JPS6214696B2 - - Google Patents

Info

Publication number
JPS6214696B2
JPS6214696B2 JP12135681A JP12135681A JPS6214696B2 JP S6214696 B2 JPS6214696 B2 JP S6214696B2 JP 12135681 A JP12135681 A JP 12135681A JP 12135681 A JP12135681 A JP 12135681A JP S6214696 B2 JPS6214696 B2 JP S6214696B2
Authority
JP
Japan
Prior art keywords
rotation speed
gas general
gas
general rotation
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12135681A
Other languages
Japanese (ja)
Other versions
JPS5823233A (en
Inventor
Teruo Myata
Nobuichi Okamoto
Etsuji Kino
Noboru Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Motors Corp
Priority to JP12135681A priority Critical patent/JPS5823233A/en
Publication of JPS5823233A publication Critical patent/JPS5823233A/en
Publication of JPS6214696B2 publication Critical patent/JPS6214696B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/04Purpose of the control system to control acceleration (u)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、ガスタービンの加減速性能補償回路
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an acceleration/deceleration performance compensation circuit for a gas turbine.

従来のガスタービンおよびその制御装置を第1
図に、および制御装置内の燃料制御系統を第2図
にそれぞれ示す。この制御装置は、車両用ガスタ
ービン用として、アイドリング回転数までの起動
制御およびアイドリング回転数から定格回転数に
至る範囲の通常運転時制御を行なう。
Conventional gas turbine and its control device
2, and the fuel control system within the control device is shown in FIG. This control device is used for a gas turbine for a vehicle, and performs startup control up to idling rotation speed and control during normal operation in a range from idling rotation speed to rated rotation speed.

第1図において、参照符号1は制御装置、2は
ガスタービン、3はスイツチ入力SINを制御装置
1に与える操作スイツチ、4はガスゼネタービン
(以下単にガスゼネと略す)回転数設定器を示し
ている。ガスゼネ回転数設定器4は定常運転時ガ
スゼネ回転数設定値NG *を出力して制御装置1
に供給する。ガスタービン2にはガスゼネ回転数
測定値NGを出力するガスゼネ回転数検出器5、
コンプレツサ吸気温度測定値T1を出力するコン
プレツサ吸気温度検出器6、ガスゼネ入口温度測
定値T7を出力するガスゼネ入口温度検出器7、
出力軸回転数測定値NOSを出力する出力軸回転数
検出器8があつて各出力はそれぞれ制御装置1へ
与えられる。ガスタービン2にはまた制御装置1
から燃料流量指令Gfを受ける燃料調整弁操作部
9、バリアブルベーン開度指令VGを受けるバリ
アブルベーン操作部10、およびスイツチ・リレ
ー類操作指令SOUTを受けるスイツチ・リレー類
操作部11がある。
In FIG. 1, reference numeral 1 indicates a control device, 2 indicates a gas turbine, 3 indicates an operation switch that applies switch input S IN to the control device 1, and 4 indicates a gas general turbine (hereinafter simply referred to as gas gene) rotation speed setting device. ing. The gas general rotation speed setting device 4 outputs the gas general rotation speed setting value N G * during steady operation and controls the control device 1.
supply to. The gas turbine 2 includes a gas general rotation speed detector 5 that outputs a gas general rotation speed measurement value N G ;
A compressor intake air temperature detector 6 that outputs a compressor intake air temperature measurement value T1 , a gas general inlet temperature sensor 7 that outputs a gas general inlet temperature measurement value T7 ,
There is an output shaft rotation speed detector 8 that outputs an output shaft rotation speed measurement value NOS , and each output is given to the control device 1, respectively. The gas turbine 2 also includes a control device 1
There are a fuel adjustment valve operating section 9 that receives a fuel flow rate command G f from the fuel control valve, a variable vane operating section 10 that receives a variable vane opening command V G , and a switch/relay operating section 11 that receives a switch/relay operating command S OUT . .

