工程でか
つ経済的に製造する方法を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for economically producing a carbon-carbon composite material with improved mechanical strength through a simple process.

本発明者らは、更貿油を熱処理して1qられるバルクメ
ソフェースが炭化収率が高く自己焼結性にすぐれた特性
を有していることに着目し、バルクメソフェース粉末と
黒鉛、コークスなどの炭素粉末との混合物からなる炭素
系粉末成分と炭素!l維とを組合けることにより、従来
必要であった含浸・高圧加圧炭化工程、装置の大形化な
どの煩雑な労力を省き簡略な工程でかつ経済的な方法に
よって、機械的強度の向上した炭素・炭素複合材が得ら
れることを見い出した。
The present inventors focused on the fact that bulk mesophase produced by heat treating 1q of raw oil has a high carbonization yield and excellent self-sintering properties, and developed bulk mesophase powder, graphite, and coke. A carbon-based powder component consisting of a mixture with carbon powder such as carbon! By combining it with fibers, mechanical strength can be improved through a simple and economical method that eliminates complicated labor such as impregnation, high-pressure carbonization processes, and increasing the size of equipment that were previously required. We have discovered that a carbon-carbon composite material can be obtained.

寸なわら、本発明に係る炭素・炭素複合材の製造方法は
、重質油を熱処理することによって得られるバルクメソ
フェース粉末と炭素粉末からなる炭素系粉末と、炭素繊
維とを混合し、この混合物を2〜10 K9 f / 
ciの範囲の低圧条件下で荷重炭化することを特徴とす
るものである。
In other words, the method for producing a carbon/carbon composite material according to the present invention involves mixing carbon fibers with carbon fibers and bulk mesophase powder obtained by heat treating heavy oil and carbon powder. Mixture 2-10 K9 f/
It is characterized by being carbonized under load under low pressure conditions in the range of ci.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、本発明をさらに詳細に説明する。 The present invention will be explained in more detail below.

本発明に用いるバルクメソフェースとは、石油の常圧残
油、減圧残油、接触分解のデカントオイル、熱分解ター
ルなどの石油系重質油、石炭タール、オイルサンド油な
どの炭化水素重質油を400〜500℃の温度に加熱処
理した際に熱処理ピッチ中に生成するメソフェース小球
体を凝集合体させて母相ピッチから分離しだらのを意味
し、化学的、物理的な活性に富む物質である。
The bulk mesophase used in the present invention refers to heavy petroleum oils such as petroleum atmospheric residue, vacuum residue, catalytic cracking decant oil, pyrolysis tar, and hydrocarbon heavy oils such as coal tar and oil sand oil. A chemically and physically active substance that aggregates mesophase spherules that are formed in heat-treated pitch when oil is heat-treated to a temperature of 400 to 500°C and separates from the parent pitch. It is.

このようなバルクメソフェースの製造方法については、
本出願人に係る特開昭57−200213号公報または
特開昭59−30887号公報等に開示されており、重
質油を400〜500℃の温度に加熱し重縮合反応を行
わせてメソフェース小球体を含有するピッチを得たのら
、該ピッチを250〜400 ’Cに冷却し、乱流を付
与することによりメソエース小球体を凝集合体さけ、こ
れを母相から分離することによりバルクメソフェースが
得られる。なお、このようなバルクメソフェースを製造
するための装置は、本出願人に係る特開昭59−308
87号公報に開示されている。
For information on how to fabricate such bulk mesofaces,
It is disclosed in JP-A No. 57-200213 or JP-A No. 59-30887 filed by the present applicant, in which heavy oil is heated to a temperature of 400 to 500°C to perform a polycondensation reaction to produce mesophase. After obtaining the pitch containing small spheres, the pitch is cooled to 250-400'C, turbulent flow is applied to avoid agglomeration of mesoaceous small spheres, and bulk mesoaceous particles are separated from the parent phase. face is obtained. Incidentally, an apparatus for manufacturing such a bulk mesophase is disclosed in Japanese Patent Application Laid-Open No. 59-308 filed by the present applicant.
It is disclosed in Publication No. 87.

