JPS62142044A - Reinforcing method for transmission shaft with circular hole - Google Patents

Reinforcing method for transmission shaft with circular hole

Info

Publication number
JPS62142044A
JPS62142044A JP28166885A JP28166885A JPS62142044A JP S62142044 A JPS62142044 A JP S62142044A JP 28166885 A JP28166885 A JP 28166885A JP 28166885 A JP28166885 A JP 28166885A JP S62142044 A JPS62142044 A JP S62142044A
Authority
JP
Japan
Prior art keywords
circular hole
die
hole
stress
hole edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28166885A
Other languages
Japanese (ja)
Inventor
Yoshinori Fukui
義典 福井
Susumu Yamamoto
晋 山本
Kazushige Yagi
八木 和茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28166885A priority Critical patent/JPS62142044A/en
Publication of JPS62142044A publication Critical patent/JPS62142044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To reinforce effectively and surely by working the hole edge part of a round hole with the 2nd die having an elliptic conical working part further after the plastic work of the hole edge part of the round hole in advance by the plural projecting parts formed along the generating line on the outer periphery of a conical working part. CONSTITUTION:The 1st upper and lower dies 9-5, 9-6 having a conical working part at the tip and having four pieces of projecting parts 9-1-9-4 which run along the generating line thereof on the outer peripheral face of this working part are pressed to the hole edge and taper face and reinforced by causing a plastic flow in the 45 deg. direction of the hole edge. Then, the 2nd upper and lower dies 9-6, 9-6' having an elliptic conical working part are pressed to the hole edge and taper face and the 90 deg. direction not worked by the 1st die 9-5 is subjected to the plastic work. In this way the round hole edge part where stress is concentrated can easily be reinforced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、先端に円錐形加工部を有するダイスを用いて
、曲げあるいはねじり荷重等を受ける伝動軸の応力集中
がある円孔の孔縁部分を強化することによって、軸全体
としての強度を高め、伝動軸の許容負担力を大きくする
円孔付伝動軸の強化法に係り、例えば、クランク軸、プ
ロペラシャフトを初め各種の伝動軸(駆動軸と従動軸お
よび連結軸を含む)の強化方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention uses a die having a conical processing part at the tip to cut the edge of a circular hole where the stress concentration of the transmission shaft is subjected to bending or torsional loads. This relates to a method for strengthening transmission shafts with circular holes, which increases the strength of the shaft as a whole and increases the permissible load of the transmission shaft by strengthening the parts. (including shafts, driven shafts, and connecting shafts).

(従来の技術) クランク軸、プロペラシャフトその他の各種の伝動軸に
は、潤滑とか冷却とか等のためにそれらの流体を通す円
孔が形成されており、この円孔付伝動軸に曲げあるいは
ねじり荷重等が作用すると応力集中が起こり、従って、
応力集中がある孔縁部分を強化しなければならない。
(Prior art) Crankshafts, propeller shafts, and other types of power transmission shafts are formed with circular holes through which fluid passes for lubrication, cooling, etc. When a load etc. acts, stress concentration occurs, and therefore,
The hole edges, where stress is concentrated, must be strengthened.

即ち、 ■) 曲げ荷重により油孔(円孔)のはし即ち、孔縁部
分に生ずる応力 第9図a、b、cに示す直径dの円孔をもった直径りの
軸材に曲げモーメンl−Mが作用すると、円孔のはしよ
りいくぶん中心には入った点Aに応力集中によって大き
な応力が生ずる。第10図に応力集中の程度を示す。い
ま円孔の直径d=0.1−Dとすると、応力集中率α−
2,4となり、円孔内面はしのA点付近に2.4  ・
M/Zの応力が生ずる。ただし、M:軸に加えられたモ
ーメント Z:丸棒の断面係数(=πD3 /32)。
That is, (1) Stress generated at the edge of the oil hole (circular hole) due to bending load, that is, at the edge of the hole.A bending moment is applied to the shaft member having a circular hole of diameter d shown in Figure 9 a, b, and c. When l-M acts, a large stress is generated due to stress concentration at point A, which is located somewhat in the center of the circular hole. Figure 10 shows the degree of stress concentration. Now, if the diameter of the circular hole is d = 0.1-D, the stress concentration rate α-
2,4, and 2.4 is near point A on the inner edge of the circular hole.
A stress of M/Z is generated. However, M: Moment applied to the axis Z: Section modulus of the round bar (=πD3/32).

一般に軸材につけられる油孔の直径は0.1〜0.2 
 ・Dであるため、A点付近に2.0〜2.4程度の応
力集中が生ずることはさけられない。
Generally, the diameter of the oil hole in the shaft material is 0.1 to 0.2
-D, it is inevitable that stress concentration of about 2.0 to 2.4 will occur near point A.

2) ねじり荷重により油孔(円孔)のはしに生ずる応
力 第11図a、bに示ずごとく、円孔を有する軸材に図示
されたトルクが加わった場合、軸方向に対し45°傾い
たA−A点に引張り最大応力σmaxが生じ、BB点に
圧縮最大応力σminが生ずる。また軸表皮上の軸線0
−x。
2) Stress generated at the edge of the oil hole (circular hole) due to torsional load As shown in Figure 11a and b, when the illustrated torque is applied to the shaft member having a circular hole, the stress is generated at 45° to the axial direction. A maximum tensile stress σmax occurs at the tilted point A-A, and a maximum compressive stress σmin occurs at the BB point. Also, the axis 0 on the axial epidermis
-x.

o−y上にもCおよびD点から0.73・r (円孔の
中心から5− r )はなれた点EおよびFにも1.3
3・τ0の最大応力が生ずる。ただし、r;円孔の半径
、τ0:軸表皮に生ずるせん断応力(=16・T/π・
D3、ここで、T:ねじりモーメント、D:軸の直径)
0.73・r from points C and D on o-y (5-r from the center of the circular hole) and 1.3 at points E and F, which are distant from the center of the circular hole.
A maximum stress of 3·τ0 occurs. However, r: radius of the circular hole, τ0: shear stress generated on the shaft skin (=16・T/π・
D3, where T: torsion moment, D: shaft diameter)
.