第2図の制御回路は、ガスゼネ回転数設定器4
から定常運転時ガスゼネ回転数設定値NG *とコ
ンプレツサ吸気温度検出器6からコンプレツサ吸
気温度測定値T1とを受けて修正ガスゼネ回転数
設定値N GCを出力するガスゼネ設定回転数補正回
路21、修正ガスゼネ回転数設定値N GCとガスゼ
ネ回転数検出器5からのガスゼネ回転数測定値N
Gとを比較する比較器22、この比較器22の出
力を受けてガスゼネ回転数調節信号ΔGfNを出力
する調節器23、ガスゼネ入口温度検出器7から
のガスゼネ入口温度測定値T7を受けて検出遅れ
を補償したガスゼネ入口温度T7Cを出力する補償
回路24、ガスゼネ回転数測定値NGとコンプレ
ツサ吸気温度測定値T1と検出遅れを補償したガ
スゼネ入口温度T7Cとを受けてオーバヒート防止
信号ΔGfTを出力するオーバヒート防止回路2
5、出力軸回転数検出器8からの出力軸回転数測
定値NOSを受けて出力軸過回転防止信号ΔGfOS
を出力する出力軸過回転防止回路26、およびガ
スゼネ回転数調節信号ΔGfNとガスゼネ回転数測
定値NGとオーバヒート防止信号ΔGfTと出力軸
過回転防止信号ΔGfOSとを受けてガスタービン
2の燃料調整弁操作部9へ供給される燃料流量指
令Gfを発生する燃料流量指令演算回路27を備
えている。このように燃料制御系統における制御
回路においては定常運転時ガスゼネ回転数設定値
G *、ガスゼネ回転数測定値NG、出力回転数測
定値NOS、ガスゼネ入口温度測定値T7、コンプ
レツサ吸気温度測定値T1等を入力し、吸気温度
補正を含む適当な制御演算を施し、起動時あるい
は通常運転時の燃料流量指令Gf、バリアブルベ
ーン開度指令VG等を出力する機能を有してい
る。
The control circuit shown in Fig. 2 is the gas generator rotation speed setting device 4.
A gas general rotation speed correction circuit 21 receives the gas general rotation speed setting value N G * during steady operation from the compressor intake air temperature measurement value T 1 from the compressor intake air temperature detector 6 and outputs the corrected gas general rotation speed setting value N * GC . , corrected gas general rotation speed setting value N * gas general rotation speed measurement value N from GC and gas general rotation speed detector 5
A comparator 22 receives the output of the comparator 22 and outputs the gas general rotation speed adjustment signal ΔG fN , and receives the gas general inlet temperature measurement value T 7 from the gas general inlet temperature detector 7. A compensation circuit 24 outputs the gas general inlet temperature T7C that compensates for the detection delay, and receives the gas general rotational speed measurement value N G , the compressor intake air temperature measurement value T1 , and the gas general inlet temperature T7C that compensates for the detection delay, and generates an overheat prevention signal. Overheat prevention circuit 2 that outputs ΔG fT
5. In response to the output shaft rotation speed measurement value NOS from the output shaft rotation speed detector 8, the output shaft over-rotation prevention signal ΔG fOS
The output shaft overspeed prevention circuit 26 outputs the output shaft overspeed prevention circuit 26, and receives the gas general rotation speed adjustment signal ΔG fN , the gas general rotation speed measurement value N G , the overheat prevention signal ΔG fT , and the output shaft overspeed prevention signal ΔG fOS . A fuel flow rate command calculation circuit 27 is provided that generates a fuel flow rate command G f to be supplied to the fuel adjustment valve operating section 9 . In this way, in the control circuit of the fuel control system, during steady operation, the gas general rotation speed setting value N G * , the gas general rotation speed measurement value N G , the output rotation speed measurement value N OS , the gas general inlet temperature measurement value T 7 , and the compressor intake temperature It has the function of inputting the measured value T1 , etc., performing appropriate control calculations including intake air temperature correction, and outputting the fuel flow rate command G f at startup or normal operation, variable vane opening command VG, etc. .

ガスタービンを構成する各要素はガスゼネ回転
数が高い時と低い時とでは効率が変化し、一般に
高回転域では効率が高く低回転域では効率が低く
なる。このため低回転域においては同じ燃料流量
の変化に対するタービンの仕事量の変化が少なく
なり、高回転域に比べて過渡特性が悪いという欠
点があつた。
The efficiency of each element constituting a gas turbine changes depending on whether the gas generator rotational speed is high or low, and generally the efficiency is high in the high rotational speed range and low in the low rotational speed range. For this reason, in the low rotation range, the change in the amount of work done by the turbine for the same change in fuel flow rate is small, resulting in a drawback that the transient characteristics are poorer than in the high rotation range.

したがつて、本発明は、ガスタービン塔載車両
において、低回転域においても高回転域と同等の
過渡特性を得ることを目的とする。
Therefore, an object of the present invention is to obtain transient characteristics in a gas turbine tower vehicle that are equivalent to those in a high rotation range even in a low rotation range.

