JPS62145661A - Manufacture of matrix for fuel cell - Google Patents

Manufacture of matrix for fuel cell

Info

Publication number
JPS62145661A
JPS62145661A JP60286305A JP28630585A JPS62145661A JP S62145661 A JPS62145661 A JP S62145661A JP 60286305 A JP60286305 A JP 60286305A JP 28630585 A JP28630585 A JP 28630585A JP S62145661 A JPS62145661 A JP S62145661A
Authority
JP
Japan
Prior art keywords
matrix
solvent
ethylene glycol
fuel cell
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60286305A
Other languages
Japanese (ja)
Inventor
Hideyuki Nomoto
野元 秀幸
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60286305A priority Critical patent/JPS62145661A/en
Publication of JPS62145661A publication Critical patent/JPS62145661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a stable high output, by using a hydrophilic solvent of low volatility to increase the mechanical strength of a matrix layer to fulfill the capacity of a fuel cell. CONSTITUTION:100g of SiC powder of 1mum in mean grain diameter are mixed with 50ml of ethylene glycol of 198 deg.C in boiling point as a hydrophilic solvent so that the grains of the SiC powder are dispersed in the ethylene glycol. 5-20% of a PTFE dispersion is added as a binder to the matrix so that they are stirred together into a solid state. The solid material is then made into a sheet of 200mum in thickness by rollers. The sheet is removed of most of the ethylene glycol by water washing and thereafter dried at a temperature of 60 deg.C and baked at a temperature of 300 deg.C so that a matrix film is made. The mechanical of the rolled matrix film is thus increased three times or more to nearly double the bubbles pressure of a matrix layer made in a blade method.

Description

【発明の詳細な説明】 〔開明の属する技術分野〕 本発明は、電解質な保持するマ) 11ックス層の両面
に、反応ガスの01:袷を受けて発電作用を営む電極層
をそれぞれ配してなる燃料電池用マl−IIワックス護
造方法に関する。
[Detailed Description of the Invention] [Technical field to which the invention pertains] The present invention is directed to an electrolyte-retaining matrix, in which electrode layers are disposed on both sides of an electrolyte-retaining matrix layer, each of which receives a reaction gas and generates electricity. The present invention relates to a method for protecting Mar-II wax for fuel cells.

〔従来孜1・・jとその問題点〕 この種のIポ料電池、とくに”TV +9¥質として燐
葭を用い%燃料ガスとしては水素または天然ガスを改・
實して得られる改質ガスを用い、を脅1じガスとして空
気または一素を用いるマドす、クス氾燃料電池は、近い
将来実用化ないしは画業化が有望な犬容t 614 g
池として圧目ざイ1.でいろ。周知のように、この種の
燃料電池では′1解頁を保持するマトリックス層は多孔
・真の電気絶縁性の薄いシートであって、その多孔度や
孔径iこ櫂々の工夫がなされ、は解ノaはこのマトリッ
クスυ内の突孔部を見金に満た丁ようにして保持されて
いる。このマトリックス層に接して配設されるt蛤料カ
ス電極層と酸化ガス′r工極1・自とはいずれもガス造
過註ないしはガス拡散性であって、したがって電池の」
!1転状悪ではマトリックス鳩内に保持される電解質は
これらの区極層のマトリ、カス層に接する部分にも浸出
しており、この浸出荀:解袈とに樟層内を透過ないしは
拡散して来る反応ガスとしての燃料ガスまたは酸1ヒカ
スとが電気化学的Iこ反応してyJl 真作用を営む。
[Conventional technology and its problems] This type of I-port battery, especially "TV+9", uses phosphorus as the material and hydrogen or natural gas as the fuel gas.
The fuel cell, which uses the reformed gas actually obtained and uses air or atom as the primary gas, is promising for practical use or commercialization in the near future.
As a pond, it is overwhelming 1. It's okay. As is well known, in this type of fuel cell, the matrix layer that holds the 1 answer page is a porous, truly electrically insulating thin sheet, and various improvements have been made to its porosity and pore diameter. The solution a is held in such a way that the holes in the matrix υ are filled with the holes. The shell material electrode layer and the oxidizing gas electrode layer disposed in contact with this matrix layer are both gas-forming or gas-diffusive, and therefore the battery.
! In a bad case, the electrolyte held in the matrix layer also leaks into the parts of these polar layers that are in contact with the matrix and scum layers, and when this leaching occurs, it permeates or diffuses within the camphor layer. The fuel gas or acid as a reactant gas reacts electrochemically to produce a true effect.