A点およびB点に生ずる応力は第11図すに示す如く円
孔はしよりやや中心には入った点で最大になる。円孔内
壁の最大応力点A1およびB1と円孔のはしとの距離は
0.4  ・r程度である。
The stress generated at points A and B reaches its maximum at a point slightly closer to the center than the edge of the circular hole, as shown in FIG. The distance between the maximum stress points A1 and B1 on the inner wall of the circular hole and the edge of the circular hole is about 0.4·r.

第12図にA、B点、A’、B“点およびE、F点の応
力集中率とd/D(または 2・r/D)の関係を示す
。三者の内で八″、B”点の応力集中率αA・、B・が
最も大きく、油孔として普通あけられる孔径比d/D=
0.1〜0.2の場合についてみると、αA・。
Figure 12 shows the relationship between the stress concentration ratio and d/D (or 2.r/D) at points A, B, A', B", and E, F. Of the three, 8", B ”The stress concentration rate αA・,B・is the largest at the point, and the hole diameter ratio d/D= which is normally drilled as an oil hole
In the case of 0.1 to 0.2, αA・.

B・= 2.15〜2.30となり、油孔周辺に大きな
せん断応力が生ずる。このため池孔付き軸材においては
AおよびB点から軸線に対し45°傾いた割れ(クロス
マーク)を生じ折損することがある。
B.=2.15 to 2.30, and a large shear stress is generated around the oil hole. For this reason, in the shaft material with a reservoir hole, cracks (cross marks) inclined at 45 degrees with respect to the axis may occur from points A and B, and the shaft material may break.

このように伝動軸に油孔などの円孔があけられると、曲
げあるいはねじりいずれの応力条件においても油孔の内
面はしく孔縁)に基準応力の2.0〜2.5倍の大きな
応力が生ずるため、設計、工作上下記の対策がとられて
いるが、高力材の使用あるいは工数の増大による製造価
格の上昇あるいは設計上の不便はさけられない。
When a circular hole such as an oil hole is drilled in a transmission shaft in this way, a large stress of 2.0 to 2.5 times the standard stress is generated on the inner surface of the oil hole (or the hole edge) under either bending or torsional stress conditions. The following countermeasures have been taken in design and construction to prevent this from occurring; however, increases in manufacturing costs and design inconveniences due to the use of high-strength materials or increased man-hours cannot be avoided.

即ち、 a) 設計上に工夫を加え、伝動軸に潤滑油供給用の油
孔を設けない。
That is, a) The design has been improved and the transmission shaft is not provided with an oil hole for supplying lubricating oil.

b) 伝動軸の直径を大きくする、あるいは材料強度を
高めて油孔周辺の応力集中に耐えるようにする。
b) Increase the diameter of the transmission shaft or increase the material strength to withstand stress concentration around the oil hole.

C) 油孔のはしの部分の手入れを入念にしてバイト跡
などが残らないようにして応力集中係数が大きくならな
いようにする。
C) Carefully take care of the edge of the oil hole so that there are no bite marks left, so that the stress concentration factor does not become large.

斯る技術背景から、油孔はしの強化法として従来、第1
3図a、bに示すごとく、平板あるいは口板を押付ける
(第13図(a))、またはボルト孔の強化に利用され
ている方法であるが(第13図(b))、先端の円錐角
α=90°程度のポンチを押付けるなどの方法が提案さ
れている。これらは小試験片による実験では50%以上
疲れ限度が上昇し、有効な円孔付軸材の強化法とされて
いるが、全くといってよい程実用化されていない。これ
はすでに提案されている油孔の押付は強化法は実用化が
むづかしい、あるいは実用化させようとしても実用化で
きない下記の基本的欠陥が含まれているからである。
Due to this technical background, the first method of strengthening oil holes has been
As shown in Figures 3a and 3b, this method is used to press a flat plate or opening plate (Figure 13(a)) or to strengthen bolt holes (Figure 13(b)). A method has been proposed, such as pressing a punch with a cone angle α of about 90°. In experiments using small test pieces, these methods increased the fatigue limit by more than 50% and are considered to be an effective method for strengthening shaft members with circular holes, but they have not been put to practical use at all. This is because the previously proposed methods of strengthening oil holes are difficult to put into practical use, or even if attempts are made to put them into practical use, they include the following basic defects that prevent them from being put into practical use.

(発明が解決しようとする問題点) 第13図ta+ (b)に示す従来例にあっては次のよ
うな問題点がある。
(Problems to be Solved by the Invention) The conventional example shown in FIG. 13(b) has the following problems.

a) 円孔はしの最大応力部は先にも述べたが、第9図
a、b、cに示すごとく、円孔はしく孔縁)から0.4
・r程度中心側には入った位置になる。小径軸の場合で
あれば第13図(a)に示すごとく、単に円孔はしに平
板を押し付けても強化効果は最大応力部に及ぶが、工業
的に使われる中大形軸においては、円孔はしに平板状ダ
イスを押し付けても有効な強化効果はえられない。
a) As mentioned earlier, the maximum stress part of the circular hole edge is 0.4 from the edge of the circular hole edge, as shown in Figure 9 a, b, and c.
・The position is about r toward the center. In the case of small-diameter shafts, simply pressing a flat plate onto the circular hole edge will have a reinforcing effect on the area of maximum stress, as shown in Figure 13(a), but for medium-sized and large-sized shafts used industrially, Even if a flat die is pressed against a circular hole, no effective reinforcing effect can be obtained.

b) 回転軸などにおいて円孔部を平板状ダイスで押し
付けると円孔部は変形し、また軸そのものの真円度も悪
くなるため回転軸として実用に耐えなくなる。
b) If a flat die is pressed against a circular hole in a rotating shaft, the circular hole will be deformed, and the roundness of the shaft itself will deteriorate, making it unusable for practical use as a rotating shaft.