本発明によれば、従来、ガスゼネ回転数の設定
値と測定値の偏差を用いて燃料流量を調節してい
たのを、ガスゼネ回転数の高低に応じた補正信号
を燃料調節信号に加算するようにし、これによ
り、低回転域においても高回転域と同等の過渡特
性を得るようにしている。
According to the present invention, the fuel flow rate was conventionally adjusted using the deviation between the set value and the measured value of the gas general rotation speed, but now a correction signal corresponding to the height of the gas general rotation speed is added to the fuel adjustment signal. This allows the same transient characteristics in the low-speed range as in the high-speed range to be obtained.

以下第3図に例示した本発明の好適な実施例に
ついて詳述する。第3図において、第2図と同様
の要素は同一参照符号を付してある。
A preferred embodiment of the present invention illustrated in FIG. 3 will be described in detail below. In FIG. 3, elements similar to those in FIG. 2 are given the same reference numerals.

第3図によれば、第2図に示した制御回転に加
えて、ガスゼネ回転数測定値NGを受けてガスゼ
ネ回転数による補正信号ΔGfOを出力する補正信
号発生器51と、このガスセネ回転数による補正
信号ΔGfOおよび比較器22の出力を受けて回転
数偏差の極性を考慮した補正信号を出力する符号
変換器52と、調節器23および燃料流量指令演
算回路27の間に挿置されガスゼネ回転数調節信
号ΔGfNおよび回転数偏差の極性を考慮した補正
信号ΔGfCを受けて修正ガスゼネ回転数調節信号
ΔGfNCを出力する加算器53とを備えるガスタ
ービンの加減速性能補償回路が付加されている。
According to FIG. 3, in addition to the controlled rotation shown in FIG . It is inserted between the regulator 23 and the fuel flow rate command calculation circuit 27 and the sign converter 52 that receives the numerical correction signal ΔG fO and the output of the comparator 22 and outputs a correction signal that takes into account the polarity of the rotation speed deviation. A gas turbine acceleration/deceleration performance compensation circuit is added, which includes an adder 53 that outputs a corrected gas general rotation speed adjustment signal ΔG fNC in response to the gas general rotation speed adjustment signal ΔG fN and a correction signal ΔG fC that takes into account the polarity of the rotation speed deviation. has been done.

補正信号発生器51は、ガスゼネ回転数測定値
Gを入力変数としガスゼネ回転数による補正信
号ΔGfOを符号変換器52に送出する。ガスゼネ
回転数による補正信号ΔGfOは、ガスゼネ回転数
測定値NGが低い時は大であり、NGが高回転域に
なるにつれて減少するような特性をもつように適
当に定められている。
The correction signal generator 51 uses the gas general rotational speed measurement value N G as an input variable and sends out a correction signal ΔG fO based on the gas general rotational speed to the code converter 52 . The correction signal ΔG fO based on the gas general rotation speed is appropriately determined to have a characteristic that it is large when the gas general rotation speed measurement value N G is low, and decreases as N G becomes a high rotation range.

符号変換器52は、補正信号発生器51から出
力されるガスゼネ回転数による補正信号ΔGfO
に、比較器22から出力される回転数偏差(N GC
−NG)の極性を付与し、燃料調節信号の回転数
偏差の極性を考慮した補正信号ΔGfCとして加算
器53に送出する。
The code converter 52 generates a correction signal ΔG fO based on the gas generator rotation speed output from the correction signal generator 51.
, the rotational speed deviation (N * GC
-N G ), and is sent to the adder 53 as a correction signal ΔG fC that takes into account the polarity of the rotational speed deviation of the fuel adjustment signal.

加算器53は、調節器23の出力であるガスゼ
ネ回転数調節信号ΔGfNと符号変換器52から出
力される回転数偏差の極性を考慮した補正信号Δ
fCとを加算し、得られた修正ガスゼネ回転数調
節信号ΔGfNCをガスゼネ回転数を調節するため
の燃料指令として燃料流量指令演算回路27に出
力する。
The adder 53 generates a correction signal Δ that takes into consideration the polarity of the rotation speed deviation output from the sign converter 52 and the gas generator rotation speed adjustment signal ΔG fN that is the output of the regulator 23.
G fC and outputs the obtained corrected gas general rotation speed adjustment signal ΔG fNC to the fuel flow rate command calculation circuit 27 as a fuel command for adjusting the gas general rotation speed.

これにより、ガスゼネの低回転域では高回転域
に比べ見かけ上、調節器23のゲインが高くなつ
たことになる。
As a result, the gain of the regulator 23 appears to be higher in the low rotation range of the gas generator than in the high rotation range.

