JPS62144061A - Manufacture of enzyme electrode - Google Patents

Manufacture of enzyme electrode

Info

Publication number
JPS62144061A
JPS62144061A JP60285144A JP28514485A JPS62144061A JP S62144061 A JPS62144061 A JP S62144061A JP 60285144 A JP60285144 A JP 60285144A JP 28514485 A JP28514485 A JP 28514485A JP S62144061 A JPS62144061 A JP S62144061A
Authority
JP
Japan
Prior art keywords
enzyme
membrane
film
enzyme electrode
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60285144A
Other languages
Japanese (ja)
Inventor
Ei Yano
映 矢野
Naomi Nakane
中根 尚美
Akio Sugama
明夫 菅間
▲柳▼下 晧男
Akio Yagishita
Hachiro Yasuda
八郎 安田
Shozo Fujita
省三 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60285144A priority Critical patent/JPS62144061A/en
Publication of JPS62144061A publication Critical patent/JPS62144061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To facilitate cutting and mounting to a cell, by integrating an oxygen permeating film, an enzyme immobilized membrane and semipermeable film. CONSTITUTION:A solution made up of enzyme alone or enzyme with the additional a crosslinking agent or the like is applied on a semipermeable film 10 comprising cellulose or the like and covered with an oxygen permeating film 12 made of fluorocarbon resin. For example, this is set on slab gel dryer and dried in reduction to make an enzyme electrode membrane 14 comprising the film 10, the enzyme immobilized membrane 9 and the film 12. The membrane 14 thus formed can be worked free with a knife while it can easily cover an opened end of a cell 1 containing platinum cathode 2 and can be fixed with O ring 7. Thus, this method facilitates the working and mounting of the film 14 as well.

Description

【発明の詳細な説明】 〔(既要〕 測定液に接する酸素透過膜、酵素固定膜及び半透膜より
なる三層を単層として一体化することにより加工性を向
上した酵素電極膜をもつ酵素電極の製造方法。
[Detailed Description of the Invention] [(Already required)] An enzyme electrode membrane with improved processability by integrating three layers consisting of an oxygen permeable membrane, an enzyme immobilization membrane, and a semipermeable membrane in contact with a measurement solution into a single layer. Method for manufacturing an enzyme electrode.

〔産業上の利用分野〕[Industrial application field]

本発明は加工性のよい酵素電極の製造方法に関する。 The present invention relates to a method for manufacturing an enzyme electrode with good processability.

酵素は生体細胞から生産される高分子量の有機触媒であ
ってエンザイム(Enzyme)と呼称されており、化
学的には単純蛋白質または複合蛋白質である。
Enzymes are high molecular weight organic catalysts produced from living cells and are called enzymes, and chemically they are simple proteins or complex proteins.

そして生体内で分解5合成、酸化、還元などの複雑な化
学反応が容易に行われるのは多種多様の酵素が適当に配
置されて作用することによる。
Complex chemical reactions such as decomposition, synthesis, oxidation, and reduction can be carried out easily in living organisms because a wide variety of enzymes are appropriately arranged and act.

ざて、酵素は生体の化学物質識別能力が高く、特定の物
質とのみ反応することから、この性質を利用して酵素セ
ンサとして使用されており、微生物膜を使用した微生物
センサや抗原膜を使用した免疫センサなどと共にバイオ
センサと言われている。
Since enzymes have a high ability to identify chemical substances in living organisms and react only with specific substances, this property is used as an enzyme sensor, and microbial sensors using microbial membranes and antigen membranes are used. It is called a biosensor along with other immunosensors.

ここで、酵素センサばグルコース、尿酸、コレステロー
ルなどの濃度測定用として醗酵工業や医療診断の部門で
広く使用されている。
Enzyme sensors are widely used in the fermentation industry and medical diagnosis sectors for measuring concentrations of glucose, uric acid, cholesterol, and the like.

本発明はか\る酵素センサを構成する酵素電極の改良に
関するものである。
The present invention relates to improvements in enzyme electrodes constituting such enzyme sensors.

〔従来の技術〕[Conventional technology]

第4図は酵素センサの代表的な断面構造を示すもので、
プラスチックスなどからなるセル1の先端が開放されて
おり、この開放端の先端に周囲を樹脂被覆により絶縁し
、先端に板状の白金(PL)カソード2が露出している
カソード3が挿着されており、カソード3の周りには1
艮線(Ag)からなるアノード4が巻回され、このセル
1の中に塩化カリ (KCI)などからなる電解液5が
封入されている。
Figure 4 shows a typical cross-sectional structure of an enzyme sensor.
The tip of a cell 1 made of plastic or the like is open, and a cathode 3 whose surroundings are insulated with a resin coating and a plate-shaped platinum (PL) cathode 2 is exposed at the tip is inserted into the tip of the open end. 1 around cathode 3.
An anode 4 made of wire (Ag) is wound around the cell 1, and an electrolyte 5 made of potassium chloride (KCI) or the like is sealed in the cell 1.