C) 第13図(blに示すごとく、円錐状ポンチで単
に押付けても接触部に塑性流動が生じにくいため、強大
な加圧力で円錐状ポンチを押し付けないと有効な強化効
果はえられない。そのため第13図(b)に示す方法に
よったのでは軸に曲りなどが生ずるため、軸材を対象に
してこの方法を実用化させることはむづかしい。
C) As shown in Figure 13 (bl), simply pressing with a conical punch does not easily cause plastic flow in the contact area, so an effective strengthening effect cannot be obtained unless the conical punch is pressed with a strong pressure. Therefore, if the method shown in FIG. 13(b) is used, bending or the like occurs in the shaft, so it is difficult to put this method into practical use for shaft members.

d) 円孔付き丸棒にねじりトルクが作用した場合、円
孔の内表面には第15図に示すような応力が分布して発
生ずるく曲げモーメントが作用する場合も傾向は同じで
ある)。このように応力が連続して発生しているため、
最大応力部のみを局部的に強化しても軸全体とじての強
度はほとんど高くならない。
d) When torsional torque is applied to a round bar with a circular hole, stress is distributed on the inner surface of the circular hole as shown in Figure 15, and the tendency is the same even when a gradual bending moment is applied). Because stress occurs continuously in this way,
Even if only the maximum stress part is locally strengthened, the strength of the shaft as a whole will hardly increase.

(問題を解決するための手段) 本発明は、斯る技術背景を基にして従来例の問題点を解
決するために案出されたものであって、先端に円錐形加
工部を有するダイスを用いて、曲げあるいはねじり荷重
等を受ける伝動軸の応力集中がある円孔の孔縁部分を強
化する方法であって、円錐形加工部の外周面にその母線
に沿った凸部が周方向所定間隔おいて形成された第1の
ダイスを用いて、その円錐形加工部を予め円孔の孔縁部
分にテーパー面を有する円孔の孔縁部分およびテーパー
面に押付け、凸部によりこれと対応する部分のみを径方
向外方に向って塑性流動をおこさせ、次いで、楕円錐形
加工部を有する別の第2のダイスの楕円錐形加工部を円
孔の孔縁部分およびテーパー面に押付け、該第2のダイ
スの楕円錐形加工部によって前記第1のダイスで加工さ
れていない部分を径方向外方に向って塑性流動をおこさ
せることを特徴とする円孔付伝動軸の強化法を提供する
のである。
(Means for solving the problem) The present invention was devised based on the above technical background to solve the problems of the conventional example, and it uses a die having a conical processing part at the tip. This is a method of strengthening the hole edge portion of a circular hole where stress is concentrated on a transmission shaft that is subjected to bending or torsional loads, etc., by forming a convex portion along the generatrix on the outer circumferential surface of the conical processed portion at a predetermined circumferential direction. Using the first die formed at intervals, the conical processing portion is pressed against the rim portion and tapered surface of the circular hole, which has a tapered surface on the rim portion of the circular hole in advance, and the convex portion corresponds to this. Plastic flow is caused only in the radially outward portion of the die, and then the elliptical conical processing portion of another second die having an elliptic conical processing portion is pressed against the hole edge portion and the tapered surface of the circular hole. A method for strengthening a power transmission shaft with a circular hole, characterized in that the elliptical conical processing portion of the second die causes plastic flow in a portion not processed by the first die radially outward. We provide the following.

(作 用) 第1図a、bに示すごとく、先端に円錐形加工部を有し
、この加工部の外周面にその母線に沿った4ケの凸部9
−1〜9−4をもった第1の上下ダイス9−5.9−5
“を円孔はしく孔縁)およびテーパー面に押付け、円孔
はしの45“方向A。
(Function) As shown in Fig. 1a and b, the tip has a conical shaped part, and the outer peripheral surface of this machined part has four convex parts 9 along its generatrix.
-1st upper and lower dice 9-5.9-5 with numbers 9-4
45" direction A of the circular hole edge) and the tapered surface.

B、CおよびD部に塑性流動をおこさせて強化する(第
1図c、 d)。次いで第1図e、  fで示す如く楕
円錐形加工部を有する第2の上下ダイス9−6. 9−
6″を円孔はしおよびテーパー面に押付け、上記上下ダ
イス9−5.9−5°で加工されていない90°方向の
EおよびF部に塑性流動をおこさせて強化するとともに
円孔はしをなめらがな円形にもどすことによって、応力
集中がある円孔の孔縁部分が〕化され、伝動軸全体とし
ての強度を高め、該軸の許容負担力を太き(できること
になる。
Plastic flow is caused in parts B, C, and D to strengthen them (Fig. 1 c, d). Next, as shown in FIG. 1e and f, a second upper and lower die 9-6. 9-
6" is pressed against the circular hole edge and the tapered surface, and the above upper and lower dies 9-5.9-5° are used to create plastic flow in the E and F parts in the 90° direction that have not been processed, thereby strengthening the circular hole. By restoring the shape to a smooth circular shape, the hole edge portion of the circular hole where stress is concentrated is transformed, the strength of the transmission shaft as a whole is increased, and the permissible load of the shaft is increased.

第1図を参照して本発明の実施例を工程順に説明する。An embodiment of the present invention will be explained in order of steps with reference to FIG.

第1図において、12−10は伝動軸であり、本例では
横断方向に貫通された円孔9−9を有するが、この円孔
12−9の強化に先立って、第7図a、bで示す如く伝
動軸12−10は予めテーパー加工されている。
In FIG. 1, reference numeral 12-10 is a transmission shaft, which in this example has a circular hole 9-9 passed through in the transverse direction. As shown in , the transmission shaft 12-10 is tapered in advance.

すなわち、第7図a、bで示す如くまず先端角αを有す
る円錐テーパー面12−11を円孔はしにテーパーリル
を用いて加工し、はしに半径Rのまるみをつける。円孔
12−9の径dは機能設計において定まる。テーパー深
さtは第5図に示すごとく、素材の強度と許容最大応力
分布との関係によって変わる。通常使用される軸材に対
しては本件のような加圧加工により50〜70%の強度
向上が認めれる。
That is, as shown in FIGS. 7a and 7b, first, a conical tapered surface 12-11 having a tip angle α is machined using a taper rill on a circular hole edge, and the edge is rounded to a radius R. The diameter d of the circular hole 12-9 is determined by functional design. As shown in FIG. 5, the taper depth t varies depending on the relationship between the strength of the material and the maximum allowable stress distribution. The strength of commonly used shaft materials can be improved by 50 to 70% by pressure processing as in this case.

したがって、強度が50〜70%増大すると考え、第5
図の関係より、深さtを軸径りの15〜20%にするの
が適当である。
Therefore, considering that the strength increases by 50-70%, the fifth
From the relationship shown in the figure, it is appropriate that the depth t be 15 to 20% of the shaft diameter.

