JPS62145167A - Automatic analyzer - Google Patents

Automatic analyzer

Info

Publication number
JPS62145167A
JPS62145167A JP28707185A JP28707185A JPS62145167A JP S62145167 A JPS62145167 A JP S62145167A JP 28707185 A JP28707185 A JP 28707185A JP 28707185 A JP28707185 A JP 28707185A JP S62145167 A JPS62145167 A JP S62145167A
Authority
JP
Japan
Prior art keywords
sample
reagent
dispensing position
optical measurement
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28707185A
Other languages
Japanese (ja)
Inventor
Akira Tsukada
章 塚田
Noriyuki Suzuki
徳行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minaris Medical Co Ltd
Original Assignee
Kyowa Medex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Medex Co Ltd filed Critical Kyowa Medex Co Ltd
Priority to JP28707185A priority Critical patent/JPS62145167A/en
Publication of JPS62145167A publication Critical patent/JPS62145167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To improve the analytical treatment capacity for specimen by setting a reagent dispensing position, sample dispensing position, and optical measuring position in prescribed dispositions so that a series of processes necessary for analysis can be made in a short period. CONSTITUTION:This automatic analyzer A is constituted as an apparatus for making immunological chemical analysis utilizing a latex agglutination reaction method and has a sample vessel holder 2 which holds a required number of sample vessels 1 into a loop state, a driving device 3, a reaction vessel holder 5 which holds a required number of reaction vessels 4 having specimen housing holes 41, and a driving device 6 which controls the forward and backward step rotation of the holder 5. The optical measuring position (c) is set near the center of the reagent dispensing position (a) and sample dispensing position (b) set in an angle range of <180 deg.. Photometry is executed twice in a short period by rotating the vessels 4 forward and backward and the analytical treatment capacity is thus improved.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、生化学的分析や免疫学的分析を行う自動分
析装置に係り、特にラテックス凝集反応を応用した免疫
化学自動分析装置に好適な自動分析装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an automatic analyzer that performs biochemical analysis and immunological analysis, and is particularly suitable for an automatic immunochemical analyzer that applies latex agglutination reaction. Regarding automatic analysis equipment.

[従来技術] 近年、臨床検査における微fd成分分析としては、RI
A法、EIA法及びラテックス凝集反応法が知られてい
るが、RIAPAにあっては放射性物質の取扱い上多く
の規制を受け、また、ElA法にあっては前処理が繁雑
になることから、最近ではラテックス凝集反応法による
分析が注目されてきている。
[Prior art] In recent years, RI has been used as a fine fd component analysis in clinical tests.
Method A, EIA method, and latex agglutination reaction method are known, but RIAPA is subject to many regulations regarding the handling of radioactive materials, and ElA method requires complicated pretreatment. Recently, analysis using the latex agglutination reaction method has been attracting attention.

このラテックス;疑集反応法による分析においては、抗
体又は抗原を感作したラテックス粒子と検体中の微m成
分が免疫反応によって凝集する過程を光学的に測定する
方法が一般に採用されている。
In this analysis using the latex/multiplex reaction method, a method is generally adopted in which the process of aggregation of latex particles sensitized with antibodies or antigens and minute components in a specimen due to an immune reaction is optically measured.

[発明が解決しようとする問題点] しかしながら、このラテックス凝集反応法を利用した従
来の分析装置にあっては、ラテックス試薬と検体との反
応速度が比較的早いという特性があるにも拘らず、検体
の分析時間の短縮化が不十分であるため、検体の分析処
理能力の点で満足すべきものが得られないという問題が
生ずるばかりか、仮に、検体の分析処理能力を向上させ
ようとすると、装置自体の構造を徒に複雑化するという
虞れがある。
[Problems to be Solved by the Invention] However, in the conventional analyzer using this latex agglutination reaction method, although the reaction rate between the latex reagent and the specimen is relatively fast, Not only is the problem of not being able to obtain a satisfactory sample analysis processing capacity due to insufficient shortening of the sample analysis processing time, but even if an attempt is made to improve the sample analysis processing capacity, There is a risk that the structure of the device itself will become unnecessarily complicated.

[問題点を解決するための手段及び作用]この発明は、
以上の問題点に着目して為されたものであって、装置自
体を複雑にすることなく、検体の分析処理能力を向上さ
せるようにした、特にラテックス凝集反応法を利用した
免疫化学分析に好適な自動分析装置を提供しようとする
ものである。
[Means and effects for solving the problems] This invention has the following features:
This was developed with attention to the above problems, and it improves the analytical processing capacity of specimens without complicating the device itself, and is particularly suitable for immunochemical analysis using the latex agglutination reaction method. The aim is to provide an automatic analysis device that can