マド11.カス層は、このような′電気化学反応に必要
な電解質を保持しておいて電極層に供給する役目を果た
すほか、燃料ガスと酸1Lガスとか混触しないように両
反応ガスを互い門こ分離しておく1華な役目をも兼ねて
いる。すなわち、反応ガスが万一ガス遭過性の電極層を
突き抜けてしま・っても、マド11ツクス膚内に満たさ
れている屯解Mlこよりさらに反対側にまで透ボないし
は拡散することが防止される。電極層外で燃料カスとが
混合すると、発′直作用に寄与しない余分な燃焼反応か
生じ、あるいは爆鳴気か形成されて最悪の場合は爆づぺ
を生じることにもなりかねないので、このマトリ、カス
層の両反応カスの分離機能は、電池の高@ぶを維持する
上でも、電池の安全運転を保証する上でも極めて重要な
機能である。
Mad 11. The scum layer plays the role of holding the electrolyte necessary for such an electrochemical reaction and supplying it to the electrode layer, and also separates both reaction gases from each other to prevent them from coming into contact with each other, such as fuel gas and acid gas. It also serves as an important role to keep. In other words, even if the reactive gas were to penetrate through the gas-permeable electrode layer, it would be prevented from penetrating or diffusing further to the opposite side than the tube gas filled in the skin. be done. If fuel scum mixes with the outside of the electrode layer, an extra combustion reaction that does not contribute to the direct combustion effect may occur, or a detonation gas may be formed, which in the worst case may result in an explosion. This function of separating reaction scum from both the matrix and the scum layer is an extremely important function both for maintaining the high level of the battery and for ensuring safe operation of the battery.

以上からマトリ、カス層は、材料的観点から耐熱訃、 
i!l14成解沿騙食性、電気絶縁性が大きいこと。
From the above, the matrix and scum layers are heat resistant,
i! 14. Has high elongation and electrical insulation properties.

またiボ・能的畝点から、屯解袖保持性を高めるため1
曽を形5y、する粒子径の小さく、内部抵抗を低減させ
るためでざるだけ薄膜であること、史に機械的5度か大
きいこと、か望まれている。
In addition, from the i-bo/nōki ridge point, 1.
It is desired that the particle diameter be small, with a diameter of 5y, and that the film be as thin as possible in order to reduce the internal resistance, and that it be as large as 5 degrees mechanically.

捷米蝙敵型燃#+電池においては、マトリツクス層偏と
して上記JIk不住能を満足させるため、0.5〜10
μmの炭化坪索(以下SiCという)粉を、親水性でD
J元件の高いメタノール、エタノール、フロ/+ノール
等の浴剤と混合して分散液をつくり、これに結着剤とし
てのPTFEディスパージョンを加え混合したものなよ
く知られた薄膜作成法のブレード法、塗布法、圧延@等
で100〜300μmのマトリ、カス層を形成し乾燥し
た後、200〜300℃で焼成して作成しでいる。
In the fuel type fuel cell, the matrix layer polarization is 0.5 to 10 in order to satisfy the above JIk inhosibility
Micron carbide powder (hereinafter referred to as SiC) is hydrophilic and D
A well-known thin film production method in which a dispersion is created by mixing with bath agents such as methanol, ethanol, and furo/+nol, which have a high J content, and a PTFE dispersion as a binder is added and mixed. After forming a matrix or residue layer of 100 to 300 μm using a coating method, a coating method, or a rolling method, and drying, the film is baked at 200 to 300° C.