開口部長さにほぼ等しくとることが機能設計上要求され
る。したがって、先端角αは弐(1)で表わされる範囲
に限定される。
Functional design requires that the length be approximately equal to the opening length. Therefore, the tip angle α is limited to the range represented by 2(1).

jan(α/2) ≦(G /2− R−d /2) 
/ 2−−−−−(1)ここで、G、R,d、  αは
第7図参照先端角αは上述のごとく構造上大きくするこ
とができるときは、許される範囲まで大きくしてよいが
、多(の場合、先端角αは小さくしなければならない。
jan(α/2)≦(G/2-R-d/2)
/ 2------(1) Here, G, R, d, α refer to Figure 7. If the tip angle α can be increased structurally as described above, it may be increased to the permissible range. However, in the case of many (, the tip angle α must be small.

この場合ダイス押込後のダイス引抜き作業の難易さが規
制条件になる。くさびの引抜き力Ftと押込み力Fの比
は式(2)で表わされる。
In this case, the difficulty of pulling out the die after pushing in the die becomes a restriction condition. The ratio between the wedge pulling force Ft and the wedge pushing force F is expressed by equation (2).

Ft    、acos(α/2)  −5in(α/
2)□=□−−−−〜〜−一・(2) F     、trcos(cy/2)  +5in(
α/2)ここで、μは摩擦係数であり、適切な固体潤滑
材を用いることにより0.08〜0.14程度の値をと
る。
Ft, acos(α/2) −5in(α/
2) □=□−−−−〜〜−1・(2) F , trcos(cy/2) +5in(
α/2) Here, μ is a coefficient of friction, which takes a value of about 0.08 to 0.14 by using an appropriate solid lubricant.

式(2)の関係を図示した第6図Cから、摩擦係数によ
って若干変動はあるが、10”を境として、これより先
端角αが大きいときはダイス抜取りは容易であり、10
°より小さいときは抜取りが困難になることがわかる。
From Figure 6C, which illustrates the relationship of equation (2), it is easy to remove the die when the tip angle α is larger than 10", although there is some variation depending on the friction coefficient.
It can be seen that extraction becomes difficult when the diameter is smaller than °.

実際作業によってこの難易さを認めると先端角αが約5
°までは容易に抜取ることができることがわかったため
、円錐角αの下限は約5°とし、上限は構造上杵される
範囲まで拡大してよい。
If this difficulty is recognized through actual work, the tip angle α will be approximately 5.
Since it has been found that the cone angle α can be easily extracted up to 5°, the lower limit of the cone angle α is set to about 5°, and the upper limit may be expanded to a range that can be punched due to the structure.

ついで、第1図a % fに示すごとく、凸部9−1〜
9−4を有する先端角αの円錐形ダイス9−5.9−5
”を円孔12−9の上下から加圧し、捩りトルクにより
最大応力が発生する軸心に対して45°方向(第1図a
のA、B、C,D点)を加圧して塑性流動を起させて強
化する。
Next, as shown in FIG. 1 a% f, the convex portions 9-1 to
Conical die 9-5 with tip angle α having 9-4.9-5
” is pressurized from above and below the circular hole 12-9, and the direction of 45° with respect to the axis where the maximum stress is generated due to torsional torque (Fig. 1 a) is applied.
Points A, B, C, and D) are pressurized to cause plastic flow and strengthen.

さらに、凸部9〜7.9−8を有する先端角αの楕円錐
形ダイス9−6.9−6’を円孔12−9の上下から加
圧し、曲げモーメントにより最大応力が発生する軸心に
対して90°方向(第1図CのE、F点)を加圧して塑
性流動を起させて強化する。
Further, an elliptic conical die 9-6.9-6' having a tip angle α and having convex portions 9 to 7.9-8 is pressurized from above and below the circular hole 12-9, and the axis where the maximum stress is generated due to the bending moment is pressed. Pressure is applied in the 90° direction (points E and F in Figure 1C) with respect to the core to cause plastic flow and strengthen it.

ついで、先端角αが大きい同様のダイスを用いて円孔は
しのみを加圧強化し、最大応力発生点(第14図参照)
近傍の強度を上げる。円孔直径が20鶴を越える場合は
2種類または3種類の先端角αhα2またはα3.α2
.α3.をもったダイスによって最大応力発生点を広く
加圧強化するのがよい。
Next, using a similar die with a large tip angle α, pressurize and strengthen only the circular hole to find the point where the maximum stress occurs (see Figure 14).
Increase the strength of the neighborhood. If the diameter of the circular hole exceeds 20 mm, two or three types of tip angles αhα2 or α3. α2
.. α3. It is best to pressurize and strengthen the maximum stress generation point widely using a die with a

次に、第2図a、bを参照して加圧加工装置の具体例を
説明する。
Next, a specific example of the pressure processing apparatus will be described with reference to FIGS. 2a and 2b.

円孔はしのダイス加圧加工は第2図a、bに示す装置に
よって行われる。12−1は固定フレームであって、こ
のフレームに下側ダイス12−2、加圧用シリンダ12
−3および可動フレーム12−4が、ピン12−5およ
び12−6を介して取り付けられている。可動フレーム
12−4には上ダイス12−7が球面座12−8を介し
て取り付けられており、この球面座12−8によって円
孔12−9の軸心と上下ダイス12−2.12−7の中
心を結ぶ線が一敗していなくても、上下ダイスの加圧に
よって無理が生ずることはない。軸材12−10の加圧
冶具からの取り出し、あるいは挿入はピン12−5を取
り外し、可動フレーム12−4を加圧用シリンダ12−
3から外すことによって行われる。
The die pressure processing of the circular hole chopper is carried out by the apparatus shown in FIGS. 2a and 2b. 12-1 is a fixed frame, on which a lower die 12-2 and a pressure cylinder 12 are attached.
-3 and a movable frame 12-4 are attached via pins 12-5 and 12-6. An upper die 12-7 is attached to the movable frame 12-4 via a spherical seat 12-8, and the spherical seat 12-8 connects the axis of the circular hole 12-9 with the upper and lower dies 12-2, 12-. Even if the line connecting the centers of the numbers 7 and 7 is not completely broken, the pressurization of the upper and lower dice will not cause strain. To take out or insert the shaft member 12-10 from the pressure jig, remove the pin 12-5 and move the movable frame 12-4 to the pressure cylinder 12-.
This is done by removing it from 3.