即ち、この発明は、所要数の検体収容孔が所定のピッチ
間隔でループ状に配設された反応容器の保持体を駆動系
で回転制御し、上記検体収容孔を試薬分注位置、サンプ
ル分注位置及び光学測定位置へ順次回転移送するように
した自動分析装置を前提とし、上記サンプル分注位置と
試薬分注位置とを180°未満の角度範囲で設定すると
共に、前記180°未満の角度範囲領域内に上記光学測
定位置を設定し、上記反応容器保持体の駆動系には、試
薬分注位置から光学測定位置を通ってサンプル分注位置
へ向けて注目検体収容孔を回転移送する正転ステップ並
びにサンプル分注位置で分注された検体と試薬との攪拌
混合作業が終了した検体収容孔を上記正転ステップとは
逆の方向へ向けて前記試薬分注位置から1ピッチ進んだ
位置まで回転移送する反転ステップからなる基本移送ス
テップと、検体と試薬との攪拌混合作業が終了した検体
収容孔を任意の測光タイミングで光学測定位置に設定す
る測光移送ステップとを具備させ、前記測光タイミング
に同期して注目検体収容孔内の検体を光学測定するよう
にしたものである。
That is, the present invention uses a drive system to control the rotation of a holder for a reaction vessel in which a required number of sample accommodation holes are arranged in a loop at predetermined pitch intervals, and the sample accommodation holes are positioned at reagent dispensing positions and sample dispensing positions. Assuming an automatic analyzer that rotates and transfers sequentially to the injection position and the optical measurement position, the sample dispensing position and the reagent dispensing position are set within an angular range of less than 180°, and the angle less than 180° is The optical measurement position is set within the range area, and the drive system of the reaction container holder includes a drive system that rotates and transports the target sample accommodation hole from the reagent dispensing position, through the optical measurement position, and toward the sample dispensing position. A position one pitch ahead from the reagent dispensing position, with the specimen receiving hole, where stirring and mixing of the sample and reagent dispensed at the rotation step and sample dispensing position completed, facing in the opposite direction to the forward rotation step. A basic transfer step consisting of a reversal step in which the sample and reagent are rotated until they are transferred, and a photometric transfer step in which the sample receiving hole after stirring and mixing of the sample and reagent is set to an optical measurement position at an arbitrary photometry timing. The specimen in the specimen-accommodating hole of interest is optically measured in synchronization with the specimen storage hole.

このような技術的手段において、対象範囲としては、免
疫学(血清学)的分析を行なう自動分析装置及び生化学
的分析を行なう自動分析装置のいずれにも適用できるこ
とは勿論である。また、一つの検体に対する測光タイミ
ングの設定の仕方や測光回数については、分析の目的に
応じて適宜変更できることは勿論である。
Of course, such technical means can be applied to both automatic analyzers that perform immunological (serological) analysis and automatic analyzers that perform biochemical analysis. Furthermore, it goes without saying that the method of setting the photometry timing and the number of photometry for one specimen can be changed as appropriate depending on the purpose of analysis.

[実施例1 以下、添付図面に示ず一実施例に基づき、この発明の詳
細な説明する。
[Embodiment 1] Hereinafter, the present invention will be described in detail based on an embodiment not shown in the accompanying drawings.

第1図及び第2図に示す自動分析装置Aは、この発明を
ラテックス凝集反応法を利用した免疫化学分析用として
構成したものであり、所要数のサンプル容器1をループ
状に保持したサンプル容器保持体2と、同保持体2を順
次ナンブル吸引位置まで間欠移送する駆動装置3と、所
要数の検体収容孔41が所定のピッチ間隔でループ状に
配設される反応容器4を保持する反応容器保持体5と、
同保持体5を往復ステップ回転制御して結果として検体
収容孔41を一定方向に間欠移送する駆動装置6と、サ
ンプル分注位置すまで移送された検体収容孔41内に所
定の血清検体を所要m分注するサンプルピペット装置7
と、ラテックス試薬が収容された試薬ボトル8と、同ボ
トル8内のラテックス試薬を試薬分注位置aで所要囲検
体収容孔41内に分注する試薬ピペット装置9と、血清
検体とラテックス試薬との混合液を撹拌混合してラテッ
クス粒子と血清検体中の微m成分との免疫反応を均一化
する撹拌袋raioと、所定の光学測定位置Cに到来し
た検体収容孔41内の上記混合液の凝集状態(過程)を
光学的に測定する光学測定装置11とで構成されている
。そして、この実施例においては、上記試薬分注位置a
と上記サンプル分注位置すとは、第2図に示すように、
180°未満の角度範囲で設定されると共に、上記光学
測定位置cは両分性位置a、bの180°未満の角度範
囲領域の略中央付近に設定されている。尚、第1図中、
符5″312はサンプルピペット内を洗′fpTIる洗
浄水が収容された洗浄タンク、符号13は恒温槽14内
に配設されて生体4y!(37℃)に加温された緩衝液
が収容された緩衝液ボトル、符号15及び16はザンブ
リングポンプ及び試薬ポンプ、符号18は切換バルブ、
19は洗浄ポンプ、20は配管系をマニュアル洗浄する
際に切換操作する逆止弁を夫々示している。
The automatic analyzer A shown in FIGS. 1 and 2 is configured for immunochemical analysis using the latex agglutination reaction method, and includes a sample container holding a required number of sample containers 1 in a loop shape. A reaction system that holds a holder 2, a drive device 3 that sequentially and intermittently transports the holder 2 to the number suction position, and a reaction container 4 in which a required number of sample accommodation holes 41 are arranged in a loop shape at a predetermined pitch interval. a container holder 5;
A drive device 6 controls the rotation of the holder 5 in reciprocating steps to intermittently move the sample holding hole 41 in a fixed direction, and a predetermined serum sample is transferred into the sample holding hole 41 until it reaches the sample dispensing position. Sample pipette device 7 for dispensing m
, a reagent bottle 8 containing a latex reagent, a reagent pipette device 9 for dispensing the latex reagent in the bottle 8 into a required surrounding sample accommodation hole 41 at a reagent dispensing position a, and a serum sample and a latex reagent. a stirring bag raio that stirs and mixes the mixed liquid to homogenize the immune reaction between the latex particles and the minute component in the serum sample; and a stirring bag RAIO that stirs and mixes the mixed liquid of It is comprised of an optical measurement device 11 that optically measures the aggregation state (process). In this example, the reagent dispensing position a
The above sample dispensing position is as shown in Figure 2.
The optical measurement position c is set in the angular range of less than 180°, and the optical measurement position c is set approximately at the center of the angular range of the bipartite positions a and b of less than 180°. In addition, in Figure 1,
Reference numeral 5'' 312 is a washing tank containing washing water for washing the inside of the sample pipette, and reference numeral 13 is a washing tank disposed in a constant temperature bath 14 and containing a buffer solution heated to 4y! (37°C) for the living body. 15 and 16 are sambling pumps and reagent pumps, 18 is a switching valve,
Reference numeral 19 indicates a cleaning pump, and reference numeral 20 indicates a check valve that is switched when manually cleaning the piping system.