炭素粉末としては、市販の黒鉛粉末又は石炭系あるいは
石油系のコークス粉末などが用いられ得る。
As the carbon powder, commercially available graphite powder, coal-based or petroleum-based coke powder, etc. can be used.

炭素繊維としては、その起源を問わず、炭化あるいは黒
鉛化処理したものでもよく、またクロスあるいはフィラ
メントのいずれの形態であってもよい。
The carbon fiber may be carbonized or graphitized regardless of its origin, and may be in the form of a cloth or filament.

バルクメソフェース粉末と炭素粉末の混合方法は、撮動
ボールミJし、ライカイ機、などの一般の混合機により
混合ずればよいがバルクメソフェース粉末に対する炭素
粉末の混合割合は、炭素粉末の含有量が10〜30重量
%の範囲内であることが得られる炭素・炭素複合材の機
械的強度を向上させる上で好ましい。
The bulk mesophase powder and the carbon powder can be mixed using a general mixer such as a camera ball mill or a light machine, but the mixing ratio of the carbon powder to the bulk mesophase powder depends on the content of the carbon powder. is preferably within the range of 10 to 30% by weight in order to improve the mechanical strength of the resulting carbon-carbon composite material.

次いで、上記バルクメソフェース粉末と炭素粉末との混
合物からなる炭素系粉末と炭素繊維とを混合し、低圧下
での荷重炭化を行なう。
Next, carbon-based powder made of a mixture of the bulk mesophase powder and carbon powder is mixed with carbon fibers, and subjected to load carbonization under low pressure.

この場合の炭素系粉末と炭素1al[lの混合は、(イ
)シー1〜状の炭素繊維編織物と炭素系粉末の層とを交
互に積層する方法、(ロ)炭素繊維フィラメントと炭素
系粉末とを三次元的に均一に混合する方法等により行な
うことができる。
In this case, the carbon-based powder and the carbon 1al[l] can be mixed by (a) a method of alternately laminating layers of carbon-based powder and carbon-based powder; (b) carbon fiber filaments and carbon-based This can be carried out by a method of uniformly mixing powder in three dimensions.

炭化工程で加える荷重が2 K9 f / tri以下
では、炭素系粉末と炭素繊維との結合力が弱くなるため
得られる炭素・炭素複合材の強度が著しく低下し、一方
、10 K9 f / cm以上では荷重炭化による強
度の向上効果が顕著でなくなり、さらに例えば50Kg
f / crj以上では得られる炭素・炭素複合材に層
間はく離が起こることから、荷重炭化は2〜10に9 
f / ctlの範囲内で行なうことが好ましい。
If the load applied in the carbonization process is less than 2 K9 f/tri, the bonding force between the carbon-based powder and carbon fibers will be weakened, and the strength of the obtained carbon-carbon composite material will be significantly reduced; on the other hand, if the load is more than 10 K9 f/cm For example, the strength improvement effect due to carbonization under load becomes less noticeable, and
f/crj or higher, interlayer delamination occurs in the carbon-carbon composite material obtained, so the carbonization under load is 9 to 2 to 10.
It is preferable to perform within the f/ctl range.

また、炭化工程におけるそのほかの条件、すなわち加熱
温度、昇温速度等は、従来法における条件が選択され得
るが、たとえば、加熱温度は炭素系粉末と炭素繊維の混
合物が充分炭化し得る温度、たとえば、800〜150
0℃、昇温速度は該混合物にクラックが発生しない速度
、たとえば、50〜b なお、荷重炭化した後の炭素・炭素複合材は、さらに樹
脂bt、<はピッチを含浸して密度を高めることもでき
、また、適宜公知の方法によって黒鉛化処理を行なって
もよい。
In addition, other conditions in the carbonization step, such as heating temperature and temperature increase rate, may be selected from those in the conventional method. , 800-150
0°C, the temperature increase rate is the rate at which cracks do not occur in the mixture, for example, 50~b.The carbon-carbon composite material after carbonization under load is further impregnated with resin bt, <= pitch to increase the density. Alternatively, graphitization treatment may be performed appropriately by a known method.