ダイス押付は力Fは弐(3)、 (41によってまず算
出する。
The force F for pressing the die is first calculated using 2(3) and (41).

円錐テーバ部に対して F=k −π−t  (d+t  ・jan(α/2)
)  ・5in(α/2) ・Ym  −131円孔は
し部に対して ここで、k:加工法によって定まる定数本発明による方
法   k=0.6 円錐ダイスによる方法 k=1.0 d :円孔の直径(龍)、(第33図参照)t :テー
パ部の深さ (m+*L (第3図参照)α:テーバ先
端角(度)、(第3図参照)R:円孔はしの半径(龍)
、(第4図参照)α、:円孔はし部加工用ダイスの先端
角(度)。
F=k −π−t (d+t ・jan(α/2)
) ・5in (α/2) ・Ym −131 For the edge of the circular hole, where k: Constant determined by the processing method Method according to the present invention k=0.6 Method using a conical die k=1.0 d: Diameter of circular hole (dragon), (see Fig. 33) t: Depth of taper part (m + * L (see Fig. 3)) α: Tapered tip angle (degrees), (see Fig. 3) R: Circular hole Radius of chopsticks (dragon)
, (see Figure 4) α,: Tip angle (degrees) of the die for machining the circular hole edge.

(第4図参照) Δd :ダイスによる径の増加分(龍)。(See Figure 4) Δd: Increase in diameter due to die (dragon).

Δd =0.025  ・di (記号は第3.4図参
照)Ym:材料の降伏点(kgf/mm2)式(31,
(41によって算出されたダイス押付は力Fによって円
錐テーバ部および円孔はし部を加圧加工し、円孔径の最
大変形率Δd/d iが0.02〜0.03になるよう
にダイス押付は力Fを調整する。これは最大変形率が0
.02〜0.03のとき第16図に示すごとく最も強化
効果が大きく、本発明の基本になる数値の一つである。
Δd =0.025 ・di (See Figure 3.4 for symbols) Ym: Yield point of material (kgf/mm2) Formula (31,
(Dice pressing calculated by 41 is performed by pressurizing the conical taper part and circular hole edge part with force F, and pressing the die so that the maximum deformation rate Δd/di of the circular hole diameter is 0.02 to 0.03. Pressing adjusts the force F, which means that the maximum deformation rate is 0
.. When the value is 02 to 0.03, the reinforcing effect is greatest as shown in FIG. 16, and this is one of the values that form the basis of the present invention.

円錐テーパ部加工に対して最大変形率が0.02〜0.
03になるときの押込み量ΔSは式(5)であられされ
る。
The maximum deformation rate for conical taper part machining is 0.02 to 0.
The pushing amount ΔS when the value becomes 03 is given by equation (5).

Δs =o、oio〜0.015・ (d−cot(α
/2))  −151ここで、d、αは第゛31図参照 円錐テーバ先端角αは比較的小さい値であるため、Δh
の値は数組から数10鰭である。実操業において式(5
)のΔhを押込み量の目標値とするのがよい。
Δs = o, oio ~ 0.015・(d-cot(α
/2)) -151 Here, d and α are Δh since the conical taper tip angle α is a relatively small value (see Figure 31).
The value of is from several pairs to several tens of fins. In actual operation, the formula (5
) is preferably set as the target value of the pushing amount.

円孔はし部加工に対して最大変形率が0.02〜0゜0
3になるダイス接触長さh(第4図参照)は式(6)に
よって近似的にあられされる。
Maximum deformation rate for circular hole edge machining is 0.02~0°0
The die contact length h equal to 3 (see FIG. 4) can be approximately expressed by equation (6).

ここで、d、α、Rは第4図参照 円孔はし部加工の場合の押込み量は小さいために実操業
においてはダイス接触部長さを基準にとるのが便利であ
る。式(6)によって算出されるhの値と、加圧加工後
測定されるダイス接触部長さの測定値を比べることによ
って操業の良否が判定できる。
Here, it is convenient to take d, α, and R based on the length of the die contact portion in actual operation because the amount of indentation in the case of machining the edge portion of a circular hole (see FIG. 4) is small. The quality of the operation can be determined by comparing the value of h calculated by equation (6) with the measured value of the length of the die contact portion measured after pressure processing.

このように本発明になる加圧治具によると上下ダイス1
2−2.12−7は円錐テーパ面および円孔はしに押付
けることにより、軸材12−10に曲げその他の負荷が
加わらない。また、ダイス先端角αを8゜以上にするこ
とにより、上下ダイス12−2.12−7を軸材12−
10より引抜くときに過大な負荷が加わらない。さらに
、4ケの凸部をもったダイス9−5.9−5゛および2
ケの凸部をもった楕円状ダイス9−6.9−6°の2つ
に分けて円孔はしの加圧加工を行なうため、式(31,
(41からも明らかなごとく、単純な円錐形ダイスを用
いた場合より40%小さい加圧力で、円孔周辺の高応力
発生部を広範囲にわたって所望の強さまで強化でき、軸
材12−10に曲がりはほとんど生じない。
According to the pressing jig of the present invention, the upper and lower dies 1
2-2.12-7 is pressed against the conical taper surface and the circular hole edge, so that no bending or other loads are applied to the shaft member 12-10. In addition, by setting the die tip angle α to 8° or more, the upper and lower dies 12-2, 12-7 can be
No excessive load is applied when pulling out from 10. Furthermore, dice 9-5.9-5゛ and 2
In order to pressurize the round hole chopper by dividing it into two elliptical dies 9-6.9-6° each with a convex portion of
(As is clear from 41, the high stress generation area around the circular hole can be strengthened to the desired strength over a wide range with a pressing force that is 40% lower than when using a simple conical die, and the shaft material 12-10 can be bent. rarely occurs.

