JPS62142346A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS62142346A
JPS62142346A JP60283621A JP28362185A JPS62142346A JP S62142346 A JPS62142346 A JP S62142346A JP 60283621 A JP60283621 A JP 60283621A JP 28362185 A JP28362185 A JP 28362185A JP S62142346 A JPS62142346 A JP S62142346A
Authority
JP
Japan
Prior art keywords
conducting layer
conductivity type
trench groove
trench
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60283621A
Other languages
Japanese (ja)
Inventor
Kenji Tominaga
健司 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP60283621A priority Critical patent/JPS62142346A/en
Publication of JPS62142346A publication Critical patent/JPS62142346A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To implement a capacitor having a large storing capacitance, by constituting capacitors between a reverse-conductivity type diffused region formed on the inner surface of a trench groove and a first conducting layer and between the first conducting layer and a second conducting layer, and obtaining the sum of the capacitances of the two capacitors. CONSTITUTION:An element isolating structure 2 is formed in a one-conductivity type semiconductor substrate 1. Then a trench groove 3 is formed. A reverse-conductivity type first impurity diffused region 4 with respect to the semiconductor substrate 1 is formed on the entire inner wall of the trench groove 3 and a part of the semiconductor substrate 1. A first insulating film (dielectric film) 5 is formed on the entire surface. The first conducting layer 6 and the first insulating film 5 at the bottom of the trench grove 3 are removed, and an opening part 8 is formed at the bottom surface of the trench groove. A second insulating film (dielectric film) 7 is formed on the surface of the first conducting film layer 6. Then, a second conducting layer 9 and a second impurity diffused region 10, which has the same conductivity type as that of the first impurity diffused region 4, are formed. The first diffused ration 4 is ohmic-conducted to the second conducting layer 9 through the opening part 8 at the bottom surface of the trench groove and the second diffused region 10. The part becomes a counter electrode for the first conducting layer 6, and electric charge is stored. Thus, the effective capacitor area is strikingly increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はダイナミックメモリのセルキャパシタ構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to cell capacitor structures for dynamic memories.

従来の技術 第3図の断面図に従来のダイナミックメモリのキャパシ
タ構造を示す。一導電形半導体基板1に素子分離構造2
を形成した後、キャパシタ部に選択的に前記半導体基板
1と反対導電形の不純物拡散層4を形成した後、全面に
絶縁膜5及び選択的に導電膜6を形成し、前記不純物拡
散層4及び導電膜6間に電荷を蓄積してメモリ機能をも
たせる。
BACKGROUND OF THE INVENTION A cross-sectional view of FIG. 3 shows a capacitor structure of a conventional dynamic memory. Element isolation structure 2 on one conductivity type semiconductor substrate 1
After forming, an impurity diffusion layer 4 of the opposite conductivity type to the semiconductor substrate 1 is selectively formed in the capacitor portion, an insulating film 5 and a conductive film 6 are selectively formed on the entire surface, and the impurity diffusion layer 4 is And electric charges are accumulated between the conductive films 6 to provide a memory function.

発明が解決しようとする問題点 ダイナミックメモリの高集積化にはメモリセル面積の低
減が必要不可決であるが、構造を変えずにセルキャパシ
タの面積を縮少すると、キャパシタ容量が減少してンフ
トエラー等の問題が発生する。その解決策としては、キ
ャパシタ絶縁膜を薄くする、キャパシタを三次元化して
二次元的セル面積を増大させずに実効的キャパシタ容量
を増大させる等が実施されるが、前者の方法はキャパシ
タ絶縁膜の膜厚が非常に薄くなった場合、歩留や信頼性
に問題が生じる。本発F!Aは後者の方法分用いて、そ
の問題点を解決する手段を提供するものである。
Problems to be Solved by the Invention It is essential to reduce the area of memory cells in order to increase the integration density of dynamic memories, but if the area of cell capacitors is reduced without changing the structure, the capacitance will decrease and errors will occur. Problems such as this may occur. Solutions to this problem include thinning the capacitor insulating film and making the capacitor three-dimensional to increase the effective capacitance without increasing the two-dimensional cell area. If the film thickness becomes very thin, problems will arise in yield and reliability. Original F! A uses the latter method to provide a means to solve the problem.