ところが、従来技術で作成したマトリ、カス層では膜の
機械的強度か充分ではなく、電池運転lこおいてマトリ
、カス層のひび割れを起し易かった。
However, the matrices and dregs layers prepared using conventional techniques did not have sufficient mechanical strength, and the matrices and dregs layers were prone to cracking during battery operation.

このため、燃料ガスと酸化ガスとが混触しないように両
反応ガスを互いに分離しておくN登な役目が果せなくな
り、電池性能の低下を生ずる虞れが、δっだ。また、マ
トリックス層の裏艶程において、分散媒に揮発性の高い
溶剤を用いているため作業m i:’2が悪いという問
題点かあった。
For this reason, the essential role of separating the reaction gases from each other so as to prevent the fuel gas and the oxidizing gas from coming into contact with each other cannot be fulfilled, and there is a possibility that the battery performance will deteriorate. In addition, in the back gloss of the matrix layer, there was a problem that the working m i '2 was poor because a highly volatile solvent was used as the dispersion medium.

〔発明の目的〕[Purpose of the invention]

この発明は、上記の点に鑑みなされたものであり、マト
リ、カス層の機械的強度を彊くすることLこより、燃料
電池の能力を充分に発揮して高い出力特性が安定して得
られる燃料電池用マl−II 、yカスの人造方法を提
供することを目的とする。
This invention was made in view of the above points, and by reducing the mechanical strength of the matrix and waste layer, the ability of the fuel cell can be fully demonstrated and high output characteristics can be stably obtained. The purpose of the present invention is to provide an artificial method for producing MAI-II and Y-cassettes for fuel cells.

〔発明の要点〕[Key points of the invention]

上記の目的は本発明によれば、溶剤として嬢揮’tl 
f、tの親水相溶剤を用いることによりS成される。
According to the invention, the above object is achieved by using a solvent as a solvent.
S is formed by using hydrophilic compatibilizers f and t.

このような溶剤を用いることにより機械的g1度の高い
マトリックスが得られる理由はまだかではないが、従来
、膜形成後の乾燥性を促すために用いた揮発性の高い溶
剤に換え、難揮発性の親水相性溶剤を用いると、揮発に
よるマトリ、カス分散液の状態変化が抑制され、マトリ
、カスの作成条件を良好な状態に維持することがでさる
ためと考える。
The reason why a matrix with a high mechanical g1 degree can be obtained by using such a solvent is still unclear, but in place of a highly volatile solvent that was conventionally used to promote drying after film formation, a less volatile solvent was used. This is considered to be because the use of a hydrophilic compatible solvent suppresses changes in the state of the matori and dregs dispersion due to volatilization, making it possible to maintain favorable matori and dregs production conditions.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

(実施例1) 平均粒径1μmのSiC粉100fに難揮発性の親水相
溶剤としてエチレンジ11コール(沸点198℃)50
 ratを加えて混合1分数し、これに)’ T F 
Eディスバージ冒ンを結着剤として5〜Δ)%添加し、
攪拌混合にて固形状とし、圧延ロールにより200μm
のミートとした。これを水洗により大部分のエチレング
リコールを除去後、ω℃で乾燥、  300℃で焼成し
てマトリ、カス膜を得た。
(Example 1) Ethylene di-11col (boiling point 198°C) 50°C was added to 100f of SiC powder with an average particle size of 1 μm as a non-volatile hydrophilic compatibilizer.
Add rattan, mix for 1 minute, and add)' T F
Adding 5 to Δ)% of E-Disverge Blend as a binder,
Stir and mix to solidify, and roll to 200 μm.
It was a meat. After washing with water to remove most of the ethylene glycol, it was dried at ω°C and fired at 300°C to obtain a matrix and a dregs film.