この実施例において、上記サンプル保持体2は、前記し
たように、駆動装置3を介して各サンプル容器1を順次
サンプル吸引位置まで間欠移送するわけであるが、この
各サンプル容器1内には測定すべき検体(血清)が所要
量収容されている。
In this embodiment, as described above, the sample holder 2 intermittently transports each sample container 1 sequentially to the sample suction position via the drive device 3. The required amount of specimen (serum) is contained.

また、サンプルピペット装置7は、第3図及び第4図に
示すように、一端が軸10に軸支された水平アーム71
と、上記軸70を昇降IIJ m 7する偏心カム装置
72と、上記軸70を往復回転制御づる回転制御装置7
3と、上記水平アーム71の自由端に保持されたピペッ
ト74と、このピペット74に連通接続され且つ検体を
所定のサンプル容器1から所要m吸引し所定の検体収容
孔41内に吐出するシンプリングポンプ15(第1図参
照)とで構成され、上記ピペット74は、上記偏心カム
装置72と回転制御装置13との相互作動制御によって
、特に第3図に示すように、サンプル吸引位置eから第
3図時51回方向へと回転移送されてサンプル分注位置
すで停止し、同位置すで所定のサンプリング分注作業が
終了した襖、第3図時51回り方向へ回転移送されて上
記サンプル分注位置すから洗浄槽75が配設された洗浄
位置fまで移送されるもので、以後上記作動をくり返す
ことでサンプル容器1内の検体を順次検体収容孔41内
に分注するようになっている。
The sample pipette device 7 also includes a horizontal arm 71 whose one end is pivotally supported by a shaft 10, as shown in FIGS. 3 and 4.
, an eccentric cam device 72 that raises and lowers the shaft 70, and a rotation control device 7 that controls the reciprocating rotation of the shaft 70.
3, a pipette 74 held at the free end of the horizontal arm 71, and a simple ring that is communicatively connected to the pipette 74 and that aspirates the required amount of sample from a predetermined sample container 1 and discharges it into a predetermined sample accommodation hole 41. The pipette 74 is configured with a pump 15 (see FIG. 1), and the pipette 74 can be moved from the sample suction position e to In Figure 3, the sample is rotated in the 51st direction and stopped at the sample dispensing position, and at the same position the sliding door has already completed the predetermined sampling and dispensing work. The sample is transferred from the dispensing position to the cleaning position f where the cleaning tank 75 is disposed, and by repeating the above operation, the sample in the sample container 1 is sequentially dispensed into the sample accommodation hole 41. It has become.

尚、この検体を吸引するピペット74は、特に第5図に
示されるように、その中途部より先端側が後記する撹拌
棒82側へ接近する位置まで折曲形成されており、この
折曲部が撹拌棒82と同時に検体収容孔41内に挿入さ
れ得るようになっている。ぞして、上記ピペット74に
よる検体の計階方式は、吸上系内を水で満たしておき、
空気を介して検体と水とを隔離した状態で吸引計量した
後、検体のみを吐出させ、この後内部から洗浄水を通し
てピペット74の内部を洗浄するという公知の手段が適
用される。
Note that the pipette 74 for aspirating this sample is bent from the midway point to a position where the tip side approaches the stirring rod 82 side, which will be described later, as shown in FIG. It can be inserted into the sample accommodation hole 41 at the same time as the stirring rod 82. Therefore, in order to measure the sample using the pipette 74, the suction system is filled with water,
A known method is applied in which the sample and water are separated from each other by air and then measured by suction, only the sample is discharged, and then the inside of the pipette 74 is washed by passing washing water from inside.

更に、撹拌装置10は、サンプル分注位置すと洗浄位置
fとの間で回転移送され、サンプルピペット装置7のピ
ペット14と共に検体収容孔41内に挿入されて周孔4
1内に収容された検体とラテックス試薬とを撹拌混合す
るものであり、その具体的構成は、第3図と第5図とに
示すように、サンプルピペット装置7の軸70に固定さ
れてなるアーム80と、このアーム80の自由端部に固
定されたモータ81と、このモータ81の駆動軸に連結
された撹拌棒82とからなる。上記アーム80は、前記
軸70の昇降、回転制御によって駆動される水平アーム
71と同期して昇降、回転制御されるが、同アーム80
は、水平アーム71と異なり、水平アーム71がナンプ
ル吸引位置eと洗浄位置fとの間を回転移送されいてい
る間は、洗浄位置fに停止しているよう駆動制御されて
いる。このとき、水平アーム71は、第3図に示ずよう
に、同アーム71と前記アーム80とに連結されたスプ
リング83によって停止しているアーム80方向へ引張
され、ピペット74の位置ずれを防止すると共に、サン
プル分注位置eまでの移動に際し、撹拌装置10との同
期作動における時間的ずれが生じないように構成されて
いる。
Further, the stirring device 10 is rotationally transferred between the sample dispensing position and the cleaning position f, and is inserted into the sample accommodation hole 41 together with the pipette 14 of the sample pipetting device 7, and is inserted into the circumferential hole 4.
The sample pipette device 1 stirs and mixes the specimen and latex reagent contained in the sample pipette device 7, and its concrete structure is fixed to the shaft 70 of the sample pipette device 7, as shown in FIGS. 3 and 5. It consists of an arm 80, a motor 81 fixed to the free end of the arm 80, and a stirring rod 82 connected to the drive shaft of the motor 81. The arm 80 is controlled to rise, fall, and rotate in synchronization with the horizontal arm 71 that is driven by controlling the movement and rotation of the shaft 70.
Unlike the horizontal arm 71, the horizontal arm 71 is driven and controlled so as to remain at the cleaning position f while being rotated between the sample suction position e and the cleaning position f. At this time, as shown in FIG. 3, the horizontal arm 71 is pulled toward the stationary arm 80 by a spring 83 connected to the arm 71 and the arm 80, thereby preventing the pipette 74 from shifting. At the same time, the configuration is such that there is no time lag in the synchronized operation with the stirring device 10 when moving to the sample dispensing position e.

