JPS62142752A - Heat treatment of lithium-containing aluminum alloy - Google Patents

Heat treatment of lithium-containing aluminum alloy

Info

Publication number
JPS62142752A
JPS62142752A JP61283024A JP28302486A JPS62142752A JP S62142752 A JPS62142752 A JP S62142752A JP 61283024 A JP61283024 A JP 61283024A JP 28302486 A JP28302486 A JP 28302486A JP S62142752 A JPS62142752 A JP S62142752A
Authority
JP
Japan
Prior art keywords
alloy
aluminum
heat treatment
less
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61283024A
Other languages
Japanese (ja)
Inventor
フイリツプ・メイヤー
マツクス・ルブル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cegedur Societe de Transformation de lAluminium Pechiney SA
Original Assignee
Cegedur Societe de Transformation de lAluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9325580&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS62142752(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cegedur Societe de Transformation de lAluminium Pechiney SA filed Critical Cegedur Societe de Transformation de lAluminium Pechiney SA
Publication of JPS62142752A publication Critical patent/JPS62142752A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Heat Treatment Of Steel (AREA)
  • Secondary Cells (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

1. A process for the heat treatment of Al alloys containing Li to improve their resistance to exfoliation corrosion while retaining a high level of mechanical strength and good resistance to damage characterised in that the final ageing operation is carried out in the following range of temperatures T (in degree C) and times t (in hours) : t >= 24 X 5 exp ((150-T)/30) t =< 80 X 5 exp ((150-T)/30) with : T =< 160 degrees C for Mg >= 2% T =< 160 degrees C-5 (2-% Mg) degrees C for 1 =< Mg =< 2% T =< 155 degrees C for Mg =< 1%.

Description

【発明の詳細な説明】 本発明は、過小焼なまし処理ににつてl−i金石Ag合
金の剥1i111+li!食(exroliation
 C0rl’O8!On )に対する感度を低下さける
と同+1.’jに、大きな機械的耐性と十分な耐損傷性
とを1qるための方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to under-annealing treatment of l-i goldstone-Ag alloy. food (exroliation)
C0rl'O8! If you avoid reducing the sensitivity to ), the same +1. It concerns a method for providing high mechanical resistance and sufficient damage resistance to 'j.

周知のにうに、大きな耐食性を得ることは、アルミニウ
ム合金特に航空用アルミニウム合金の開発にJ3ける重
要な問題の1つである。高耐食性は通常1スデツブ又は
2スアツブの過剰焼4kまし熱処理(例えば八lumi
num As5ociationの規定によるΔj 、
Zn、 Cu、MO合金)173処理)ニヨッて得られ
る。この十二分な焼なましによる耐食性増加操作は、−
・般的に高温(Tと190℃> −C十分に長い時間の
間燃なましを行なうことによって大きな耐食性が得られ
るとされているアルミニウムーリチウム合金にも適用で
きる。
As is well known, obtaining high corrosion resistance is one of the important issues in the development of aluminum alloys, particularly aircraft aluminum alloys. High corrosion resistance is usually achieved by 4k annealing heat treatment of 1 or 2 steps (e.g. 8 lumi).
Δj according to the regulations of num As5ocation,
Zn, Cu, MO alloy) 173 treatment). This corrosion resistance increasing operation by sufficient annealing is -
- It can also be applied to aluminum-lithium alloys, which are generally said to have great corrosion resistance by annealing them at high temperatures (T and 190°C > -C for a sufficiently long period of time).

しかしながら従来のΔg合金に関して19られる機械的
強さと耐損傷性との間の最適バランスは、耐食性増加効
果を右する前述の如き過剰焼なまし処理では1−1られ
へい。
However, the optimum balance between mechanical strength and damage resistance found for conventional Δg alloys cannot be compromised by excessive annealing treatments such as those described above, which provide a corrosion resistance enhancing effect.

従来の)lルミニウム合金では、機械的強さと耐食性と
の間の最適バランス及び機械的強さと削L)(U性どの
間の最適バランスは、異なる合金にJ3いて、且つ異な
る熱処理を行なうことによってしかjヱ成されていない
In conventional aluminum alloys, the optimum balance between mechanical strength and corrosion resistance and the optimum balance between mechanical strength and machinability can be achieved by using different alloys and subjecting them to different heat treatments. Only a few things have been completed.