次に、セル1の開放端にはこれを包むような形で酵素電
極膜6が張られており、0リング7などを用いて固定さ
れている。
Next, an enzyme electrode membrane 6 is stretched around the open end of the cell 1 so as to wrap it, and is fixed using an O-ring 7 or the like.

そして、酵素センサの使用法としては、がかる酵素セン
サ8を測定溶液に浸漬し、酵素電極膜6の触媒作用によ
り、測定物質が酸化され、この際に電解液5の中の溶存
酸素(0□)が消費することにより電導度が変化する現
象を利用して測定物質の含有量が測定されている。
To use the enzyme sensor, the enzyme sensor 8 is immersed in a measurement solution, and the substance to be measured is oxidized by the catalytic action of the enzyme electrode membrane 6. At this time, dissolved oxygen (0□ ) The content of the substance to be measured is measured using the phenomenon that the conductivity changes due to consumption.

例えばグルコース(Cs II 1206 )濃度の測
定は酵素電極膜6を構成する酵素例えばグルコースオキ
シダーゼ(以下略称C0D)の作用によりグルコースが
酸化してグルコノラクトン(Cs 111006)とな
る際の02消費量よりグルコース濃度が測定されている
For example, the concentration of glucose (Cs II 1206 ) can be measured based on the amount of 02 consumed when glucose is oxidized to gluconolactone (Cs 111006) by the action of an enzyme, such as glucose oxidase (hereinafter abbreviated as C0D), which constitutes the enzyme electrode membrane 6. Glucose concentration is being measured.

0D C6H120,+02−’C,11、,06+H2O2
ここで、酵素電極膜6は第3図に示すように酵素固定膜
9を半透膜10と酸素透過膜12により上下より包んだ
三層構造をして用いられている。
0D C6H120,+02-'C,11,,06+H2O2
Here, the enzyme electrode membrane 6 is used in a three-layer structure in which an enzyme immobilization membrane 9 is wrapped from above and below by a semipermeable membrane 10 and an oxygen permeable membrane 12, as shown in FIG.

すなわち半透膜10はセルロース、コーラゲンなどの繊
維状高分子の膜からなり、担体として作用する。
That is, the semipermeable membrane 10 is made of a fibrous polymer membrane such as cellulose or collagen, and acts as a carrier.

また酸素透過膜12は多孔質な弗素系の高分子膜からな
り、液中に溶存しているガス分子のみを選択的に透過さ
せるものである。  − 一方、酵素固定膜9は酵素(この例の場合はC0D)を
膜状に固定したもので、これには各種の形成法が知られ
ている。
The oxygen permeable membrane 12 is made of a porous fluorine-based polymer membrane, and selectively allows only gas molecules dissolved in the liquid to permeate therethrough. - On the other hand, the enzyme-immobilized membrane 9 is a film in which an enzyme (in this example, C0D) is immobilized, and various formation methods are known for this.

第5図は代表的な形成法である架橋化法を説明するもの
で、酵素(Eと略称)と血清アルブミン(Aと略称)に
官能基を二個もつグルタルアルデヒド11を用いで橋か
けを行い、効率の良い酵素膜を作る方法である。
Figure 5 explains the cross-linking method, which is a typical formation method, and involves cross-linking using enzyme (abbreviated as E) and serum albumin (abbreviated as A) with glutaraldehyde 11, which has two functional groups. This is a method for making highly efficient enzyme membranes.

また包括法はアクリルアミドゲルの中に酵素分子を閉じ
込めて寒天状としたものである。
In addition, the entrapment method traps enzyme molecules in acrylamide gel to form an agar-like structure.

なお、その他に共有結合法や吸着法など各種の方法があ
る。
In addition, there are various other methods such as a covalent bond method and an adsorption method.

然し、かかる酵素固定膜9はその侭では溶は易い形態で
あり、そのため第3図に示すように半透膜10と酸素透
過膜12で挟んで不溶性の構造としている。
However, the enzyme-immobilized membrane 9 is in a form that is easily soluble, and therefore, as shown in FIG. 3, it is sandwiched between a semipermeable membrane 10 and an oxygen permeable membrane 12 to form an insoluble structure.