更にまた、反応容器4は?a数個に分割されたもので、
その具体的構成は、第6図に示すように、測定光が透過
可能な材質で形成された平面略扇形状の本体40と、こ
の本体40の長手方向に沿って所定間隔毎に開設された
5個の有底状検体収容孔41と、上記本体40の内側壁
面より外方に突設された鍔部42と、この鍔部42に所
定間隔隔てて開設されたスリット43.43と、上記本
体の底面略中央部より垂下方向に突設された位置決め突
起44とから構成され、かつ上記本体40は、平面から
見て湾曲形成され、その内壁面40aが後記する反応容
器保持体5の外壁面51の湾曲形状と同一に形成されて
いる。尚、本体40に開設される検体収容孔41は、こ
の発明にあっては、5個に限定されるものではない。
Furthermore, what about reaction vessel 4? aIt is divided into several pieces,
As shown in FIG. 6, its specific configuration includes a main body 40 formed of a material that allows measurement light to pass through and has a generally fan-shaped plane, and a main body 40 that is opened at predetermined intervals along the longitudinal direction of the main body 40. five bottomed specimen accommodation holes 41; a flange 42 protruding outward from the inner wall surface of the main body 40; slits 43, 43 formed in the flange 42 at predetermined intervals; The main body 40 is composed of a positioning protrusion 44 projecting downwardly from the substantially central part of the bottom surface of the main body, and the main body 40 is curved when viewed from above, and the inner wall surface 40a thereof is formed on the outside of the reaction vessel holder 5, which will be described later. It is formed to have the same curved shape as the wall surface 51. Incidentally, the number of specimen accommodation holes 41 opened in the main body 40 is not limited to five in this invention.

また、反応容器保持体5は、特に第6図及び第7図に示
すように、同保持体5をステップ回転制御する駆動装置
6の駆動軸60に固着された平面円形状の本体50と、
同本体50の外周端より垂下方向に延設された外壁面5
1と、この外壁面51の下端部より外方に直角に延設さ
れた載置棚部52とから構成され、上記外壁面51は、
載置棚部52の上面52aから本体50の上面50aま
での高さが、反応容器4の鍔部42下面から本体50の
底面までの高さと略同−に形成されていると共に、本体
50の上面50aには反応容器4の鍔部42に開設され
たスリット43.43に対応した位置決めボス53.5
3が所殻間隔毎に突設され、かつ載置棚部52には反応
容器4の位置決め突起44が嵌合される孔54が所要間
隔毎に開設されている。尚、上記本体50の上面50a
には、各反応容器4を押圧保持する押えプレー1−(図
示せず)が設けられており、この押えプレートは、上下
動自在で偏心軸をもって回転支持されると共に、付勢ス
プリングで下方側に押圧されるようになっている。
In addition, as shown in FIGS. 6 and 7 in particular, the reaction vessel holder 5 includes a planar circular main body 50 fixed to a drive shaft 60 of a drive device 6 that controls the rotation of the holder 5 in steps.
Outer wall surface 5 extending in the hanging direction from the outer peripheral end of the main body 50
1, and a mounting shelf 52 extending outward at right angles from the lower end of the outer wall surface 51.
The height from the top surface 52a of the mounting shelf 52 to the top surface 50a of the main body 50 is formed to be approximately the same as the height from the bottom surface of the flange 42 of the reaction container 4 to the bottom surface of the main body 50. A positioning boss 53.5 corresponding to the slit 43.43 formed in the flange 42 of the reaction vessel 4 is provided on the upper surface 50a.
3 are provided protrudingly at every shell interval, and holes 54 into which the positioning projections 44 of the reaction vessels 4 are fitted are opened at required intervals in the mounting shelf 52. Incidentally, the upper surface 50a of the main body 50
is provided with a presser plate 1- (not shown) that presses and holds each reaction container 4, and this presser plate is vertically movable and rotatably supported by an eccentric shaft, and is biased toward the lower side by a biasing spring. It is now under pressure.