問題点を解決するための手段 本発明は、一導電形半導体基板の表面部にトレンチ溝を
有し、同トレンチ溝の内面に反対導電形の拡散領域、誘
電体膜を介して前記拡散領域に対面する第1導電層およ
び誘電体膜を介して前記第14電層に対面し、かつ、前
記拡散領域に前記トレンチ溝底部で接触した第2導電層
をそなえた半導体記憶装置である。
Means for Solving the Problems The present invention has a trench groove on the surface of a semiconductor substrate of one conductivity type, a diffusion region of the opposite conductivity type on the inner surface of the trench groove, and a diffusion region connected to the diffusion region via a dielectric film. The semiconductor memory device includes a second conductive layer that faces the fourteenth conductive layer through a first conductive layer and a dielectric film that face each other and is in contact with the diffusion region at the bottom of the trench.

作  用 本発明によると、トレンチ溝の内面に形成された反対導
電形の拡散領域と第1導電層との間および第1導電層と
第2導電層との間にそれぞれキャパシタを構成し、同キ
ャパシタ容量も両者の和となるので、大きな蓄積容量の
キャパシタが実現でき、この構造のキャパシタをメモリ
のセルキャパシタに用いることによって、半導体基板上
でのセル占有面積が小さく、実効的に大きな蓄積容量を
もったメモリセルが得られる。
According to the present invention, capacitors are formed between the diffusion region of opposite conductivity type formed on the inner surface of the trench groove and the first conductive layer, and between the first conductive layer and the second conductive layer, respectively. Since the capacitor capacitance is the sum of both, a capacitor with a large storage capacity can be realized. By using a capacitor with this structure as a memory cell capacitor, the cell occupies a small area on the semiconductor substrate and can effectively achieve a large storage capacity. A memory cell with .

実施例 第1図に本発明の実施例装置の要部断面図を示す。本発
明では実効的キャパシタ面積を飛躍的に増大させるため
、一導電形の半導体基板1に素子分離構造2を形成した
後、トレンチ溝3′f:形成する。そして、このトレン
チ溝3の内壁全面及び前記半導体基板1の一部に半導体
基板1と反対導電形の第1不純物拡散領域4′ff:形
成し、全面に第1絶縁膜(誘電体膜)5を形成する。さ
らにトレンチ溝3の内壁全面及び前記半導体基板1の一
部に第1導電層6を形成した後、前記トレンチ溝3底面
の第1導電層6及び第1絶縁膜5を除去してトレンチ溝
底面開口部8を形成する。第1導電層6の表面に第2絶
縁膜(誘電体膜)7を形成した後、前記トレンチ溝底面
開口部8全面及び第2絶縁膜7上の一部に第2導電層9
を形成し、さらにトレンチ溝底面開口部8よシ半導体基
板1に第1不純物拡散領域4と同一定形の第2不純物拡
散領域10を形成する。
Embodiment FIG. 1 shows a sectional view of a main part of an embodiment of the present invention. In the present invention, in order to dramatically increase the effective capacitor area, after forming the element isolation structure 2 on the semiconductor substrate 1 of one conductivity type, the trench 3'f is formed. Then, a first impurity diffusion region 4'ff of a conductivity type opposite to that of the semiconductor substrate 1 is formed on the entire inner wall of the trench groove 3 and a part of the semiconductor substrate 1, and a first insulating film (dielectric film) 5 is formed on the entire surface. form. Further, after forming a first conductive layer 6 on the entire inner wall of the trench groove 3 and a part of the semiconductor substrate 1, the first conductive layer 6 and the first insulating film 5 on the bottom surface of the trench groove 3 are removed, and the bottom surface of the trench groove 3 is removed. An opening 8 is formed. After forming a second insulating film (dielectric film) 7 on the surface of the first conductive layer 6, a second conductive layer 9 is formed on the entire surface of the trench bottom opening 8 and a part of the second insulating film 7.
Further, a second impurity diffusion region 10 having the same shape as the first impurity diffusion region 4 is formed in the semiconductor substrate 1 from the bottom opening 8 of the trench.