このようにバルクメソフェース粉末と炭素粉末との混合
物からなる炭素系粉末と炭素繊維とを積層し低圧下で荷
重炭化を行なうことによって炭素・炭素複合材を製造す
る本発明の方法は、従来の炭素・炭素複合材の製造方法
に比べ含浸工程やホットプレスなどの高圧加圧炭化工程
が省略できるだけでなく、低圧下で行なうことができる
ので小規模装置で大形の製品を製造することが可能とな
り、さらに簡略な工程でかつ好演的に機械的強度の向上
した炭素・炭素複合材が1qられ、工業的見地から非常
に意義のある方法である。
As described above, the method of the present invention for producing a carbon-carbon composite material by laminating carbon fibers and carbon-based powder made of a mixture of bulk mesophase powder and carbon powder and carrying out load carbonization under low pressure is different from the conventional method. Compared to manufacturing methods for carbon/carbon composite materials, this method not only eliminates the impregnation process and high-pressure carbonization process such as hot pressing, but also can be performed under low pressure, making it possible to manufacture large products with small-scale equipment. As a result, a carbon-carbon composite material with improved mechanical strength can be produced in a simpler process and with improved mechanical strength, making this a very significant method from an industrial standpoint.

このように比較的低圧条件下で荷重炭化することにより
機械的強度が向上する理由は必ずしも明らかではなく、
また本発明はいかなる理論にも拘束されるものではない
が、上記荷重圧力範囲において炭素繊維と炭素系粉末と
の間の界面における特異作用が関与して良好な特性が発
現するものと推測される。
The reason why mechanical strength is improved by carbonization under relatively low pressure is not necessarily clear;
Furthermore, although the present invention is not bound by any theory, it is presumed that a specific action at the interface between the carbon fiber and the carbon-based powder is involved in the above load and pressure range, resulting in the development of good properties. .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基いて説明する。 The present invention will be explained below based on examples.

実施例−1 石油の接触分解油から得たバルクメソフェース粉末80
重量部と市販の黒鉛粉末20重■部とを混合し、この混
合物と市販の炭素繊維(PAN系クロり炭化品)径50
m、20枚とを交互に、しかも均一に積層した。この積
層物を2.5Kgf/crjの荷重下、テ?−渇速度2
00℃/Hrで1000℃まで昇温し、この温度で1時
間保持して炭素・炭素複合材を得た。
Example-1 Bulk mesophase powder 80 obtained from petroleum catalytic cracking oil
parts by weight and 20 parts by weight of commercially available graphite powder, and this mixture and commercially available carbon fiber (PAN-based black carbonized product) with a diameter of 50
20 sheets were laminated alternately and uniformly. This laminate was subjected to a load of 2.5Kgf/crj. -Depletion rate 2
The temperature was raised to 1000°C at a rate of 00°C/Hr and maintained at this temperature for 1 hour to obtain a carbon-carbon composite material.

得られた炭素・炭素複合材の曲げ強度は710に’J 
f / ci 、バルクメソフェースの炭化収率は81
m吊%、炭素・炭素複合材中の炭素m相含有率Vfは5
3%であった。
The bending strength of the obtained carbon-carbon composite material was 710'J
f/ci, the carbonization yield of bulk mesophase is 81
m suspension %, carbon m phase content Vf in the carbon-carbon composite material is 5
It was 3%.

実施例−2 積層物の荷mを5.ONgf/cnとした以外は上記実
施例−1と同様にして炭素・炭素複合材を11また。
Example-2 Load m of laminate is 5. The carbon-carbon composite material was prepared in the same manner as in Example-1 above except that ONgf/cn was used.

得られた炭素・炭素複合材の曲げ強度は720に’j 
f / cm 1V f Lt 54%であった。
The bending strength of the obtained carbon-carbon composite material was 720'j
f/cm 1V f Lt was 54%.

止1九二」− 積層物の荷重を1 、0に9 f /ctiとした以外
は上記実施例−1と同様にして炭素・炭素複合材を得た
A carbon-carbon composite material was obtained in the same manner as in Example 1 above, except that the load of the laminate was changed to 1, 0 and 9 f/cti.

得られた炭素・炭素複合材の曲げ強度は590Kgf 
/ crA、Vfは53%であツタ。
The bending strength of the obtained carbon/carbon composite material is 590Kgf
/ crA and Vf were 53%.