それゆえ、反応容器保持体5に所要数の反応容器4をセ
ットする場合には、各反応容器4の位置決め突起44を
反応容器保持体5の孔54内に挿入して、反応容器4に
形成された検体収容孔41が平面ループ状に配列される
ようピッ1−シ、次に、反応容器保持体5の上面50a
に突設されている位置決めボス53を反応容器4側のス
リッ1〜43に嵌合させると共に、上記押えプレートを
適宜回転さVてこの押えプレートで反応容器保持体5の
上面に反応容器4の鍔部42を押圧保持させることによ
り反応容器保持体5に反応容器4を順次固定するように
ずれば良い。この場合、各スリット43は長孔状に形成
されているため、反応容器保持体5に対して各反応容器
4の取付は位置を相互に調整することができ、各反応容
器4を相互に密接さぼた状態にセットすることが可能で
ある。尚、第6図及び第7図中、符号55は、反応容器
保持体5への外壁面51に貫通して開設された測定用孔
を示し、周孔55は、反応容器4を反応容器保持体5に
セットした場合に、各検体収容孔41の中心を測定光が
通る位置に開設されている。
Therefore, when setting the required number of reaction vessels 4 on the reaction vessel holder 5, the positioning projections 44 of each reaction vessel 4 are inserted into the holes 54 of the reaction vessel holder 5, and the reaction vessels 4 are formed. Then, the upper surface 50a of the reaction container holder 5 is arranged so that the sample accommodation holes 41 are arranged in a planar loop shape.
Fit the positioning bosses 53 protruding from the slits 1 to 43 on the reaction vessel 4 side, and rotate the holding plate appropriately to attach the reaction vessel 4 to the upper surface of the reaction vessel holder 5 using the holding plate. The reaction vessels 4 may be sequentially fixed to the reaction vessel holder 5 by pressing and holding the flanges 42 and shifting. In this case, since each slit 43 is formed in the shape of a long hole, the mounting position of each reaction container 4 with respect to the reaction container holder 5 can be mutually adjusted, and each reaction container 4 can be placed in close contact with each other. It is possible to set it in a deserted state. In FIG. 6 and FIG. 7, reference numeral 55 indicates a measurement hole that is opened through the outer wall surface 51 of the reaction container holder 5, and the circumferential hole 55 is used to hold the reaction container 4. When set in the body 5, each specimen accommodation hole 41 is opened at a position where the measurement light passes through the center.

また、上記反応容器保持体5の駆動装置6は例えばパル
スモータで構成され、図示外の制御装置からのパルス制
御信号に応じて適宜回転制御されるものである。この実
施例において、上記駆動装置6は、基本移送ステップ及
び測光移送ステップに従って駆動するものであり、上記
基本移送ステップは、所定の検体収容孔41を試薬分注
位置aに初期設定する準備ステップと、試薬が分注され
た検体収容孔41を試薬分注位置aから光学測定位置C
を通ってサンプル分注位置すまで第2図中時計回り方向
に回転移送する正転ステップと、サンプル分注位置すで
分注された検体と試薬とを攪拌混合してなる検体収容孔
41を前記正転ステップと逆方向に向けて上記試薬分注
位fiaより1ピツチ(検体収容孔41間のスパン)だ
け進んだ位置まで回転移送する反転ステップとからなり
、一方、上記測光移送ステップは、検体と試薬との攪拌
混合作業が終了した時点から所定時間経過後にその検体
収容孔41を光学測定位置Cに位置設定するものであり
、その測光タイミングは二回設定されており、その−回
が上記反転ステップの途中に設定されると共に、他の一
回が反転ステップ終了後所定時間経過した時点に設定さ
れている。そして、上記測光タイミングに同期して光学
測定装置11が作動するようになっている。
Further, the drive device 6 for the reaction vessel holder 5 is constituted by, for example, a pulse motor, and its rotation is appropriately controlled in accordance with a pulse control signal from a control device not shown. In this embodiment, the driving device 6 is driven according to a basic transfer step and a photometric transfer step, and the basic transfer step is a preparation step for initially setting a predetermined specimen accommodation hole 41 at a reagent dispensing position a. , from the reagent dispensing position a to the optical measurement position C
a normal rotation step in which the sample is rotated in the clockwise direction in FIG. 2 until it reaches the sample dispensing position; The photometric transfer step consists of the forward rotation step and the reversal step of rotationally transferring the reagent in the opposite direction to a position that is one pitch (the span between the sample accommodation holes 41) ahead of the reagent dispensing position fia. The specimen accommodation hole 41 is positioned at the optical measurement position C after a predetermined time has elapsed from the time when the stirring and mixing operation of the specimen and the reagent is completed, and the photometry timing is set twice, and the - One time is set in the middle of the reversing step, and another time is set at a time when a predetermined time has elapsed after the end of the reversing step. The optical measurement device 11 is operated in synchronization with the photometry timing.

また、試薬ピペット装置9は、先ず緩衝液ボトル13か
ら緩衝液を一定m吸引し、次に切換バルブ18を切換え
ることにJζり試薬ボトル8からラテックス試薬を一定
m吸引し、吸上系流路内に充填された緩衝液及び試薬を
試薬ポンプ16で押出し、試薬分注位置aに到来した検
体収容孔41内に所要量の試薬を緩衝液と共に分注する
ものである。尚、試薬ピペッ1へ装置9のピペッ1〜は
異なる試薬を吸引する際に予め洗浄槽61で洗浄される
ようになっている。
In addition, the reagent pipetting device 9 first aspirates a fixed m of buffer solution from the buffer bottle 13, and then aspirates a fixed m of latex reagent from the reagent bottle 8 by switching the switching valve 18, and The reagent pump 16 pushes out the buffer and reagent filled inside, and dispenses the required amount of reagent together with the buffer into the sample accommodation hole 41 which has arrived at the reagent dispensing position a. Incidentally, the pipettes 1 to 1 of the apparatus 9 to the reagent pipette 1 are designed to be cleaned in advance in a cleaning tank 61 when a different reagent is aspirated.