第8図a、bに本発明の利用例を示す。第8図aはクラ
ンク軸の油孔開口部164.16−2に関するものであ
る。クランク軸に曲げ荷重が負荷された場合、最大応力
はピンおよびジャーナルフイレッ1−16−3.16−
4に生ずる。ねじり荷重が負荷されたときは油孔開口部
16−1.16−2に最大せん断応力が生ずる。ピンお
よびジャーナルフィレットは冷間ロール加工法などによ
って強化することはできるが、油孔開口部の強化法は開
発されていなかった。
An example of the use of the present invention is shown in FIGS. 8a and 8b. FIG. 8a relates to the crankshaft oil hole opening 164.16-2. When a bending load is applied to the crankshaft, the maximum stress is applied to the pin and journal fillet.
Occurs in 4. When a torsional load is applied, maximum shear stress occurs in the oil hole opening 16-1, 16-2. Although pins and journal fillets can be strengthened by cold rolling, a method for strengthening oil hole openings has not been developed.

クランク軸の許容伝達トルクは油孔周辺の応力によって
きまるため、最近開発される省エネルギーの要求にそう
機関のように、低回転速度、大トルク伝達の要求をみた
すクランク軸の軸径は大きくしなければならなかった。
The permissible transmission torque of the crankshaft is determined by the stress around the oil hole, so in order to meet the recently developed energy saving requirements, the diameter of the crankshaft must be increased to meet the requirements for low rotational speed and high torque transmission, such as in engines. I had to.

しかし本発明による強化法によって油孔開口部が強化さ
れると、軸径の減小あるいは低強度材の利用が可能にな
った。
However, when the oil hole opening is strengthened by the strengthening method of the present invention, it becomes possible to reduce the shaft diameter or use a low-strength material.

第8図すは可変ピンチプロペラ(CPP)の管制油導入
孔開口部16−5に関するものである。cpPはピッチ
変更用に管制油4人孔が必要であるが、管制油導入孔開
口部16−5が設けられる軸16−6の直径は大きくし
、開口部付近の応力が大 き(ならないようにされている。しかし本発明になる円
孔はしの強化法を適用すると軸径拡大の必要はなくなり
原価低減が可能になる。
FIG. 8 relates to the control oil introduction hole opening 16-5 of a variable pinch propeller (CPP). The cpP requires four holes for control oil to change the pitch, but the diameter of the shaft 16-6 where the control oil introduction hole opening 16-5 is provided is made large to avoid large stress near the opening. However, by applying the method of reinforcing circular hole chopsticks according to the present invention, there is no need to increase the shaft diameter, making it possible to reduce costs.

この他一般産業用機械に用いられる伝動軸において、強
度上の観点から油孔を設けにくく不便を感じる場合があ
るが、本発明による強化法が利用されると油孔開口部の
位置選択上の制約はほとんどなくなる。
In addition, in power transmission shafts used in general industrial machinery, it is sometimes difficult to provide oil holes from the viewpoint of strength, but when the strengthening method of the present invention is used, it is difficult to select the position of the oil hole opening. There are almost no restrictions.

なお、本発明でいう円孔は、油孔の他、空気孔等を含む
ものであり、有底円孔であってもよく又、凸部の個数は
周方向に所定間隔おいて等配であれば、4個に限られる
ことはない。
Note that the circular hole in the present invention includes an air hole in addition to an oil hole, and may be a circular hole with a bottom, and the number of convex portions may be equally spaced at predetermined intervals in the circumferential direction. If there are, the number is not limited to four.

(発明の効果) 本発明の効果は小さいダイス押付は力によって、円孔付
き軸材に曲りなどの寸法変化を生じさせることなく、軸
材の疲れ限度を円孔がない場合より高い値にまで高める
ことができることにある。
(Effects of the invention) The effect of the present invention is that the pressing force of the small die does not cause dimensional changes such as bending in the shaft material with a circular hole, and increases the fatigue limit of the shaft material to a higher value than when there is no circular hole. It lies in what can be improved.

以下実例によってその効果を説明する。The effect will be explained below using an example.

1) 今までに提案されている従来の方法545C1軸
径201層、円孔なしの軸材の疲れ限度は30 kg 
/ *v ”であったが、これに直径3.5龍の円孔を
つけると、疲れ限度は18kg/am”(円孔がないと
きの約60%)に低下する。
1) The fatigue limit of the conventional method proposed so far for the shaft material of 545C, 1 shaft diameter 201 layers, and no circular hole is 30 kg.
/ *v'', but if a circular hole with a diameter of 3.5 dragons is added to this, the fatigue limit will be reduced to 18 kg/am'' (approximately 60% of that without the circular hole).

この円孔付き軸材の円孔部に平ダイスを用いてLotの
荷重を負荷すると(第13図(alの方法)、疲れ限度
は26 kg / 1m ”に上昇し、はぼ円孔なしの
場合の強度に復元する。しかし10tの荷重が負荷され
ると軸材は大きく変形し実用に供することはできなくな
る。これは第11図に示す如く、最大応力部は円孔はし
よりやや中心には入ったところになるため、平ダイスに
よって円孔はしを加圧するのみで強化効果をうるには、
大きな加圧力で円孔はしを加圧しなければならないこと
を示しており、工業的に使われる大形軸に平ダイスによ
る強化法を適用することはほとんど不可能に近い。
When a load of a lot is applied to the hole part of this shaft material with a circular hole using a flat die (method shown in Fig. 13 (al)), the fatigue limit increases to 26 kg / 1 m'', which is similar to that of a shaft material without a circular hole. However, when a load of 10 tons is applied, the shaft material deforms greatly and becomes unusable.This is because, as shown in Figure 11, the part of maximum stress is located slightly in the center of the edge of the circular hole. , so in order to obtain a strengthening effect just by pressurizing the circular hole with a flat die,
This indicates that a large pressure force must be applied to the circular hole chopper, making it almost impossible to apply the reinforcement method using flat dies to large shafts used industrially.

2)最大応力発生箇所のみの局部的強化効果上記試験と
同様、345C材で作られた直径100龍の軸材の中央
に直径14mmの円孔をあけ、その両端に半径5fiの
Rをつけて捩じり疲れ試験片を製作した。
2) Local reinforcement effect only at the point where the maximum stress occurs Similar to the above test, a circular hole with a diameter of 14 mm was made in the center of the shaft material made of 345C material with a diameter of 100 mm, and an R with a radius of 5 fi was attached at both ends. Torsional fatigue test pieces were manufactured.