第2導電層90表面に第3絶縁膜11を形成した後、残
るトレンチ溝を導電膜あるいは絶縁膜12でうめて平担
化を図る。第1拡散領域4と第2導電層9はトレンチ溝
底面開口部8及び第2拡散領域10を通じてオーミック
に導通し、共に第1導第2図a ”’−eに本発明の実
施例を製造工程順断面図を示し、これによって詳しくの
べる。第2図aに示すように、P形シリコン単結晶基板
1に選択酸化膜2を形成し、異方性ドライエツチング法
でトレンチ溝3を形成し、用トレンチ溝3の内壁全面及
びシリコン基板1の上面の一部に第1リン拡散領域4を
形成し、さらに全面を熱酸化して第1酸化膜5を形成す
る。次に第2図すに示すように選択的に第1ポリシリコ
ン層6を形成した後、第2図Cに示すようにフォトレジ
ストパターンおよび異方性ドライエツチング法を用いて
トレンチ溝底面の第1ポリシリコン層6及び第1酸化膜
5を除去してトレンチ溝底面開口部8全形成し、さらに
第1ポリシリコン層60表面を酸化して第2  、酸化
膜7を形成する。
After forming the third insulating film 11 on the surface of the second conductive layer 90, the remaining trenches are filled with a conductive film or an insulating film 12 to planarize them. The first diffusion region 4 and the second conductive layer 9 are ohmically conductive through the trench bottom opening 8 and the second diffusion region 10, and both the first conductive layer 4 and the second conductive layer 9 are connected to each other through the trench bottom opening 8 and the second conductive layer 10. A cross-sectional view of the process is shown, and the details will be explained using these.As shown in FIG. , a first phosphorus diffusion region 4 is formed on the entire inner wall of the trench groove 3 and a part of the upper surface of the silicon substrate 1, and then the entire surface is thermally oxidized to form a first oxide film 5. Next, as shown in FIG. After selectively forming the first polysilicon layer 6 as shown in FIG. 2C, the first polysilicon layer 6 and The first oxide film 5 is removed to form the entire trench bottom opening 8, and the surface of the first polysilicon layer 60 is further oxidized to form a second oxide film 7.

次に第2図dに示すようにあらかじめリンドーグした第
2ポリシリコン層9を形成し、トレンチ溝底面開口部8
よI) I)ンを熱拡散して第2リン拡散領域1oを形
成して第2ポリシリコン層9と第1リン拡散領域4とが
オーミックに接触できるようにする。最後に第2図eに
示すように第2ポリシリコン層9の表面に第2酸化膜1
1を形成後、残るトレンチ溝を第3ポリシリコン12で
うめ、エッチバンク法で平担化する。
Next, as shown in FIG. 2d, a second polysilicon layer 9 which has been doped in advance is formed, and the bottom opening 8 of the trench groove is formed.
The second phosphorus diffusion region 1o is formed by thermally diffusing the phosphorus ions, so that the second polysilicon layer 9 and the first phosphorus diffusion region 4 can come into ohmic contact. Finally, as shown in FIG. 2e, a second oxide film 1 is formed on the surface of the second polysilicon layer 9.
1, the remaining trenches are filled with third polysilicon 12 and planarized by an etch bank method.

発明の効果 以上より明らかなように本発明にかかるダイナミックメ
モリのセルキャパシタは第1導電層と第1不純物拡散領
域との間及び第1導電層と第2導電層との間に電荷蓄積
部を有し、従来の構造に比してトレンチ溝の深さを適描
にとることにより容易に数倍以上の面積利用率をもち、
大容量ダイナミックメモリのメモリセルキャパシタ構造
として非常に有用で61)、その工業的価値は太きい。
Effects of the Invention As is clear from the above, the cell capacitor for a dynamic memory according to the present invention has a charge storage portion between the first conductive layer and the first impurity diffusion region and between the first conductive layer and the second conductive layer. By carefully planning the depth of the trench, the area utilization rate can be easily several times higher than that of the conventional structure.
It is extremely useful as a memory cell capacitor structure for large-capacity dynamic memories61), and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例装置の要部断面図、第2図d〜e
は本発明実施例装置を工程順に示す断面図、第3図は従
来例装置の断面図である。 1・・・・・・半導体基板(P形単結晶シリコン基板)
、2・・・・・・素子分離構造、(選択酸化膜)、3・
・・・・・トレンチ溝、4・・・・・・第1不純物拡散
領域(第1リン拡散領域)、5・・・・・・第1絶縁膜
(第1ゲート酸化膜)、6・・・・・・第1導電層(第
1ポリシリコン層LT・・・・・・第2絶縁膜(第2ゲ
ート酸化膜)、8・・・・−・トレンチ溝底面開口部、
9・・・・・・第2導電層(第2ポリシリコン層)、1
o・・・・・・第2不純物拡散領域(第2リン拡散領域
)、11・・・・・・第3絶縁膜(第2ポリシリコン酸
化膜)。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 符2図
Figure 1 is a sectional view of the main parts of the device according to the present invention, Figures 2 d to e
FIG. 3 is a cross-sectional view showing an apparatus according to an embodiment of the present invention in the order of steps, and FIG. 3 is a cross-sectional view of a conventional apparatus. 1...Semiconductor substrate (P-type single crystal silicon substrate)
, 2... Element isolation structure, (selective oxide film), 3.
...Trench groove, 4...First impurity diffusion region (first phosphorus diffusion region), 5...First insulating film (first gate oxide film), 6... ...First conductive layer (first polysilicon layer LT...Second insulating film (second gate oxide film), 8...Trench bottom opening,
9... Second conductive layer (second polysilicon layer), 1
o... Second impurity diffusion region (second phosphorous diffusion region), 11... Third insulating film (second polysilicon oxide film). Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)一導電形半導体基板の表面部にトレンチ溝を有し
、同トレンチ溝の内面に反対導電形の拡散領域、誘電体
膜を介して前記拡散領域に対面する第1導電層および誘
電体膜を介して前記第1導電層に対面し、かつ、前記拡
散領域に前記トレンチ溝底部で接触した第2導電層をそ
なえた半導体記憶装置。
(1) A trench groove is provided on the surface of a semiconductor substrate of one conductivity type, a diffusion region of the opposite conductivity type is formed on the inner surface of the trench groove, and a first conductive layer and a dielectric material face the diffusion region through a dielectric film. A semiconductor memory device comprising a second conductive layer that faces the first conductive layer through a film and contacts the diffusion region at the bottom of the trench.
(2)第1、第2導電層が多結晶シリコンでなる特許請
求の範囲第1項記載の半導体記憶装置。(3)誘電体膜
が酸化シリコン膜でなる特許請求の範囲第1項記載の半
導体記憶装置。
(2) The semiconductor memory device according to claim 1, wherein the first and second conductive layers are made of polycrystalline silicon. (3) The semiconductor memory device according to claim 1, wherein the dielectric film is a silicon oxide film.
JP60283621A 1985-12-17 1985-12-17 Semiconductor memory device Pending JPS62142346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283621A JPS62142346A (en) 1985-12-17 1985-12-17 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283621A JPS62142346A (en) 1985-12-17 1985-12-17 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS62142346A true JPS62142346A (en) 1987-06-25