一例として、引張り疲労応力を最6多く受ける部分に使
用される合金2024 (八luminium As5
ocil′l−1Onに規定)は最適の機械的強ざ−疲
れ強さバランスを示す。しかしながらこの合金はT4又
はT3の状態で使用される。即ら室温で11.’j効(
aging)化されるため、製品の厚みが数ミリメート
ルを越える場合には十分な耐薄片剥脱腐食性(flak
ingcorrosion)を示さない。
As an example, alloy 2024 (8luminium As5
ocil'l-1On) indicates the optimum mechanical strength-fatigue strength balance. However, this alloy is used in the T4 or T3 state. That is, at room temperature 11. 'j effect (
aging), so if the thickness of the product is more than a few millimeters, it has sufficient flaking corrosion resistance (flake corrosion resistance).
ingcorrosion).

自然雰囲気下での耐薄片剥脱腐食性を測定するには、薄
片剥脱腐食テストに関するEXCO(ASTMG 34
−1979規格)を96時間行なうとJ、いことが判明
した。実際、EXCOXC上にかりた試料と海浜のにう
な雰囲気に晒した試料との比較からl−i含有ΔQ合舎
の場合には材料の耐食性が種々の処理を用いると豆いに
同程度であることが知見される。但しEXCOXC上の
方が自然腐食よりやや強い腐食作用を示す。尚、EXC
Oテストの結果はレベルに応じて下記の如く表記される
(前出の規格による)。
To determine flake corrosion resistance in natural atmosphere, use the EXCO (ASTMG 34) for flake corrosion test.
-1979 standard) for 96 hours, it was found that J. In fact, a comparison between a sample placed on EXCOXC and a sample exposed to a seashore atmosphere shows that in the case of l-i-containing ΔQ joints, the corrosion resistance of the material is comparable to that of beans when various treatments are used. It is found that However, the corrosion effect on EXCOXC is slightly stronger than that of natural corrosion. Furthermore, EXC
The results of the O test are expressed as follows depending on the level (according to the standards mentioned above).

EA   軽いAり片剥脱腐食 この表記は71準試料との比較によって行/、1つ。EA Light A flake corrosion This notation is based on the comparison with 71 quasi-samples.

本発明では焼なましをF記の温度及び時間範囲で実施し
なければならない。
In the present invention, annealing must be carried out within the temperature and time ranges listed in F.

t > 20X 5 eXD  ((150−T )/
30) ”t < 80x 5 exp  ((150
−T )/30) 本及び MCJ≧2%の場合 T≦160℃ 1≦Ma≦2%の場合 T丘160℃−5×(2−%Mq)’CM CJ≦1%
の場合 T≦155℃ 但し を二時効処理11.1間(jilt位:時)T:
時効処理温度(111位;℃) 本expはベキ指数即ら累乗を意味する。
t > 20X 5 eXD ((150-T)/
30) ”t < 80x 5 exp ((150
-T)/30) When MCJ≧2% T≦160℃ When 1≦Ma≦2% T hill 160℃-5×(2-%Mq)'CM CJ≦1%
In the case of T≦155℃, however, two aging treatment 11.1 hours (jilt position: hours) T:
Aging treatment temperature (111th place; °C) This exp means a power exponent, that is, a power.

時効処理【よ好ましくは155℃以下の温度及び/又は
24X 5 eXll  ((150−T )/30)
 J:すi 011.5間(単位二時)で行なう。温度
Tの単位tま℃て・ある。
Aging treatment [preferably at a temperature of 155°C or less and/or 24X 5 eXll ((150-T)/30)
J: Sui 011.5 (unit: 2 o'clock). The unit of temperature T is t.

このJ、うに処理した合金はEXCOデス1〜にス・1
してB以下の感度を示づ。これは自然雰囲気て゛の良り
Tな性状、少<r <とム2024 (状態−「3又は
T41に匹敵する機械的強さ及び十分な耐損傷性に該当
する。
This J, sea urchin treated alloy is
The sensitivity is below B. This corresponds to good properties in a natural atmosphere, mechanical strength comparable to condition 3 or T41, and sufficient damage resistance.

114間が20x 5 exp  ((150−T )
 /30 ) J、り短いと十分な機械的強さが19ら
れない。80x5 exp((150−T )/30)
を越える処理時間では強靭性が最高限度を越え■つ靭性
が若しく低T” tJ’る。
114 is 20x 5 exp ((150-T)
/30) If the length is too short, sufficient mechanical strength will not be achieved. 80x5 exp ((150-T)/30)
If the treatment time exceeds 100%, the toughness exceeds the maximum limit and the toughness becomes low.