最大応力が発生ずる円孔はしのみを先端角30°および
60°のダイスを用いて押付力Iotanfで加圧加工
した後、捩り疲れ試験を行ったところ疲れ限度は16k
gf/mm”であった。平面曲げ疲れ限度(/’m)b
と捩じり疲れ限度τmとの間には式7の関係が成立つこ
とが一般に決められている。
After pressurizing only the circular hole where the maximum stress occurs using dies with tip angles of 30° and 60° with a pressing force of Iotanf, a torsional fatigue test was performed and the fatigue limit was 16k.
gf/mm". Plane bending fatigue limit (/'m)b
It is generally determined that the relationship expressed by Equation 7 holds between the torsional fatigue limit τm and the torsional fatigue limit τm.

(rm)b=5r。(rm)b=5r.

捩り疲れ限度 16kg5/mm”を式7を用いて平面
曲げ疲れ限度に変換すると 28kgf/m”となる。すなわち、局部的な強化だけ
では軸材の疲れ限度30kg(/ms”には達しないこ
とがわかる。
When the torsional fatigue limit of 16 kg5/mm'' is converted to the plane bending fatigue limit using Equation 7, it becomes 28 kgf/m''. In other words, it can be seen that the fatigue limit of 30 kg (/ms) of the shaft member cannot be reached by only local reinforcement.

3)本発明による強化効果 上記試験と同様、545C材で作られた直径100鶴の
軸材の中央に直径12龍の円孔をあけ、円孔両端に先端
角10″のテーバを深さ20龍まで付け、円孔出口に半
径5鶴のRをつけて捩じり疲れ試験片を製作した。この
円孔を本発明になる円錐先端角10°、30″%606
のダイスを用いて、押付力いずれも10tanで加圧加
工した後、捩じり疲労試験を行ったところ、疲れ限度は
19kgf/ *s”となった。この値を式7を用いて
曲げ疲れ限度に変換すると、33kgf/w2である。
3) Strengthening effect according to the present invention As in the above test, a circular hole with a diameter of 12 mm was drilled in the center of a shaft material made of 545C material with a diameter of 100 mm, and a taper with a tip angle of 10 inches was inserted at both ends of the circular hole to a depth of 20 mm. A torsion fatigue test specimen was prepared by attaching a dragon and a radius of 5 curvature at the exit of the circular hole.This circular hole was made with a conical tip angle of 10° and a 30″%606 cone according to the present invention.
After pressurizing with a pressing force of 10 tan using a die, a torsional fatigue test was performed, and the fatigue limit was 19 kgf/*s. When converted to a limit, it is 33 kgf/w2.

この値は軸材の疲れ限度30kgf/*n”を越えてお
り、種々の操業上の制約条例を考慮しても、本発明によ
る強化効果が充分おることがわかる。このように本発明
になる円孔の強化技術によると、軸材に油孔なとの円孔
があけられたとしても10tanf 程度の加圧力を負
荷することによって円孔は強化され、円孔がない軸と同
等の疲れ限度になる。また、本項で述べた実例は捩じり
疲れ限度に関するものであるが、平面曲げ疲れ限度Qr
m)bと捩じり限度τmの間の関係をあられす式7は多
くの材料に対して広く成立するものであり、曲げ疲れ限
度に対しても同様に、円孔がない場合の値にまで高めら
れることは充分推察される。
This value exceeds the fatigue limit of 30 kgf/*n'' for shaft members, and it can be seen that the reinforcing effect of the present invention is sufficient even when various operational restrictions are considered. According to circular hole strengthening technology, even if a circular hole such as an oil hole is drilled in the shaft material, the circular hole will be strengthened by applying a pressure of about 10 tanf, and the fatigue limit will be the same as that of a shaft without a circular hole. In addition, although the example described in this section concerns the torsional fatigue limit, the plane bending fatigue limit Qr
m) Equation 7, which expresses the relationship between b and torsional limit τm, holds true widely for many materials, and similarly for the bending fatigue limit, the value when there is no circular hole is It is highly likely that this will be increased to