Family

ID=17667880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283621A Pending JPS62142346A (en) 1985-12-17 1985-12-17 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS62142346A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153560A (en) * 1988-08-18 1990-06-13 Matsushita Electron Corp Semiconductor memory device and manufacture thereof
EP3832709A4 (en) * 2018-08-01 2021-08-11 Nissan Motor Co., Ltd. Semiconductor device, power module, and manufacturing method for semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153560A (en) * 1988-08-18 1990-06-13 Matsushita Electron Corp Semiconductor memory device and manufacture thereof
EP3832709A4 (en) * 2018-08-01 2021-08-11 Nissan Motor Co., Ltd. Semiconductor device, power module, and manufacturing method for semiconductor device
US11664466B2 (en) 2018-08-01 2023-05-30 Nissan Motor Co., Ltd. Semiconductor device, power module and method for manufacturing the semiconductor device

Similar Documents

Publication Publication Date Title
US5034341A (en) Method of making a memory cell array structure
KR0141218B1 (en) Fabrication method of semkonductor device
JPH0414868A (en) Semiconductor memory and manufacture thereof
JPH05206405A (en) Dynamic semiconductor memory device provided with vertical-type transistor and its manufacture
JPH0775247B2 (en) Semiconductor memory device
JPH03190162A (en) Semiconductor device and manufacture thereof
JPH01132152A (en) Manufacture of groove-shaped capacitor cell for semiconductor device
JP2932540B2 (en) Semiconductor memory device
JPH02312270A (en) Dram cell and its manufacture
JPH0750772B2 (en) Semiconductor device and manufacturing method thereof
JP3364244B2 (en) Method for manufacturing semiconductor memory device
JPH01130557A (en) Semiconductor memory and manufacture thereof
JPS62142346A (en) Semiconductor memory device
JPH0680805B2 (en) MIS type semiconductor memory device
JPH0654801B2 (en) Semiconductor memory cell and manufacturing method thereof
JPH03185757A (en) Ultra-high integrated dram and manufacture thereof
JP2730039B2 (en) Semiconductor device and manufacturing method thereof
JPH0425171A (en) Semiconductor memory device
JPH01119057A (en) Mis-type semiconductor memory device
JP2892443B2 (en) Method for manufacturing semiconductor device
JP2674218B2 (en) Semiconductor storage device
JPH01307260A (en) Semiconductor memory cell
JPH022672A (en) Semiconductor memory cell and manufacture thereof
JPH0223657A (en) Semiconductor memory device
JPH04107858A (en) Dynamic type semiconductor memory and manufacturing method thereof