温度を前記値より高くすると耐刷m+ri、食性が不十
分になる。
If the temperature is higher than the above value, printing durability (m+ri) and edibility will become insufficient.

本発明は特に、fflffi%で1〜4%のli;  
0〜5%のCU; 0〜7%のMO:O〜0.2%のZ
r;0〜0.4%のCr: 0〜1%の1yln;Fe
<0.5%;SiS2.5%;及び他の元素例えばHf
The present invention particularly provides 1 to 4% li in fffffi%;
0-5% CU; 0-7% MO: O-0.2% Z
r; 0-0.4% Cr: 0-1% yln; Fe
<0.5%;SiS2.5%; and other elements such as Hf
.

Nb、V、W、Ta、T iを各々0.5%未満含み、
残りがアルミニウムと通常の不純物であるにうなアルミ
ニウムーリヂウム合金に適用される。
Containing less than 0.5% of each of Nb, V, W, Ta, and Ti,
Applies to aluminum-ridium alloys where the remainder is aluminum and normal impurities.

この種の合金はインゴット冶金術又は高速凝固法(粉末
冶金、「スプラット冷却」、ストリップの高速凝固等)
によって製造覆ることかできる。
This type of alloy can be manufactured using ingot metallurgy or fast solidification methods (powder metallurgy, "splat cooling", fast solidification of strips, etc.)
Can be covered by manufacturing.

これらの製品はリチウム金石合金の場合に通常使用され
る方法によって変形させられ、熱間及び/又は冷間加1
にかけられ、次いで固溶化処理され、急冷操作を受Cノ
、その後任意に冷間加工され、W#造内的析出加熱処理
かけられる。
These products are deformed by methods commonly used for lithium goldstone alloys, including hot and/or cold working.
It is then solution treated, subjected to a quenching operation, then optionally cold worked and subjected to a W# internal precipitation heat treatment.

本発明はあらゆる形態の製品(鍛造、ダイスクンピング
、圧延、押出し延伸等による製品)の他、鍛圧には全く
かけられないキセスト合金にb使用される。
The present invention is applicable to all types of products (products produced by forging, die-scanning, rolling, extrusion-stretching, etc.) as well as to xist alloys that cannot be subjected to forging pressure at all.

以下、添付図面を参照しながら実施例を挙げて本発明を
より詳細に説明する。尚、特にの%は重量%であるもの
とする。
Hereinafter, the present invention will be described in more detail by way of examples with reference to the accompanying drawings. In addition, especially % shall be weight %.

友直■ユ この実施例1は先行技術に係わり、過剰時効処理したΔ
g−1−i合金試料に対する実際の大気中でのテストと
EXCOXC上との間の相似性を示すものである。
Tomonao■Yu This Example 1 is related to the prior art, and the Δ
Figure 2 shows the similarity between actual atmospheric testing and on EXCOXC for g-1-i alloy samples.

1i2.7%、Cu  1.3%、MO1%、Zr09
11%、Fe0.04%、3i0.03%、残りアルミ
ニウムを含む合金8090をφ200Mのビレッ1〜状
に:p +!スト成形し、533℃で24時間均質化し
、φ1401醐まで削り、430℃で100X13a*
2のシー1〜バ〜に押出しく押出し率ユ12)、535
℃で1時間30分固溶化処理し、冷水で急冷し、2%の
引張ストレッチングにかけ、その復極々の時効処理にか
りた。
1i2.7%, Cu 1.3%, MO1%, Zr09
Alloy 8090 containing 11% Fe, 0.04% Fe, 0.03% 3i, and the rest aluminum is shaped into a φ200M billet: p +! Strain molded, homogenized at 533℃ for 24 hours, ground to φ1401, 100X13a* at 430℃
Extrusion rate 12), 535
It was subjected to solid solution treatment at ℃ for 1 hour and 30 minutes, quenched with cold water, subjected to 2% tensile stretching, and then subjected to aging treatment.