そしてまた、光学測定装置11は、前記したように試薬
分注位置aとサンプル分注位置すとの間に設定された光
学測定位置Cに配設されているもので、その測定原狸は
、光路中の検体収容孔41内における抗原、抗体反応の
進行と共に変化する前方散乱強度の変化迅を積分球で捕
捉測定すると同時に透過光強度も測定し、その比率を求
めて抗原、抗体反応本来の変化量以外の干渉因子に対す
る補償1d置を講じ、これにより、濁度値を求める積分
球濁度法による。
Furthermore, the optical measurement device 11 is disposed at the optical measurement position C, which is set between the reagent dispensing position a and the sample dispensing position, as described above. The rate of change in the forward scattering intensity that changes as the antigen/antibody reaction progresses in the specimen accommodation hole 41 in the optical path is captured and measured using an integrating sphere, and at the same time, the transmitted light intensity is also measured, and the ratio is determined to determine the original antigen/antibody reaction. The integral sphere turbidity method is used to calculate the turbidity value by taking compensation for interference factors other than the amount of change.

次に、この実施例に係る自動分析装置Aの作動について
説明する。
Next, the operation of the automatic analyzer A according to this embodiment will be explained.

先ず、スタートスイッチ(図示「ず)をオン操作すると
、試薬ピペット装置9が作動して緩衝液及びラテックス
試薬を所定量吸引すると共に、反応容器保持体5の駆動
装置が基本移送ステップ(準備ステップ)に基づき所定
の検体収容孔41を試薬分注位置aに初期設定し、初期
設定された検体収容孔41に試薬ピペット装置9を介し
て所要量のラテックス試薬が緩衝液と共に分注される。
First, when the start switch ("Z" in the figure) is turned on, the reagent pipette device 9 is activated to aspirate a predetermined amount of buffer solution and latex reagent, and the drive device for the reaction container holder 5 starts the basic transfer step (preparation step). Based on this, a predetermined specimen accommodation hole 41 is initially set to the reagent dispensing position a, and a required amount of latex reagent is dispensed together with a buffer solution into the initially set specimen accommodation hole 41 via the reagent pipette device 9.

一方、上記試薬分注作業と並行して、サンプルピペット
装置7のピペット74がナンブル吸引位置eにレットさ
れ、同位置eで所定のサンプル容器1から所要量の検体
が吸引される。
Meanwhile, in parallel with the reagent dispensing operation, the pipette 74 of the sample pipette device 7 is moved to the number suction position e, and a required amount of specimen is aspirated from the predetermined sample container 1 at the same position e.

この後、上記試薬分注作業が終了した検体収容孔41は
駆動装置6の基本移送ステップ(正転ステップ)に基づ
き試薬分注位置aからナンブル分注位置すまで回転移送
される。このようにして試薬が収容された検体収容孔4
1がサンプル分注位置すに到来すると、前記検体が収容
されたピペット74の水平アーム71はスプリング83
の付勢力によって攪拌装置10のアーム80と当接した
状態のままサンプル分注位置すまで移送された後、同ピ
ペット14の吐出が行なわれると同時に撹拌棒82が回
転して検体とラテックス試薬との攪拌混合かに行なわれ
る。そして、このサンプル分注、攪拌作業が終了すると
、ピペット74と撹拌棒82は上背し、洗浄位置fまで
移送されて所定の洗浄作業が行なわれる一方、上記サン
プル分注、攪拌作業が終了した検体収容孔41は駆動装
置6の基本移送ステップ(反転ステップ)に基づき試薬
分注位1 a J:す1ピッチ進んだ位置dまで移送さ
れる。づると、前記検体収容孔41に隣接した検体収容
孔41が上記試薬分注位置aに設定されることになり、
次の基本移送ステップに移行する。
Thereafter, the sample accommodation hole 41, in which the reagent dispensing work has been completed, is rotated and transferred from the reagent dispensing position a to the number dispensing position based on the basic transfer step (forward rotation step) of the drive device 6. Specimen storage hole 4 in which reagents are stored in this way
1 arrives at the sample dispensing position, the horizontal arm 71 of the pipette 74 containing the sample is moved by the spring 83.
After being transferred to the sample dispensing position while in contact with the arm 80 of the stirring device 10 by the biasing force of the pipette 14, the stirring rod 82 rotates at the same time as the pipette 14 is discharged, and the sample and latex reagent are mixed together. This is done by stirring and mixing. When this sample dispensing and stirring work is completed, the pipette 74 and stirring rod 82 are turned upside down and transferred to the washing position f, where a predetermined washing work is performed, while the sample dispensing and stirring work are completed. The sample accommodation hole 41 is transferred to a position d which is one pitch ahead of the reagent dispensing position 1aJ: based on the basic transfer step (reversal step) of the drive device 6. In other words, the sample accommodation hole 41 adjacent to the sample accommodation hole 41 is set at the reagent dispensing position a,
Move on to the next basic transport step.