比較例−2 積層物の荷重を50 Kgf / triとした上記実
施例−1と同様にして炭素・炭素複合材を111だ。
Comparative Example-2 A carbon-carbon composite material of 111 was prepared in the same manner as in Example-1 above, in which the load of the laminate was 50 Kgf/tri.

得られた炭素・炭素複合材のVfは60%であったが曲
げ強度測定中に層間はく離が起った。
Although the Vf of the obtained carbon-carbon composite material was 60%, delamination occurred during bending strength measurement.

Claims (1)

【特許請求の範囲】 1、重質油を熱処理することによつて得られるバルクメ
ソフェースの粉末と炭素粉末からなる炭素系粉末と、炭
素繊維とを混合し、この混合物を2〜10Kgf/cm
^2の範囲の低圧条件下で荷重炭化することを特徴とす
る、炭素繊維強化炭素複合材料の製造方法。 2、シート状の炭素繊維編織物と炭素系粉末の層とを交
互に積層することによって炭素系粉末と炭素繊維との混
合が行なわれる、特許請求の範囲第1項の方法。 3、前記炭素粉末が、黒鉛粉末または(および)コーク
ス粉末からなる、特許請求の範囲第1項の方法。
[Claims] 1. Carbon-based powder consisting of bulk mesophase powder and carbon powder obtained by heat-treating heavy oil is mixed with carbon fibers, and this mixture is heated at 2 to 10 kgf/cm.
A method for producing a carbon fiber-reinforced carbon composite material, characterized by carrying out load carbonization under low pressure conditions in the range of ^2. 2. The method according to claim 1, wherein the carbon-based powder and carbon fibers are mixed by alternately laminating sheets of carbon fiber knitted fabric and carbon-based powder layers. 3. The method of claim 1, wherein the carbon powder comprises graphite powder or/and coke powder.
JP60291045A 1985-12-24 1985-12-24 Manufacture of carbon fiber reinforced carbon composite material Pending JPS62148366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291045A JPS62148366A (en) 1985-12-24 1985-12-24 Manufacture of carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291045A JPS62148366A (en) 1985-12-24 1985-12-24 Manufacture of carbon fiber reinforced carbon composite material

Publications (1)

Publication Number Publication Date
JPS62148366A true JPS62148366A (en) 1987-07-02

Family

ID=17763725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291045A Pending JPS62148366A (en) 1985-12-24 1985-12-24 Manufacture of carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPS62148366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169718A (en) * 1989-06-22 1992-12-08 Toyota Jidosha Kabushiki Kaisha Sliding member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169718A (en) * 1989-06-22 1992-12-08 Toyota Jidosha Kabushiki Kaisha Sliding member

Similar Documents

Publication Publication Date Title
US6699427B2 (en) Manufacture of carbon/carbon composites by hot pressing
JPS6340764A (en) Flexible intermediate material for inorganic fiber reinforced carbon composite material and manufacture
JPH01252577A (en) Production of carbon/carbon composite material
EP0323750B1 (en) Process for producing carbon material and carbon/carbon composites
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
US5773122A (en) Reinforced carbon composites
JPH06172030A (en) Production of carbon material
JPH03150266A (en) Production of carbon/carbon composite material
JPS62148366A (en) Manufacture of carbon fiber reinforced carbon composite material
JP2571251B2 (en) Carbon fiber reinforced carbon composite material for friction material
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JPH05306167A (en) Production of short fiber reinforced c/c composite
JPH0768064B2 (en) Carbon fiber reinforced composite material
JP3138718B2 (en) Method for producing carbon fiber reinforced carbon material
JPH0717449B2 (en) Method for producing impermeable carbon material
JPH01239059A (en) Production of carbon composite material
JPH0456788B2 (en)
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
KR970008693B1 (en) Process for the preparation of carbon composite material
JPS63151677A (en) Carbon fiber reinforced carbon composite material
JPH0456789B2 (en)
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPH02192461A (en) Production of carbon-carbon composite material
KR970007019B1 (en) Process for the preparation of carbon fiber reinforced carbon composite using pitch
JPH0822783B2 (en) Method for manufacturing carbon / carbon composite material