同様にして、1−i2.0%、Cu2.1%、M(Jl
、4%、Zr0.11%、Fc0.04%、3i0.0
3%、残りアルミニウムからなる合金2091をφ 2
00#のビレット状に:1−1tスト成形し、 525
℃で24時間均質化処理し、φ 140 amまで削り
、前述の条件で押出し成形し、526℃で1115間3
0分固溶化処理し、冷水で急冷し、2%の引張りス1−
レッチングにか(〕、その後11¥効処理にかりた。
Similarly, 1-i2.0%, Cu2.1%, M(Jl
, 4%, Zr0.11%, Fc0.04%, 3i0.0
Alloy 2091 consisting of 3% aluminum and the remaining aluminum is φ2
00# billet shape: 1-1t stroke molding, 525
Homogenized at 526°C for 24 hours, ground to φ 140 am, extruded under the above conditions, and heated at 526°C for 1115 minutes.
Solution treatment for 0 minutes, quenching with cold water, 2% tensile stress 1-
After that, it took 11 yen for retching.

合金2024T 351からなる断面100X 13の
シー1〜バーを基準試料とする。
Sea 1 to bar made of alloy 2024T 351 and having a cross section of 100×13 are used as reference samples.

時効処理した押出しシートバー試料を切削加工して梗み
を幅の半分に亘って 1/2にし、粗い押出し表面状態
と切削加工した表面とを同時に右りるJ:うにした。
The aged extruded sheet bar sample was machined to reduce the curvature by half over half the width, and the rough extruded surface condition and the machined surface were simultaneously polished.

次いでこれらの試料を下記の条件で剥因1朋食テス1〜
と、仏国カマルグにあるS、1llinS da Gi
raudステーションでの海浜環境におG−Jる人気露
出とにかけた。
Next, these samples were subjected to peeling test 1 under the following conditions.
and S, 1llin S da Gi in Camargue, France.
G-J's popular exposure to the beach environment at RAUD station.

一アセントン又はアルコールでの脱脂処理1りに絶縁性
部材によってラックに固定した200X 1001繍2
のプレート 一検査前の露出時間:22ケ月 比較結果は次の通りである。
200X 1001 embroidery fixed to the rack with insulating material after degreasing with Ascenton or alcohol 1
The results of the comparison of the exposure time of the plates before the test: 22 months are as follows.

l i  2.0%、Qu  1.9%、Mg1.6%
、ZrO,08%、peo、05%、Si0.04%、
残りアルミニウムから′よる組成の合金2091を断面
800×300mm2、中量1.51−ンのプレー1〜
状にキ11ス1〜成形し、526℃で24時間均質化処
理し、削り処理して先端を切落しくプレートの厚み: 
 270mm)、470℃で12時旧聞加熱し、この温
度から厚みが3、2mになるまで熱間圧延にかり、リー
ル状に巻き上げ、450℃で1時間焼なまし処1!I!
 t、、 1.Gmnまで連続冷間圧延処理し、526
℃で20分間固溶化処理し、冷水で急冷を行ないその後
時効処1!11にかけた。薄片剥+1!2腐食、引張り
に関する機械的IS+ 11及び児II)靭性(KCA
)に関づるテストの結果は次の通りである。
l i 2.0%, Qu 1.9%, Mg 1.6%
, ZrO, 08%, peo, 05%, Si0.04%,
From the remaining aluminum, alloy 2091 with a composition according to
The plate was formed into a 11-kiss shape, homogenized at 526°C for 24 hours, and shaved to cut off the tip.Thickness of the plate:
270mm), heated at 470℃ for 12 hours, hot rolled from this temperature until the thickness reached 3.2m, wound into a reel, and annealed at 450℃ for 1 hour. I!
t,, 1. Continuously cold rolled to Gmn, 526
Solution treatment was carried out at ℃ for 20 minutes, quenched with cold water, and then subjected to aging treatment 1!11. Flaking+1!2 Mechanical IS+ for corrosion, tensile 11 and II) Toughness (KCA
) test results are as follows.

150℃で48時間時効処理した合金2091試利と状
態T351の合金2024とを、幅1001Mの正弦曲
線荷車e5=90+−40MPa  (中央亀裂を有す
る試験片)下での疲労亀裂伝搬に対する抵抗性に関して
比較し ノご 。
Alloy 2091 samples aged at 150°C for 48 hours and Alloy 2024 in condition T351 were tested for resistance to fatigue crack propagation under a sinusoidal cart of width 1001M e = 90+-40MPa (specimen with central crack). Compare.