また、上記反転ステップの途中においては、検体とラテ
ックス試薬との攪拌混合作業が終了した時点から一定時
間T1 (第一の測光タイミング)経過後に測光移送ス
テップに基づき測光されるべき検体収容孔41が光学測
定位置Cにおいて一時的に停止し、測光タイミング応じ
て同位置Cで所定の光□学測定作業が行なわれる。そし
て更に、所定時間が経過した第二の測光タイミング時点
、官い換えれば検体と試薬との攪拌混合作業時点から一
定時間T2 (T2〉T1)経過した時点において、測
光移送ステップに基づき注目検体収容孔41が再び光学
測定位置Cに設定され、上記測光タイミングに同期して
光学測定作業が行なわれる。このとき、注目検体収容孔
41内の検体とラテックス試薬との免疫反応は均一化し
た状態で進行し、光学測定装置11において混合液の凝
集状態が二つの時点で測定されることになる。そして、
光学測定装置11で1qられた分析値は、データ処理装
置(図示せず)へ送られ、例えば両者の分析値の差分を
採って求めた濁度等のデータがCRTディスプレイに表
示されると共に、必要に応じてプリントアウトされるこ
とになる。
In addition, during the above reversing step, the specimen receiving hole 41 to be photometered based on the photometric transfer step is opened after a certain period of time T1 (first photometric timing) has elapsed since the stirring and mixing operation of the specimen and the latex reagent was completed. It temporarily stops at the optical measurement position C, and predetermined optical measurement work is performed at the same position C according to the photometry timing. Furthermore, at the second photometry timing when a predetermined time has elapsed, in other words, when a certain time T2 (T2>T1) has elapsed from the time of stirring and mixing the sample and reagent, the sample of interest is accommodated based on the photometry transfer step. The hole 41 is again set at the optical measurement position C, and optical measurement work is performed in synchronization with the photometry timing. At this time, the immunoreaction between the specimen in the specimen-accommodating hole 41 of interest and the latex reagent proceeds in a homogenized state, and the aggregation state of the mixed liquid is measured at two points in time by the optical measuring device 11. and,
The analytical value obtained by the optical measurement device 11 is sent to a data processing device (not shown), and data such as turbidity obtained by taking the difference between the two analytical values is displayed on a CRT display. It will be printed out if necessary.

このようにして試薬分注位置aにセラ1〜された検体収
容孔41は上記手順に従って順次移送され、各検体収容
孔41に収容された各検体に対して免疫分析が連続的に
行なわれるのである。
The specimen storage holes 41 thus placed in the reagent dispensing position a are sequentially transferred according to the above procedure, and immunoassays are sequentially performed on each specimen stored in each specimen storage hole 41. be.

[発明の効果] 以上説明してきたように、この発明に係る自動分析装置
によれば、試薬分注位置、サンプル分注位置及び光学測
定位置の各配首を工夫し、分析に必要な一連の過程を短
時間で処理できるようにしたので、検体の分析処理能力
を向上させることができ、特に反応速度の早いラテック
ス凝集反応法を応用したものにあっては有効である。ま
た、この発明によれば、自動分析装置の基本的構成を大
幅に改善することなく、単に、反応容器保持体の駆動系
を改良したに過ぎないので、装置自体を徒に複雑化する
という懸念は全くない。
[Effects of the Invention] As explained above, according to the automatic analyzer according to the present invention, the arrangement of the reagent dispensing position, sample dispensing position, and optical measurement position is devised, and a series of necessary for analysis can be performed. Since the process can be carried out in a short time, the analytical throughput of the specimen can be improved, and this is particularly effective when applying the latex agglutination reaction method, which has a fast reaction rate. Furthermore, according to the present invention, the drive system of the reaction vessel holder is merely improved without significantly improving the basic configuration of the automatic analyzer, so there is a concern that the device itself will become unnecessarily complicated. Not at all.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明を免疫自動分析装置の一例に適用した場
合を示りものであって、第1図は同装置の作動原理図、
第2図は検体収容孔の配列状態と他の主要な装置との関
係を示す平面説明図、第3図はサンプルピペット装置と
攪拌装置の平面図、第4図はサンプルピペット装置の縦
断面図、第5図はピペットと撹拌棒とのセット状態を一
部切欠して示す正面図、第6図は反応容器と反応容器保
持体の構成を一部切欠して示す分解斜視図、第7図は反
応容器保持体の縦断面図である。 [符号の説明] (A)・・・自動分析装置 (1)・・・サンプル容器 (4)・・・反応容器 (5)・・・反応容器保持体 (6)・・・駆動装置 (7)・・・サンプルピペット装置 (8)・・・試薬ボトル (9)・・・試薬ピペット装置 (10)・・・攪拌装置 (11)・・・光学測定装置 (41)・・・検体収容孔 (74)・・・ピペット (82)・・・撹拌棒 (a)・・・試薬分注位置 (’b )・・・サンプル分注位置 (C)・・・光学測定位置 (d)・・・試薬分注位置より1ピッチ進んだ位置第2
図 第3図 第5図 第6図 b
The drawings show a case where the present invention is applied to an example of an automatic immunoanalyzer, and FIG. 1 is a diagram of the operating principle of the device;
Figure 2 is an explanatory plan view showing the arrangement of sample accommodation holes and the relationship with other major devices, Figure 3 is a plan view of the sample pipette device and stirring device, and Figure 4 is a longitudinal sectional view of the sample pipette device. , FIG. 5 is a partially cutaway front view showing the set state of the pipette and stirring rod, FIG. 6 is an exploded perspective view partially cutaway showing the structure of the reaction container and reaction container holder, and FIG. 7 FIG. 2 is a longitudinal cross-sectional view of the reaction container holder. [Explanation of symbols] (A) Automatic analyzer (1) Sample container (4) Reaction container (5) Reaction container holder (6) Drive device (7 )... Sample pipette device (8)... Reagent bottle (9)... Reagent pipette device (10)... Stirring device (11)... Optical measurement device (41)... Sample accommodation hole (74)...Pipette (82)...Stirring bar (a)...Reagent dispensing position ('b)...Sample dispensing position (C)...Optical measurement position (d)...・Second position one pitch ahead of the reagent dispensing position
Figure 3 Figure 5 Figure 6 b

Claims (1)