第4図は、定常運転時ガスゼネ回転数設定値N
G *の変化に対するガスゼネ回転数測定値NGおよ
び燃料流量指令Gfの過渡特性を示すもので、a
は高回転域、bは低回転域の過渡特性を示してい
る。第4図bに示した点線で示した従来例での低
回転域における整定時間τLは本発明によれば実
線で示したとおりになつてその整定時間τ′Lは高
回転域での整定時間τHとほぼ同等にまで改善さ
れている(τH≒τL′)。燃料調節信号の演算回路
を第3図の構成とすることにより、低回転域では
高回転域に比べ調節器23のゲインを見かけ上高
くし、タービンに入力されるエネルギを増すこと
ができるので、低回転域においても高回転域と同
等の過渡特性を得ることができるのである。ま
た、調節器23のゲインも従来では低回転域の過
渡特性にあわせて設定されていたため、高回転域
に対してはゲインが必要以上に高かつたのが、本
発明によれば、調節器23のゲインを必要以上に
高く設定しなくてもすむのである。
Figure 4 shows the gas generator rotation speed setting value N during steady operation.
This shows the transient characteristics of the gas general rotational speed measurement value N G and fuel flow rate command G f with respect to changes in G * .
b shows the transient characteristics in the high rotation range, and b shows the transient characteristics in the low rotation range. According to the present invention, the settling time τ L in the low rotation range in the conventional example shown by the dotted line in FIG . The time has been improved to almost the same as τ HH ≒ τ L ′). By configuring the calculation circuit for the fuel adjustment signal as shown in FIG. 3, the gain of the regulator 23 can be made higher in the low rotation range than in the high rotation range, and the energy input to the turbine can be increased. Even in the low rotation range, it is possible to obtain the same transient characteristics as in the high rotation range. Furthermore, the gain of the regulator 23 was conventionally set in accordance with the transient characteristics in the low rotation range, so the gain was higher than necessary for the high rotation range. This eliminates the need to set the gain of 23 higher than necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明回路を適用しようとするガスタ
ービンおよびその制御装置を略示する図、第2図
は従来の燃料制御回路を示すブロツク図、第3図
は燃料制御回路における本発明のガスタービン加
減速性能補償回路を示すブロツク図、第4図は第
3図の回路の過渡応答特性を示す図でaは高回転
域での特性およびbは低回転域での特性を示す図
である。 1……制御装置、2……ガスタービン、3……
操作スイツチ、4……ガスゼネ回転数設定器、5
……ガスゼネ回転数検出器、6……コンプレツサ
吸気温度検出器、7……ガスゼネ入口温度検出
器、8……出力軸回転数検出器、9……燃料調整
弁操作部、10……バリアブルベーン操作部、1
1……スイツチ・リレー類操作部、21……ガス
ゼネ設定回転数補正回路、22……比較器、23
……調節器、24……補償回路、25……オーバ
ヒート防止回路、26……出力軸過回転防止回
路、27……燃料流量指令演算回路、51……補
正信号発生器、52……符号変換器、53……加
算器。
Fig. 1 is a diagram schematically showing a gas turbine and its control device to which the circuit of the present invention is applied, Fig. 2 is a block diagram showing a conventional fuel control circuit, and Fig. 3 is a diagram showing the gas turbine of the present invention in the fuel control circuit. A block diagram showing the turbine acceleration/deceleration performance compensation circuit, FIG. 4 is a diagram showing the transient response characteristics of the circuit in FIG. . 1...Control device, 2...Gas turbine, 3...
Operation switch, 4...Gas generator rotation speed setting device, 5
... Gas general rotation speed detector, 6 ... Compressor intake air temperature detector, 7 ... Gas general inlet temperature detector, 8 ... Output shaft rotation speed detector, 9 ... Fuel adjustment valve operating section, 10 ... Variable vane Operation unit, 1
1...Switch/relay operation unit, 21...Gas generator setting rotation speed correction circuit, 22...Comparator, 23
...Adjuster, 24...Compensation circuit, 25...Overheat prevention circuit, 26...Output shaft over-rotation prevention circuit, 27...Fuel flow rate command calculation circuit, 51...Correction signal generator, 52...Sign conversion Vessel, 53... Adder.