第1図はこれら2種類の合金に関して、シートの長手方
向と横方向との聞の種々の方向におけるナイクル数<N
)対亀裂長さく2a)の関係を示1種々の曲線の範囲を
示している。このグラフから明らかなJ:うに前記2種
類の合金は互いにほぼ同等の性質を示すが、サイクル数
が多くなると2091の方が2024J:り優れた挙動
を示し、結果のバラつきも2091の方が少ない。
Figure 1 shows the Nykle number <N in various directions between the longitudinal and lateral directions of the sheet for these two types of alloys.
) shows the relationship between crack length and crack length 2a) 1 shows the range of the various curves; It is clear from this graph that the above two types of alloys have almost the same properties, but when the number of cycles increases, 2091 shows better behavior than 2024J: and the variation in the results is smaller for 2091. .

実施例3 1i2.5%、Cu41.4%、MOo、95%、Zr
O,06%、l:eo、06%、3i0.03%、残り
アルミニウムからなる組成の合金8090を断面800
X300 s2、mff11.5+−ンのプレート状に
キャスト成形し、535℃で24時間均質化処理し、先
端を切落し、厚み270 、馴まで削り、450℃で1
2時間再加熱し、450℃の温度から3.2mmの厚さ
まで熱間圧延にか()、450℃で1時間焼なまし処理
し、低温条件で9さ1,6Mまでシー!・状に圧延し、
535℃で20分開国溶化処理し、冷水で急冷し、1.
5%の冷間引張りストレッヂングにかけ、下記表3に記
載の条件で時効処理した。EXCOXC上と、自然の海
浜雰囲気下でのテストと、引張り強さ及び靭性(KIC
)に関する機械的特性のテストとの結果を合金2024
 T 351と比較して表3に示ず。
Example 3 1i2.5%, Cu41.4%, MOo, 95%, Zr
Cross section 800 of alloy 8090 with a composition consisting of O, 06%, l:eo, 06%, 3i 0.03%, and the remainder aluminum.
It was cast into a plate shape of
Reheated for 2 hours, then hot rolled from a temperature of 450℃ to a thickness of 3.2mm (), annealed at 450℃ for 1 hour, and then rolled to a thickness of 9mm to 1.6mm under low temperature conditions.・Rolled into shape,
After 20 minutes of open country solution treatment at 535°C, quenching with cold water, 1.
It was subjected to 5% cold tensile stretching and aged under the conditions listed in Table 3 below. Tests on EXCOXC and under natural beach atmosphere and tensile strength and toughness (KIC)
) Mechanical property tests and results for Alloy 2024
Not shown in Table 3 in comparison to T 351.

車 幅100Mの試験片 *率 d :密度 実」i量しユ 1i2.7%、Mg1.0%、Cu1.3%、Zro、
11 %、Fe0.04%、3i0.03%、残りアル
ミニムからなる組成の合金をφ200 trrmのビレ
ット−状に:I= +pスト成形し、535℃で24時
間均質化処理し1.1AOnoまで削り、430℃で断
面100x 13馴2のシートバー形状に熱間1111
出し成形し、535°Cで1時間30分固溶化処理し、
冷水で急冷し、2%の引張りス1〜レッチングにかけ、
下記表4に示した条件で時効処理した。
Car test piece with a width of 100M
An alloy with a composition of 11%, 0.04% Fe, 0.03% 3i, and the rest aluminum was molded into a billet of φ200 trrm: I = +p, homogenized at 535°C for 24 hours, and ground to 1.1AOno. , Hot 1111 to a sheet bar shape with a cross section of 100x 13mm at 430℃
It was molded and solution treated at 535°C for 1 hour and 30 minutes.
Rapidly cool with cold water, apply 2% tensile strength 1 to retching,
Aging treatment was performed under the conditions shown in Table 4 below.

薄片剥脱腐食に関J°るデス1−(EXCOテス1デス
び海8t2j囲気への露出)と靭性(K[C)に関する
機械的特性のテストとの結果を合金2024と比較して
表4に示ザ。
The results of the mechanical property tests for exfoliation corrosion (EXCO test 1 and exposure to ambient air) and toughness (K [C) are compared with alloy 2024 in Table 4. Demonstration.