(実施例2) 実施例1で用いたエチレングリコールの代わりにグリセ
リン(沸点290°C)を用い、同様な方法lこよりマ
トリ、カス膜を得た。
(Example 2) In place of the ethylene glycol used in Example 1, glycerin (boiling point 290°C) was used, and a matrix and a dregs film were obtained in the same manner as in Example 1.

(実施例3) 平均粒径1μmo)SIC粉100 !/に難揮発性の
親水和浴角りとしてエチレングリコール200 ml 
kガロえて混合分数し、これにi”1’ F Eディス
パージョンを姑看剤として5〜20%Ma加、債拌混合
して塗布液を作り、これを・燃料電池の・燃料極または
酸化剤極にブレード法で塗布し、ろ過により過剰エテレ
ンク++ :r −ルf、t 取す味き、残留エチレン
グリコールか句看した亙碓上のマトリックスノ辿を、電
極ごと室ス雰囲気中の300°Cで焼成し、電極−マト
リ。
(Example 3) Average particle size 1μmo) SIC powder 100! / 200 ml of ethylene glycol as a non-volatile hydration bath
Add 5 to 20% Ma of i"1' FE dispersion as a protective agent, mix to make a coating solution, and apply this to the fuel electrode of a fuel cell or oxidation. The agent was applied to the electrode using the blade method, and the excess ethylene glycol was removed by filtration. Calcinate the electrode-matri at °C.

クメ一体1じ噛を侍た。I served one bite of Kume.

第1表に実施列1と実施例2で作成したマトリックス膜
と従来法で作成したマトリックス膜の引張1強度を示す
。いずれもマトリックス膜としてD B 200 μm
、膜IM 10 rxyaでP ’I’ F E含有量
が10%のものを用いた。この表から明らかなように、
エチレングリコール、グリセリン等難揮発性の溶剤を用
いた方かグロパノールのような揮発性の溶剤を用いた場
合に比べ高い引張強度が得られることがわかる。
Table 1 shows the tensile strength of the matrix membranes prepared in Example Row 1 and Example 2 and the matrix membranes prepared by the conventional method. In both cases, D B is 200 μm as a matrix film.
, a film IM 10 rxya with a P'I'FE content of 10% was used. As is clear from this table,
It can be seen that higher tensile strength can be obtained when using a hardly volatile solvent such as ethylene glycol or glycerin or when using a volatile solvent such as glopanol.

また、実施例3により得られた電極−マl−I+ワック
ス膜、溶剤としてグロバノールを用いて得られた従来の
T1.f−マトリックス膜との水によるバブルフーレ、
シャーを測定したところ、醪者は20001111H2
Uであるのに対し、後者は1000til(20であり
、エチレングリコールを溶剤として用いた方がガス吹き
抜は王が高いことがわかる。
Moreover, the electrode-Mal-I+wax film obtained in Example 3 and the conventional T1. f-bubble formation by water with matrix membrane;
When I measured the char, the moromi was 20001111H2.
U, whereas the latter is 1000til (20), which shows that the gas blowout is higher when ethylene glycol is used as a solvent.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれは、マト
リックス材の溶剤(分散媒)として、エチレング11コ
ール、グリセリン等の難揮発性親水相溶剤を用い1ここ
とにより、圧延マトリックス膜においては機械的強度を
3倍以上と強くすることができ、ブレード法マトリック
ス層ではバブルブレ、シャーな約2倍とすることができ
た。また付随的効果として、(m =5a荘が低い溶剤
を用いたため従来の揮発性の高い溶剤に比べ、作業環境
が著しく良(なった。更にエチレング11コールの沸点
は198℃、グリセリンの沸点は290℃とPTFEの
融点約:330℃より低いために1)TFEに影響を与
えない温度で除去できるという利点がある。44こエチ
レングリコールは沸点が198℃であるため、200〜
300℃の広い温度範囲での除去が可能である。
As is clear from the above description, according to the present invention, a non-volatile hydrophilic compatibilizer such as ethylene 11 alcohol or glycerin is used as a solvent (dispersion medium) for the matrix material. It was possible to increase the mechanical strength by more than three times, and in the blade method matrix layer, the bubble wobbling and shearing were approximately doubled. In addition, as an additional effect, the working environment was significantly better (than that of conventional highly volatile solvents) because we used a solvent with low m = 5a.Furthermore, the boiling point of ethylene glycol is 198°C, and the boiling point of glycerin is The melting point of PTFE is 290°C, which is lower than 330°C, which has the advantage of 1) being able to be removed at a temperature that does not affect TFE.44 Ethylene glycol has a boiling point of 198°C, so it is lower than 330°C.
Removal is possible over a wide temperature range of 300°C.