第2図は第4図の先端部を拡大して示すもので、従来使
用されている酵素電極膜の装着法を示すものである。
FIG. 2 is an enlarged view of the tip of FIG. 4, and shows a conventional method of attaching an enzyme electrode membrane.

すなわら、セル1の先端の開口部には絶縁体で被覆され
、先端に白金カソード2を備えたカソード3があり、中
には電解液5が充填されている。
That is, the opening at the tip of the cell 1 is covered with an insulator and has a cathode 3 having a platinum cathode 2 at the tip, and an electrolytic solution 5 is filled inside.

ここで、従来は例えば半透膜10を担体とし、この上に
酵素固定膜を形成し、これを図に示すように白金カソー
ド2を含むセル1の先端に被せて、Oリング7で止め、
次に酸素透過11i 12をその上に被覆してOリング
7′で止めることにより三層構造の酵素電極膜を形成し
ていた。
Here, conventionally, for example, a semipermeable membrane 10 is used as a carrier, an enzyme-immobilized membrane is formed on this, and as shown in the figure, this is placed over the tip of a cell 1 containing a platinum cathode 2 and fixed with an O-ring 7.
Next, an oxygen permeable film 11i 12 was coated thereon and secured with an O-ring 7' to form a three-layered enzyme electrode membrane.

従来はこのように別個に積層して酵素電極膜が形成され
ていたが、酵素固定膜はゼラチン状のため加工性が悪く
、また取付は操作が面倒なことが問題である。
Conventionally, enzyme electrode membranes have been formed by laminating them separately in this way, but the problem is that the enzyme-immobilized membrane is gelatinous and has poor processability, and is difficult to install.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように酵素センサ8の先端に装着されている
酵素電極膜6は半透膜10.酵素固定膜9および酸素透
過膜12から構成されており、従来はそれぞれ単独に層
構成するか、半透膜10上に酵素固定膜9を置くか、或
いは半透膜10を担体とし、これに酵素を固定させたも
のを用いるなど各種の方法が採られているが、何れも白
金カソード2を含むセル1の開口部に積層して固定して
おり、取付は工数が嵩み、また作業性の悪いことが問題
である。
As described above, the enzyme electrode membrane 6 attached to the tip of the enzyme sensor 8 is a semipermeable membrane 10. It is composed of an enzyme-immobilized membrane 9 and an oxygen-permeable membrane 12, and conventionally, each has been constructed as a separate layer, or the enzyme-immobilized membrane 9 has been placed on a semipermeable membrane 10, or the semipermeable membrane 10 has been used as a carrier. Various methods have been adopted, such as using enzymes with immobilized enzymes, but all of them involve laminating and fixing the platinum cathode 2 into the opening of the cell 1, which requires a lot of man-hours for installation, and is difficult to work with. The problem is that it is bad.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は7ノード及びカソードを内部に備え、電解
液を満したセルの一端が開放されており、該開放端に酸
素透過膜、酵素固定膜および半透膜を積層して形成され
る酵素型)へ膜において、前記の酸素透過膜、酵素固定
膜および半透膜を一体化し単層として形成することを特
徴とする酵素電極膜の製造方法により解決することがで
きる。
The above problem is that the cell is equipped with seven nodes and a cathode, and one end of the cell filled with electrolyte is open, and the enzyme formed by laminating an oxygen permeable membrane, an enzyme immobilization membrane, and a semipermeable membrane on the open end. This problem can be solved by a method for producing an enzyme electrode membrane, which is characterized in that the oxygen permeable membrane, the enzyme immobilization membrane, and the semipermeable membrane are integrated into a single layer.

〔作用〕[Effect]

本発明は酵素電極膜6を構成する半透膜10.酵素固定
1199および酸素透過膜12を一体化成形することに
より従来の問題点を解決するものである。
The present invention provides a semipermeable membrane 10 constituting the enzyme electrode membrane 6. The conventional problems are solved by integrally molding the enzyme immobilization 1199 and the oxygen permeable membrane 12.

すなわらスラブゲルドライヤーを用い、三層を積層した
状態で減圧乾燥することにより薄膜状の酵素電極膜を作
るもので、これは型抜き、切断など任意に加工できるの
で極めて作業性よくセル1に装着することができる。
In other words, using a slab gel dryer, a thin enzyme electrode membrane is created by drying the three layers in a stacked state under reduced pressure.This can be processed as desired, such as by cutting or cutting, so it is extremely easy to work with and can be used in cell 1. Can be installed.

第1図はこのように形成した酵素電極膜14の装着状態
を示すもので、酵素電極膜14は一回の操作でOリング
7により固定することができる。
FIG. 1 shows the state in which the enzyme electrode membrane 14 formed in this manner is attached, and the enzyme electrode membrane 14 can be fixed with the O-ring 7 in a single operation.