表  4 時効処理 厚み1/2し厚み1/2し dth″   
長手方向の性状ベルにお べJしにおり    IlO
,211m  八5.G5M〆];6′ KIC/LT
けるl:XcO?)自然界1111     ()lP
a) (HPa)   fX)   ()IPal’m
)デスI〜   気デス1− 190℃テ12時間 EC−ED    [B    
    4’10540   7    37(ピーク
近傍) 本JL服 2024T351    ED      [C−[D
    2.79 400 530   13    
 39本5alinsdcGiraud  ステーシコ
ンで22ケ月晒J0傘$d:fiIK 実施例5 1i2.0%、CLJ3.2%、tvlo、3%、Zr
0011%、Fe0.04%、3i0.04%、残りア
ルミニウムからなる合金をφ 200Mのごレット状に
キ17ス1〜成形し、510℃で12時間均質化処J!
l! シ更に520℃で24時間均質化処理し、φ 1
40IrIMまで削り、420℃で断面10100X1
3のシー1〜バー状に押出成形し、525℃で11I、
lJ間30分固溶化処理し冷水で急冷し、2%の冷間引
張りス1へレッチングにかけ、本発明に従って 150
℃で48時間a′         時効処理した。
Table 4 Aging treatment Thickness 1/2 Thickness 1/2 dth''
IlO in the longitudinal direction
, 211m 85. G5M〆];6' KIC/LT
Keru:XcO? )Nature 1111 ()lP
a) (HPa) fX) ()IPal'm
) Death I~ Ki Death 1- 190℃Te 12 hours EC-ED [B
4'10540 7 37 (near the peak) Genuine JL clothes 2024T351 ED [C-[D
2.79 400 530 13
39 pieces 5 alinsdcGiraud J0 umbrella exposed for 22 months with station console $d: fiIK Example 5 1i 2.0%, CLJ 3.2%, tvlo, 3%, Zr
An alloy consisting of 0.0011%, 0.04% Fe, 0.04% 3i, and the remainder aluminum was formed into a 200M φ200M pellet and homogenized at 510°C for 12 hours.
l! The film was further homogenized at 520°C for 24 hours, and φ1
Cut to 40IrIM, cross section 10100X1 at 420℃
3, extrusion molded into a bar shape, heated to 11I at 525°C,
Solution treated for 30 minutes for 1J, quenched with cold water, retched to 2% cold tensile strength 150 according to the present invention
A' aging treatment was performed at ℃ for 48 hours.

艮手力向の引張り強さ及び艮千−横方向の靭性KICに
関する機械的特性と、E X COAD片剥脱腐食アス
トの結果と密度dとを従来の合金2024及び1075
と比較して表5に示づ。
Mechanical properties in terms of tensile strength in the force direction and toughness in the lateral direction KIC, results of EX COAD exfoliation corrosion ast and density d of conventional alloys 2024 and 1075
A comparison is shown in Table 5.

人−一旦 RO12Its     八(5,fl+541死D 
 KIC−LT    [XCOd(J/cri”本発
明   525  GO21144P−tEA  2.
5857065TG51    550  605  
  11     3I   P−EC2,81020
24T351    400  530    13 
    39    「D   2.790
Person - Once RO12Its 8 (5, fl + 541 death D
KIC-LT [XCOd(J/cri” Invention 525 GO21144P-tEA 2.
5857065TG51 550 605
11 3I P-EC2, 81020
24T351 400 530 13
39 "D 2.790

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2種類の合金シー1〜の種々の方向における亀
裂長さ対実施サイクル数の関係を丞す曲線グラフである
。 手続補正書 昭和62年1月7日 1、事件の表示  昭和61年特許願第283024号
2、発明の名称  リチウム含有アルミニウム合金の熱
処理方法ラリュミニウム・ペシネ 5、補正命令の日付 自 発 6、補正により増加する発明の数 7、補正の対象  明細書 薄片刊+11211i<食に関するデスI−(EXCO
テス1デスび1m浜雰囲気への露出)と1刀性(KIG
>に開するd域内特性のテストとの結果を合金2024
と比較して表4に示す。 ベルにお ベルにおけ    l10.211m  A
365SにIc/LTけるEXCOる自然゛雰囲   
 (HPal (t4Pal   (X)   (HP
a汀190℃で12時間 EC−ED    EB  
      490540   7    37(ピー
ク近傍) 傘Sal ins de Giraud  ステーショ
ンで22ケ月晒す。 傘率d:6話度
FIG. 1 is a graph of the crack length in various directions versus the number of cycles performed for two types of alloy sheets. Procedural amendment January 7, 1985 1. Indication of case: 1985 Patent Application No. 283024 2. Title of invention: Method for heat treatment of lithium-containing aluminum alloy Laluminium Pecine 5. Date of amendment order: Voluntary 6. By amendment Increasing number of inventions 7, subject of amendment Specification thin paper publication +11211i
Tess 1 death and 1 m beach atmosphere exposure) and 1 sword nature (KIG
> The results of the tests for the characteristics in the d region of Alloy 2024
A comparison is shown in Table 4. At the bell At the bell l10.211m A
EXCO's natural atmosphere with Ic/LT on 365S
(HPal (t4Pal (X) (HPal
a 12 hours at 190℃ EC-ED EB
490540 7 37 (near the peak) Exposure at Sal ins de Giraud station for 22 months. Umbrella rate d: 6 episodes