Claims (1)

【特許請求の範囲】[Claims] 1 定常運転時ガスゼネ回転数設定値およびコン
プレツサ吸気温度測定値からガスゼネ設定回転数
補正回路により修正ガスゼネ回転数設定値を求
め、これを比較器にてガスゼネ回転数測定値と比
較してガスゼネ回転数偏差を求め、これを調節器
を介して燃料流量指令演算回路へガスゼネ回転数
調節信号として与えるようにした制御回路におい
て、前記ガスゼネ回転数測定値を入力としてター
ビンの回転数に応じて変化する補正量を求める回
路と、この補正量に前記ガスゼネ回転数偏差の極
性を与える変換器と、この変換器の出力を前記ガ
スゼネ回転数調節信号に加えて修正ガスゼネ回転
数調節信号を求める加算器とを備え、タービンの
低回転域では見かけ上前記調節器のゲインを増す
ことにより高回転域と同等の過渡特性を得るよう
にしたことを特徴とするガスタービンの加減速性
能補償回路。
1. Calculate the corrected gas general rotation speed setting value using the gas general rotation speed correction circuit from the gas general rotation speed setting value and compressor intake air temperature measurement value during steady operation, and compare this with the gas general rotation speed measurement value using a comparator to determine the gas general rotation speed. In a control circuit that calculates the deviation and supplies it as a gas general rotation speed adjustment signal to a fuel flow rate command calculation circuit via a regulator, the correction changes according to the turbine rotation speed using the gas general rotation speed measurement value as input. a circuit for determining the amount, a converter for giving the polarity of the gas general rotation speed deviation to this correction amount, and an adder for adding the output of the converter to the gas general rotation speed adjustment signal to obtain a corrected gas general rotation speed adjustment signal. 1. An acceleration/deceleration performance compensation circuit for a gas turbine, characterized in that in a low rotation range of the turbine, the gain of the regulator is apparently increased to obtain transient characteristics equivalent to those in a high rotation range.
JP12135681A 1981-08-04 1981-08-04 Accelerating/decelerating performance compensating circuit for gas turbine Granted JPS5823233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12135681A JPS5823233A (en) 1981-08-04 1981-08-04 Accelerating/decelerating performance compensating circuit for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12135681A JPS5823233A (en) 1981-08-04 1981-08-04 Accelerating/decelerating performance compensating circuit for gas turbine

Publications (2)

Publication Number Publication Date
JPS5823233A JPS5823233A (en) 1983-02-10
JPS6214696B2 true JPS6214696B2 (en) 1987-04-03

Family

ID=14809240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12135681A Granted JPS5823233A (en) 1981-08-04 1981-08-04 Accelerating/decelerating performance compensating circuit for gas turbine

Country Status (1)

Country Link
JP (1) JPS5823233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147015A (en) * 1988-11-29 1990-06-06 Matsushita Electric Ind Co Ltd Liquid crystal display device for cooker

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700100704A1 (en) * 2017-09-08 2019-03-08 Nuovo Pignone Tecnologie Srl CONTROL SYSTEM FOR A COMPRESSOR WITH A PRESSURE-BASED SUBSYSTEM, SYNTHESIS SYSTEM AND CONTROL SYSTEM / CONTROL SYSTEM FOR A COMPRESSOR WITH PRESSURE-BASED SUBSYSTEM, SYNTHESIS PLANT AND CONTROL METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147015A (en) * 1988-11-29 1990-06-06 Matsushita Electric Ind Co Ltd Liquid crystal display device for cooker

Also Published As

Publication number Publication date
JPS5823233A (en) 1983-02-10

Similar Documents

Publication Publication Date Title
EP1801384B1 (en) Methods and systems for variable geometry turbocharger control
JPH01310131A (en) Fuel controller
JPH0232457B2 (en)
EP1474597A1 (en) Control method for variable geometry turbocharger and related system
US4044554A (en) Gas turbine engine fuel control
JP2000186508A (en) Method and apparatus for use in controlling and compensating clearance in gas turbine engine
JP3672312B2 (en) A method for operating a combined cycle steam and gas turbine power generation system with a constant configurable droop.
EP0221002B1 (en) Improved propeller synchrophaser
US4206597A (en) Fan R.P.M. control loop stabilization using high rotor speed
JP3683269B2 (en) Control mechanism of closed annular stator vane
US4248042A (en) Engine thrust control system
JPS63131844A (en) Revolving speed control device for internal combustion engine
JPS6214696B2 (en)
JPH11257097A (en) Control method of variable stator blade of gas turbine fan and compressor
JPS59693B2 (en) gas turbine engine
JP2805892B2 (en) Control device for gas turbine for generator
JP3052448B2 (en) Acceleration control device for gas turbine vehicles
JPS6227256B2 (en)
JP2664050B2 (en) Speed control method of underwater vehicle
JPS6215738B2 (en)
JPS58124010A (en) Controller for gas turbine
SU742629A1 (en) Turbocompressor control system
JPS6214695B2 (en)
JPS58206812A (en) Device for adjusting discharged gas of steam turbine with vacuum
JPS6151134B2 (en)