なお、本発明に係る酵素電極14の形成法として先に第
5図に示すように酵素固定膜9を酵素(略称E)とアル
ブミン(略称A)とをグルタルアルデヒドを用いて架橋
させた場合について記したが、これ以外に酵素だけで形
成する場合もある。
In addition, as a method for forming the enzyme electrode 14 according to the present invention, as shown in FIG. As mentioned above, there are other cases in which it is formed using only enzymes.

すなわら、酵素としてCODのように特性の強い酵素を
用いる場合にはグルタルアルデヒドを架橋剤として使用
してよいが、弱い酵素を使用する場合はグルタルアルデ
ヒドにより失活し易い。
That is, when using an enzyme with strong properties such as COD, glutaraldehyde may be used as a crosslinking agent, but when using a weak enzyme, it is likely to be deactivated by glutaraldehyde.

例えば酵素としてグリコール酸オキシダーゼ。For example, glycolate oxidase is an enzyme.

2.5−ヒドロキシコレカルシフェロール1−モノオギ
シゲナーゼなどはグルタルアルデヒドにより失活が生じ
易い。
2.5-Hydroxycholecalciferol 1-monogysigenase and the like are likely to be inactivated by glutaraldehyde.

そのため、かかる場合は酵素だけを使用して酵素電極膜
14を作ればよい。
Therefore, in such a case, the enzyme electrode membrane 14 may be made using only the enzyme.

〔実施例〕〔Example〕

実施例1: COD 10mg、生血端アルブミン20mgを1mj
2の水に溶解し、これに10%のグルタルアルデヒドを
10μm滴下し攪拌した後、この液を厚ざが100μm
の半透膜上に塗布した。
Example 1: 1 mj of COD 10 mg, raw blood end albumin 20 mg
2 was dissolved in water, 10% glutaraldehyde was added dropwise to the solution in a thickness of 10 μm, and the mixture was stirred.
was applied onto a semipermeable membrane.

この半透膜の上に厚さが約10μmの弗素樹脂系の酸素
透過膜で覆った状態でスラブゲルドライヤにセットし、
室温で減圧乾燥させて酵素電極膜を作った。
This semi-permeable membrane was covered with a fluororesin-based oxygen permeable membrane with a thickness of about 10 μm and set in a slab gel dryer.
An enzyme electrode membrane was prepared by drying under reduced pressure at room temperature.

このようにして作った酵素電極膜は完全に圧着されたサ
ンドインチ構造をし、刃物で自由に裁断加工することが
でき、容易にセルの先端に装着することができる。
The enzyme electrode membrane thus produced has a completely crimped sandwich structure, can be cut freely with a knife, and can be easily attached to the tip of a cell.

そして、これを用いた酵素センサの応答特性は従来と同
様であり、何等変わった点は認められなかった。
The response characteristics of the enzyme sensor using this were the same as the conventional ones, and no changes were observed.

実施例2: セルロースよりなる半透膜(三光純薬製)の上にグリコ
ール酸オキシダーゼの3Qm(H/m 1!水溶液を塗
布し、この上に厚さが12μmの弗素樹脂製の酸素透過
膜を密着させた状態でスラブゲルドライヤにセットし、
室温で減圧乾燥して完全に一体化した酵素電極膜を作っ
た。
Example 2: A 3Qm (H/m 1!) aqueous solution of glycolate oxidase was applied on a semipermeable membrane made of cellulose (manufactured by Sanko Pure Chemical Industries, Ltd.), and an oxygen permeable membrane made of fluororesin with a thickness of 12 μm was placed on top of this. Place it in the slab gel dryer with the
A completely integrated enzyme electrode membrane was prepared by drying under reduced pressure at room temperature.

このようにして得た酵素電極膜は実施例1と同様に自由
に加工でき、またセルの先端への装着も簡単で、従来と
全く同じ応答特性を得ることができた。
The enzyme electrode membrane thus obtained could be freely processed in the same manner as in Example 1, and could be easily attached to the tip of the cell, and the response characteristics exactly the same as those of the conventional membrane could be obtained.