Claims (4)

【特許請求の範囲】[Claims] (1)大きな機械的強さと十分な耐損傷性とを保持させ
ながら耐剥離腐食性を向上させるためのLi含有Al合
金の熱処理方法であって、最終時効処理を下記の温度T
(単位℃)及び時間t(単位時)の範囲 t≧20×5exp((150−T)/30)t≦80
×5exp((150−T)/30)但し Mg≧2%
の場合はT≦160℃ 1≦Mg≦2%の場合は T≦160℃−5(2−%Mg)℃ Mg≦1%の場合はT≦155℃ で行なうことを特徴とする方法。
(1) A heat treatment method for a Li-containing Al alloy to improve exfoliation corrosion resistance while maintaining high mechanical strength and sufficient damage resistance, the final aging treatment being carried out at the following temperature T.
(unit ℃) and time t (unit hour) range t≧20×5exp((150-T)/30)t≦80
×5exp ((150-T)/30) However, Mg≧2%
If T≦160°C, if 1≦Mg≦2%, T≦160°C-5(2-%Mg)°C, and if Mg≦1%, T≦155°C.
(2)前記処理時間が24×5exp((150−T)
/30)以上であることを特徴とする特許請求の範囲第
1項に記載の方法。
(2) The processing time is 24×5exp ((150-T)
/30) or more, the method according to claim 1.
(3)前記処理温度が155℃以下であることを特徴と
する特許請求の範囲第1項又は第2項に記載の方法。
(3) The method according to claim 1 or 2, wherein the treatment temperature is 155°C or lower.
(4)1〜4(重量)%のLiと、1〜5%のCuと、
7%未満のMgと、0.2%未満のZrと、0.4%未
満のCrと、1%未満のMnとを含み、その他Fe、S
i、Hf、Nb、V、W、Ta及びTiを各々0.5%
未満含み、残りがアルミニウム及び通常の不純物である
ような合金への特許請求求の範囲第1項から第3項のい
ずれかに記載の方法の使用。
(4) 1 to 4% (by weight) of Li and 1 to 5% of Cu;
Contains less than 7% Mg, less than 0.2% Zr, less than 0.4% Cr, and less than 1% Mn, and other Fe, S
0.5% each of i, Hf, Nb, V, W, Ta and Ti
Use of the method according to any one of claims 1 to 3 on alloys containing less than or equal to 50% aluminum and the remainder being aluminum and normal impurities.
JP61283024A 1985-11-28 1986-11-27 Heat treatment of lithium-containing aluminum alloy Pending JPS62142752A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8518208 1985-11-28
FR8518208 1985-11-28

Publications (1)

Publication Number Publication Date
JPS62142752A true JPS62142752A (en) 1987-06-26

Family

ID=9325580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283024A Pending JPS62142752A (en) 1985-11-28 1986-11-27 Heat treatment of lithium-containing aluminum alloy

Country Status (8)