手続補正書(0m 昭和61年3月250 1、事件の表示   擢昭≦o−zcs≦−、aOS住
  所     /11 +!f71j川用区田辺話i
111 @ 1号名 称  (523)富士電機わ(ξ
大会社(ほか   名) 4、代 理 人 住  所  川崎市川崎区田辺新011番1号6、補正
の内容  別紙の通り 補  正  の  内  容 1.特許請求の範囲を下記のように訂正する。
Procedural amendment (0m March 1986 250 1, case display 梢昭≦o-zcs≦-, aOS address /11 +!f71j Kawayo-ku Tanabewa i
111 @ 1 name (523) Fuji Electric (ξ
Large company (other names) 4. Agent address: 011-1-6 Tanabeshin, Kawasaki-ku, Kawasaki City. Contents of the amendment: Contents of the amendment as shown in the attached sheet. 1. The scope of claims is amended as follows.

「1)炭化珪素の粉末に溶剤を加えて分散(夜を形成し
、この分散液にフッ素樹脂のディスパージョンを添加し
て攪拌混合した後、薄膜形成法によりシート状に作成す
るとともに前記溶剤をとり除き、乾燥、焼成してマトリ
ックスを形成してなる方法において、前記溶剤として難
揮発生の親水下口性溶剤を用いることを特徴とする燃料
電池用マトリックスの製造方法。
1) A solvent is added to silicon carbide powder to disperse it (to form a liquid, a fluororesin dispersion is added to this dispersion, stirred and mixed, and then a sheet is formed by a thin film forming method, and the solvent is 1. A method for producing a matrix for a fuel cell, comprising removing, drying, and firing to form a matrix, characterized in that the solvent is a hydrophilic sippy solvent with a retardant generation.

2)特許請求の範囲第1項記載の方法において、溶剤の
沸点が沸素樹脂の融点より低いことを特徴とする燃料電
池用マ) IJラックス製造方法。
2) A method for producing IJ lux for fuel cells, wherein the boiling point of the solvent is lower than the melting point of the fluororesin in the method according to claim 1.

3)特許請求の範囲第1項または第2項記載の方法にお
いて、溶剤としてエチレングリコールまたはグリセリン
を用いることを特徴とする燃料電池用マトリックスの製
造方法。」 2)明細′4第5頁第15行目に「まだか」とあるを「
さだか」と訂正する。
3) A method for producing a fuel cell matrix according to claim 1 or 2, characterized in that ethylene glycol or glycerin is used as the solvent. 2) On page 5, line 15 of specification '4, replace the phrase ``not yet?'' with ``
Sadaka,” he corrected.

Claims (1)