C発明の効果〕 以上記したように本発明により得られる酵素電極膜は従
来のアクリルアミドゲル固定膜などと異なり自由に加工
が可能であり、そのため装着が簡単なため使用効率が改
善される。
C. Effects of the Invention] As described above, the enzyme electrode membrane obtained by the present invention can be freely processed, unlike conventional acrylamide gel fixed membranes, etc., and is therefore easy to attach, improving usage efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した酵素電極の断面図、第2図は
従来の酵素電極の断面図、 第3図は酵素電極の断面図、 第4図は酵素センサの断面図、 第5図は酵素の固定法を示す模式図、 である。 図において、 2は白金カソード、  6,14は酵素電極膜、7.7
′はOリング、  8は酵素センサ、9は酵素固定膜、
   10は半透膜、12は酸素透過膜、 である。 昂2層 第5図
Fig. 1 is a sectional view of an enzyme electrode to which the present invention is applied, Fig. 2 is a sectional view of a conventional enzyme electrode, Fig. 3 is a sectional view of an enzyme electrode, Fig. 4 is a sectional view of an enzyme sensor, and Fig. 5 is a schematic diagram showing the enzyme immobilization method. In the figure, 2 is a platinum cathode, 6 and 14 are enzyme electrode membranes, and 7.7
' is an O-ring, 8 is an enzyme sensor, 9 is an enzyme immobilization membrane,
10 is a semipermeable membrane, and 12 is an oxygen permeable membrane. Ngong 2nd layer Figure 5

Claims (1)

【特許請求の範囲】[Claims] アノード及びカソードを内部に備え、電解液を満したセ
ルの一端が開放されており、該開放端に酸素透過膜、酵
素固定膜および半透膜を積層して形成される酵素電極に
おいて、前記の酸素透過膜、酵素固定膜および半透膜を
一体化し単層として形成することを特徴とする酵素電極
の製造方法。
The enzyme electrode is formed by laminating an oxygen permeable membrane, an enzyme immobilization membrane, and a semipermeable membrane on the open end of a cell that is equipped with an anode and a cathode and filled with an electrolytic solution at one end. A method for manufacturing an enzyme electrode, characterized in that an oxygen permeable membrane, an enzyme immobilization membrane, and a semipermeable membrane are integrated to form a single layer.
JP60285144A 1985-12-18 1985-12-18 Manufacture of enzyme electrode Pending JPS62144061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285144A JPS62144061A (en) 1985-12-18 1985-12-18 Manufacture of enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285144A JPS62144061A (en) 1985-12-18 1985-12-18 Manufacture of enzyme electrode

Publications (1)

Publication Number Publication Date
JPS62144061A true JPS62144061A (en) 1987-06-27

Family

ID=17687666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285144A Pending JPS62144061A (en) 1985-12-18 1985-12-18 Manufacture of enzyme electrode

Country Status (1)

Country Link
JP (1) JPS62144061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100998835B1 (en) 2003-01-17 2010-12-06 혼다 기켄 고교 가부시키가이샤 Frame structure for scooter-type vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100998835B1 (en) 2003-01-17 2010-12-06 혼다 기켄 고교 가부시키가이샤 Frame structure for scooter-type vehicle

Similar Documents

Publication Publication Date Title
Davies et al. Polymer membranes in clinical sensor applications: I. An overview of membrane function
AU605111B2 (en) Enzyme-electrode sensor
US4073713A (en) Membrane for enzyme electrodes
ES2333831T3 (en) SENSOR BASED ON MICROFABRICATED OPENINGS.
US4890620A (en) Two-dimensional diffusion glucose substrate sensing electrode
US6033866A (en) Highly sensitive amperometric bi-mediator-based glucose biosensor
US4927516A (en) Enzyme sensor
JPS6212847A (en) Membrane through which liquid and solute can be permeated, manufacture thereof and utilization thereof
JPH0210902B2 (en)
JPS6029475B2 (en) Immobilized enzyme membrane and its manufacturing method
JPH0210903B2 (en)
JPS5921500B2 (en) Enzyme membrane for oxygen electrode
WO1987006701A1 (en) Microelectrode for electrochemical analysis
CA1067457A (en) Membrane for enzyme electrodes
Liu et al. Enzyme biosensors for point-of-care testing
Yang et al. An Integrated Needle‐Type Biosensor for Intravascular Glucose and Lactate Monitoring
JP2000510232A (en) Sensor and modified membrane for this sensor
Higson et al. Biosensors: a viable monitoring technology?
JP4248744B2 (en) Planar biosensor with microstructure, method of using the same, and method of immobilizing biocatalyst
JPS62144061A (en) Manufacture of enzyme electrode
JPH0262951A (en) Enzyme electrode
JPS59164953A (en) Immobilized enzyme film and manufacture thereof
Mizutani et al. Use of Polydimethylsiloxane for Constructing Amperometric Glucose‐Sensing Enzyme Electrode with Low Interference Level
Bogdanovskaya et al. Electrochemical biosensors for medicine and ecology
CN113083647B (en) Polymer diffusion limiting membrane layer, preparation method thereof and glucose sensor