Country Link
EP (1) EP0227563B1 (en)
JP (1) JPS62142752A (en)
AT (1) ATE52109T1 (en)
BR (1) BR8605809A (en)
CA (1) CA1291927C (en)
DE (1) DE3670510D1 (en)
ES (1) ES2014248B3 (en)
IL (1) IL80765A0 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462712A (en) * 1988-08-18 1995-10-31 Martin Marietta Corporation High strength Al-Cu-Li-Zn-Mg alloys
US5259897A (en) * 1988-08-18 1993-11-09 Martin Marietta Corporation Ultrahigh strength Al-Cu-Li-Mg alloys
US5211910A (en) * 1990-01-26 1993-05-18 Martin Marietta Corporation Ultra high strength aluminum-base alloys
US5133931A (en) * 1990-08-28 1992-07-28 Reynolds Metals Company Lithium aluminum alloy system
US5234662A (en) * 1991-02-15 1993-08-10 Reynolds Metals Company Low density aluminum lithium alloy
DE4113352C2 (en) * 1991-04-24 1996-05-23 Hoogovens Aluminium Gmbh Process for the production of aluminum sheets
US5198045A (en) * 1991-05-14 1993-03-30 Reynolds Metals Company Low density high strength al-li alloy
US5240521A (en) * 1991-07-12 1993-08-31 Inco Alloys International, Inc. Heat treatment for dispersion strengthened aluminum-base alloy
KR940008071B1 (en) * 1991-12-26 1994-09-01 한국과학기술연구원 Heat treatment method of al-li
US8118950B2 (en) 2007-12-04 2012-02-21 Alcoa Inc. Aluminum-copper-lithium alloys
US8333853B2 (en) 2009-01-16 2012-12-18 Alcoa Inc. Aging of aluminum alloys for improved combination of fatigue performance and strength
FR2945464B1 (en) * 2009-05-13 2012-03-23 Alcan Rhenalu PROCESS FOR WELDING ASSEMBLY OF ALUMINUM ALLOY PARTS.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3483607D1 (en) * 1983-12-30 1990-12-20 Boeing Co AGING AT RELATIVELY LOW TEMPERATURES OF LITHIUM-CONTAINING ALUMINUM ALLOYS.
US4648913A (en) * 1984-03-29 1987-03-10 Aluminum Company Of America Aluminum-lithium alloys and method
DE3613224A1 (en) * 1985-08-20 1987-02-26 Boeing Co ALUMINUM LITHIUM ALLOY

Also Published As

Publication number Publication date
ES2014248B3 (en) 1990-07-01
DE3670510D1 (en) 1990-05-23
EP0227563A1 (en) 1987-07-01
CA1291927C (en) 1991-11-12
EP0227563B1 (en) 1990-04-18
ATE52109T1 (en) 1990-05-15
BR8605809A (en) 1987-08-25
IL80765A0 (en) 1987-02-27

Similar Documents

Publication Publication Date Title
US8317947B2 (en) Aluminum alloy sheet for press forming
Vercammen et al. Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning
Fan et al. Investigation on strengthening of 6A02 aluminum alloy sheet in hot forming-quenching integrated process with warm forming-dies
Furukawa et al. Factors influencing the flow and hardness of materials with ultrafine grain sizes
CN105671358B (en) Copper alloy plate, copper alloy part and connector
Stubbington et al. Improvements in the fatigue strength of Ti-6Al-4V through microstructure control
JPS62142752A (en) Heat treatment of lithium-containing aluminum alloy
EP2212444B2 (en) Recrystallized aluminum alloys with brass texture and methods of making the same
WO2013007471A1 (en) Method of manufacturing an al-mg alloy sheet product
EP2706125A1 (en) Copper alloy sheet material and process for producing same
Li et al. Mechanical behavior of ultrafine-grained Ti-6Al-4V alloy produced by severe warm rolling: the influence of starting microstructure and reduction ratio
Cho et al. Microstructure and mechanical properties of Al-Si-Mg alloys fabricated by twin roll casting and subsequent symmetric and asymmetric rolling
Kusakin et al. Advanced thermomechanical processing for a high-Mn austenitic steel
GB1603690A (en) Process for the treatment of sheets of aluminium alloys
JPS6324048A (en) Production of zircaloy 2 or zircaloy 4 strip in partially recrystallized state and strip produced
US4812178A (en) Method of heat treatment of Al-based alloys containing Li and the product obtained by the method
Hu et al. Relationship between precipitation behavior and loading orientations of the creep-aged Al–Cu–Li single crystal
Lee et al. The effect of off-axis thermomechanical processing on the mechanical behavior of textured 2095 Al–Li alloy
Zhang et al. Hot-compression behavior of Al-1Mn-1Mg alloy
CN114525433B (en) Finished product annealing treatment method of aluminum alloy plate strip for new energy battery
CN109666879B (en) ZK61M magnesium alloy for aerospace
CA3062762A1 (en) Titanium alloy-based sheet material for low- temperature superplastic deformation
Yang et al. Anisotropy evolution of wide magnesium alloy foils during continuous electroplastic rolling
Edmunds Season Cracking of brass
Zhang et al. Effect of pre-annealing treatment on the microstructure and mechanical properties of extruded Al–Zn–Mg–Cu alloy bars