【特許請求の範囲】 1)炭化珪素の粉末に溶剤を加えて分散液を形成し、こ
の分散液にフッ素樹脂のディスパージョンを添加して攪
拌混合した後、薄膜形成法によりミート状に作成すると
ともに前記溶剤をとり除き、乾燥、焼成してマトリック
スを形成してなる方法において、前記溶剤として難揮発
性の親水和性溶剤を用いることを特徴とする燃料電池用
マトリックスの製造方法。 2)特許請求の範囲第1項記載の方法において、溶剤の
沸点が沸素樹脂の融点より低いことを特徴とする燃料電
池用マトリックスの製造方法。 3)特許請求の範囲第1項または第2項記載の方法にお
いて、溶剤としてエチレングリコールまたはグリセリン
を用いることを特徴とする燃料電池用マトリックスの製
造方法。
[Claims] 1) Add a solvent to silicon carbide powder to form a dispersion, add a fluororesin dispersion to this dispersion, stir and mix, and then form into a meat shape by a thin film forming method. A method for producing a matrix for a fuel cell, characterized in that the solvent is removed, dried, and fired to form a matrix, the method comprising using a hardly volatile hydrophilic solvent as the solvent. 2) A method for producing a fuel cell matrix according to claim 1, wherein the boiling point of the solvent is lower than the melting point of the fluororesin. 3) A method for producing a fuel cell matrix according to claim 1 or 2, characterized in that ethylene glycol or glycerin is used as the solvent.
JP60286305A 1985-12-19 1985-12-19 Manufacture of matrix for fuel cell Pending JPS62145661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60286305A JPS62145661A (en) 1985-12-19 1985-12-19 Manufacture of matrix for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286305A JPS62145661A (en) 1985-12-19 1985-12-19 Manufacture of matrix for fuel cell

Publications (1)

Publication Number Publication Date
JPS62145661A true JPS62145661A (en) 1987-06-29

Family

ID=17702658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286305A Pending JPS62145661A (en) 1985-12-19 1985-12-19 Manufacture of matrix for fuel cell

Country Status (1)

Country Link
JP (1) JPS62145661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269462A (en) * 1987-04-24 1988-11-07 Japan Vilene Co Ltd Manufacture of matrix for fuel cell
JPS6450367A (en) * 1987-08-20 1989-02-27 Sanyo Electric Co Phosphoric acid fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229934A (en) * 1975-09-02 1977-03-07 United Technologies Corp Process for producing electrolyte holding matrix for fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229934A (en) * 1975-09-02 1977-03-07 United Technologies Corp Process for producing electrolyte holding matrix for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63269462A (en) * 1987-04-24 1988-11-07 Japan Vilene Co Ltd Manufacture of matrix for fuel cell
JPS6450367A (en) * 1987-08-20 1989-02-27 Sanyo Electric Co Phosphoric acid fuel cell

Similar Documents

Publication Publication Date Title
PT85578B (en) An anodic double-compartment structure and process for their use in melted carbon
US3306779A (en) Fuel cell electrode and a process for making the same
JPH08506212A (en) Molten carbonate-Method for manufacturing fuel cell
JP2004206885A (en) Fuel cell
JPH09167622A (en) Electrode catalyst and solid polymer type fuel cell using same
US3981749A (en) Gas diffusion electrode for a battery
JPH0997620A (en) Molten carbonate fuel cell and manufacture of holding material for molten carbonate fuel cell electrolyte plate
JPH0992293A (en) Electrode for solid polymer, type fuel cell and fuel cell using this electrode
WO2022193549A1 (en) Binder-free molten carbonate fuel cell electrolyte membrane and preparation method therefor
JPS62145661A (en) Manufacture of matrix for fuel cell
JPS6046515B2 (en) Method for manufacturing electrolyte retention matrix for fuel cells
CN108400282A (en) A kind of anode and preparation method of aluminium alloy seawater battery
CN108321398A (en) A kind of anode and preparation method of aluminium fuel cell
KR20230087170A (en) Sintering method of proton ceramic fuel cell electrolyte and proton ceramic fuel cell manufactured using the same
JP2005149969A (en) Fuel cell
US3762957A (en) Method of fabricating lightweight electrodes
JP2005174587A (en) Gel electrolyte and fuel cell
US3879226A (en) Novel structure of electrode in a primary battery for utilization of liquid or gaseous electrode active material
KR20090082382A (en) Anode for use in fuel cell and method for making same
JPS60136176A (en) Fuel cell
JPS6341192B2 (en)
JPS6056375A (en) Molten-carbonate-type fuel cell
JPS61259460A (en) Matrix for phosphoric-acid fuel cell
JPH02170362A (en) Fuel battery
JPS61198565A (en) Matrix layer for fuel cell