【特許請求の範囲】[Claims] 所要数の検体収容孔が所定のピッチ間隔でループ状に配
設された反応容器の保持体を駆動系で回転制御し、上記
検体収容孔を試薬分注位置、サンプル分注位置及び光学
測定位置へ順次回転移送するようにした自動分析装置に
おいて、上記サンプル分注位置と試薬分注位置とを18
0°未満の角度範囲で設定すると共に、前記180°未
満の角度範囲領域内に上記光学測定位置を設定し、上記
反応容器保持体の駆動系には、試薬分注位置から光学測
定位置を通つてサンプル分注位置へ向けて注目検体収容
孔を回転移送する正転ステップ並びにサンプル分注位置
で分注された検体と試薬との攪拌混合作業が終了した検
体収容孔を上記正転ステップとは逆の方向へ向けて前記
試薬分注位置から1ピッチ進んだ位置まで回転移送する
反転ステップからなる基本移送ステップと、検体と試薬
との攪拌混合作業が終了した検体収容孔を任意の測光タ
イミングで光学測定位置に設定する測光移送ステップと
を具備させ、前記測光タイミングに同期して注目検体収
容孔内の検体を光学測定するようにしたことを特徴とす
る自動分析装置。
A drive system controls the rotation of a holder for a reaction vessel in which a required number of sample accommodation holes are arranged in a loop at predetermined pitch intervals, and the sample accommodation holes are positioned at reagent dispensing positions, sample dispensing positions, and optical measurement positions. In an automatic analyzer that rotates and transfers sequentially to
The optical measurement position is set within the angular range of less than 0°, and the optical measurement position is set within the angular range of less than 180°, and the drive system of the reaction container holder is configured to pass the optical measurement position from the reagent dispensing position. The above-mentioned normal rotation step refers to the forward rotation step in which the sample receiving hole of interest is rotated and transferred toward the sample dispensing position, and the sample receiving hole after stirring and mixing of the sample and reagent dispensed at the sample dispensing position is completed. A basic transfer step consisting of a reversal step of rotationally transferring the reagent in the opposite direction to a position one pitch ahead from the reagent dispensing position, and a sample receiving hole after the stirring and mixing work of the sample and reagent is completed at an arbitrary photometry timing. 1. An automatic analyzer comprising: a photometric transfer step for setting an optical measurement position; and optically measuring a sample in a sample storage hole of interest in synchronization with the photometry timing.
JP28707185A 1985-12-20 1985-12-20 Automatic analyzer Pending JPS62145167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28707185A JPS62145167A (en) 1985-12-20 1985-12-20 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28707185A JPS62145167A (en) 1985-12-20 1985-12-20 Automatic analyzer

Publications (1)

Publication Number Publication Date
JPS62145167A true JPS62145167A (en) 1987-06-29

Family

ID=17712673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28707185A Pending JPS62145167A (en) 1985-12-20 1985-12-20 Automatic analyzer

Country Status (1)

Country Link
JP (1) JPS62145167A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241589A (en) * 1975-09-29 1977-03-31 Hitachi Ltd Device for automatic feeding of liquid-form sample
JPS53144797A (en) * 1977-05-24 1978-12-16 Toshiba Corp Sampling table drive controller
JPS56154666A (en) * 1980-04-30 1981-11-30 Hitachi Ltd Automatic analytic device
JPS56168554A (en) * 1980-05-30 1981-12-24 Hitachi Ltd Automatic analyzer
JPS5744855A (en) * 1980-09-01 1982-03-13 Hitachi Ltd Automatic analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241589A (en) * 1975-09-29 1977-03-31 Hitachi Ltd Device for automatic feeding of liquid-form sample
JPS53144797A (en) * 1977-05-24 1978-12-16 Toshiba Corp Sampling table drive controller
JPS56154666A (en) * 1980-04-30 1981-11-30 Hitachi Ltd Automatic analytic device
JPS56168554A (en) * 1980-05-30 1981-12-24 Hitachi Ltd Automatic analyzer
JPS5744855A (en) * 1980-09-01 1982-03-13 Hitachi Ltd Automatic analyzer

Similar Documents

Publication Publication Date Title
US4837159A (en) Method and apparatus for effecting immunological analysis
JP3384567B2 (en) Automatic continuous random access analysis system
JP3372544B2 (en) Automatic chemical analysis method and apparatus
US5232665A (en) Multi-linear automatic apparatus for processing immunoassays
JP3582240B2 (en) Automatic sample pretreatment device and automatic sample pretreatment method
JP3521144B2 (en) Automatic continuous random access analysis system and its components
JP3003118B2 (en) Method for providing a homogeneous reagent
JPH03135768A (en) Analyzing method and automatic analyzer
US3223486A (en) Apparatus for treatment of solids for analysis
JPH02269970A (en) Method and equipment for performing automatic analysis test of sample
JPH07505476A (en) Automatic continuous random access analysis system and its components
JP2004522979A (en) Improve the throughput of automated clinical analyzers by sorting analyzes according to type
US20040042339A1 (en) Method and apparatus for mixing liquid samples using a sinusoidal mixing action
EP0217000A2 (en) Reagent containment system for a clinical analyser
JP2970114B2 (en) Automatic analyzer
US5271899A (en) Chemistry analyzer
EP0336309A2 (en) A selective or sequential access analyzer for clinico-chemical analyses and for immunological tests
JPS62145167A (en) Automatic analyzer
JPH0225754A (en) Automatic analyzing device
JP2515392B2 (en) Automatic immunoassay device
JPS61193073A (en) Method and instrument for immunological analysis
JPH02236455A (en) Luminous reagent injector of automatic immunoassay device
JP2883347B2 (en) Automatic immunoassay device cartridge washing device
JPS6249259A (en) Automatic analyzer
JPS62145168A (en) Sample dispensing and stirring device