金属材料は静水圧のような等しい圧力を全表面にかけて
もほとんど硬化しない、また残留応力もほとんど発生し
ない。金属材料を加圧加工によって硬化させ強化するに
は塑性流動をおこさせなければならない。本発明は第1
図に示した加工治具によって、直交する方向に4ケの凸
部をもった円錐形ダイスを用い、その凸部を円孔はしの
軸心に対し45°(tJiいた方向に当て加圧し、塑性
流動が生じやすい加工条件のもとでねじり荷重によって
最大応力が生ずる個所を強化し、次いで2ケの凸部をも
った楕円鐘形加工部を有するダイスを用い、その凸部を
軸心に対して90°方向に当て加圧し、曲げ荷重のもと
て最大応力が生ずる個所を強化するとともに、円孔はし
をなめらかに成形する。このようにダイス当たり面が塑
性流動しやすい条件で加圧加工することによって、小さ
い加圧力で大きい強化効果をうろことができる。
Metal materials hardly harden even when equal pressure such as hydrostatic pressure is applied to the entire surface, and almost no residual stress is generated. In order to harden and strengthen metal materials through pressure working, plastic flow must occur. The present invention is the first
Using the processing jig shown in the figure, a conical die with four protrusions in orthogonal directions was used, and the protrusions were pressed at a direction of 45 degrees (tJi) to the axis of the circular hole chopper. Under processing conditions where plastic flow is likely to occur, the area where the maximum stress occurs due to torsional load is strengthened, and then a die with an elliptical bell-shaped machining section with two convex portions is used, and the convex portion is set as the axis. Pressure is applied in a 90° direction to strengthen the area where the maximum stress occurs under bending load, and to form the circular hole smoothly.In this way, the die contact surface is subject to plastic flow. By applying pressure, a large strengthening effect can be achieved with a small pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b) (cl (d) (e) (r
)は本発明の実施例を工程順に示す平面図と横断面図、
第2図(al (b)は同装置−例の立面図とA矢示図
、第3図はテーパ一部加工の使用の記号を表した説明図
、第4図は円孔はし加工の使用記号を表した説明図、第
5図は素材の強度とH容応力分布を示し、図中aは機械
加工に許される最大応力分布、bは外表面近傍を加圧加
工した場合に許される最大応力分布、Cは外表面近傍お
よび内部を同時に加圧加工した場合に許される最大応力
分布である。第6図(a) (b) (C1はくさびの
押込み力と引抜き力の関係を示す説明図、第7図(al
 (b)は強化される軸の正面と断面図、第8図(al
(b)は本発明の使用乃至利用例2つを示す正面図と一
部破断の正面図、第9図(al (bl (C1は曲げ
応力のかかる状態を示す説明図、第10図は曲げモーメ
ントが作用したときの孔縁応力集中率を示すグラフ、第
11図はねじりトルクのかかる状態の説明図、第12図
はねじりトルクが作用したときの円孔はしの応力集中率
を示すグラフ、第13図(a) (b)は従来例の2例
を示す説明図、第14図は円孔はしの最大応力部を示す
説明図、第15図はねじりトルクが作用したときの円孔
内面の応力分布を示す説明図、第16図は孔径拡大率と
疲れ限度上昇率の関係を示す説明図である。 9−1〜9−4・・・凸部、9−5. 9−5’・・・
第1のダイス、9−6.9−6’・・・第2のダイス、
9−7.9−8・・・楕円鉄形加工部、12−9・・・
円孔、12−10・・・伝動軸。 特 許 出 願 人  株式会社神戸製鋼所第8図々〕 第6図眞)   第 6図(k) 、:Y(Ji) 第9図(Q)    第’? rA (b)第 C0I
21 第1114)       第11図(b)第12 図 ■=J勺
Figure 1 (a) (b) (cl (d) (e) (r
) are plan views and cross-sectional views showing the embodiments of the present invention in the order of steps;
Figure 2 (al (b) is an elevational view and arrow A diagram of the same device as an example, Figure 3 is an explanatory diagram showing symbols for use in partial taper machining, and Figure 4 is circular hole machining. Figure 5 shows the strength and H capacity stress distribution of the material. In the figure, a is the maximum stress distribution allowed for machining, and b is the maximum stress distribution allowed when pressurizing the vicinity of the outer surface. 6 (a) (b) (C1 represents the relationship between the pushing force and pulling force of the wedge. An explanatory diagram showing Fig. 7 (al
(b) is a front and cross-sectional view of the shaft to be strengthened;
(b) is a front view and a partially cutaway front view showing two usage examples of the present invention, and FIG. A graph showing the stress concentration rate of the hole edge when a moment is applied. Figure 11 is an explanatory diagram of a state where torsional torque is applied. Figure 12 is a graph showing the stress concentration rate of the circular hole edge when a torsional torque is applied. , Fig. 13 (a) and (b) are explanatory diagrams showing two conventional examples, Fig. 14 is an explanatory diagram showing the maximum stress part of the circular hole chopper, and Fig. 15 is a diagram showing the circle when torsion torque is applied. An explanatory diagram showing the stress distribution on the inner surface of the hole, and FIG. 16 is an explanatory diagram showing the relationship between the hole diameter expansion rate and the fatigue limit increase rate. 9-1 to 9-4... Convex portion, 9-5. 9- 5'...
First die, 9-6.9-6'... second die,
9-7.9-8...Oval iron shaped processing part, 12-9...
Round hole, 12-10... Transmission shaft. Patent Applicant: Kobe Steel, Ltd. Figure 8] Figure 6 (Ma) Figure 6 (k), :Y (Ji) Figure 9 (Q) Figure '? rA (b) No. C0I
21 No. 1114) Fig. 11 (b) Fig. 12 ■ = J 勺

Claims (1)

【特許請求の範囲】[Claims] (1)先端に円錐形加工部を有するダイスを用いて、曲
げあるいはねじり荷重等を受ける伝動軸の応力集中があ
る円孔の孔縁部分を強化する方法であって、 円錐形加工部の外周面にその母線に沿った凸部が周方向
所定間隔おいて形成された第1のダイスを用いて、その
円錐形加工部を予め円孔の孔縁部分にテーパー面を有す
る円孔の孔縁部分およびテーパー面に押付け、凸部によ
りこれと対応する部分のみを径方向外方に向って塑性流
動をおこさせ、 次いで、楕円錐形加工部を有する別の第2のダイスの楕
円錐形加工部を円孔の孔縁部分およびテーパー面に押付
け、該第2のダイスの楕円錐形加工部によって前記第1
のダイスで加工されていない部分を径方向外方に向って
塑性流動をおこさせる ことを特徴とする円孔付伝動軸の強化法。
(1) A method of strengthening the hole edge portion of a circular hole where the stress concentration of the transmission shaft, which is subjected to bending or torsional loads, etc., is concentrated, using a die having a conical shaped part at the tip, the outer periphery of the conical shaped part being Using a first die whose surface has convex portions formed at predetermined intervals in the circumferential direction along its generatrix, the conical shaped portion is preliminarily cut into the hole edge of a circular hole having a tapered surface on the hole edge portion of the circular hole. part and the tapered surface, the convex part causes plastic flow only in the corresponding part radially outward, and then another second die having an elliptic conical part is machined into an elliptic cone shape. is pressed against the hole edge portion of the circular hole and the tapered surface, and the elliptical conical processing portion of the second die is used to press the first
A method for strengthening a power transmission shaft with a circular hole, which is characterized by causing plastic flow in the part that has not been machined with a die radially outward.
JP28166885A 1985-12-14 1985-12-14 Reinforcing method for transmission shaft with circular hole Pending JPS62142044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28166885A JPS62142044A (en) 1985-12-14 1985-12-14 Reinforcing method for transmission shaft with circular hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28166885A JPS62142044A (en) 1985-12-14 1985-12-14 Reinforcing method for transmission shaft with circular hole

Publications (1)

Publication Number Publication Date
JPS62142044A true JPS62142044A (en) 1987-06-25

Family

ID=17642308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28166885A Pending JPS62142044A (en) 1985-12-14 1985-12-14 Reinforcing method for transmission shaft with circular hole

Country Status (1)

Country Link
JP (1) JPS62142044A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106896A (en) * 2008-10-28 2010-05-13 Aisin Aw Co Ltd Shaft, planetary gear device, and automatic transmission
US8187133B2 (en) 2010-03-31 2012-05-29 Ford Global Technologies, Llc Fatigue resistant transverse lubrication passage for transmission shafts
WO2017169892A1 (en) * 2016-03-30 2017-10-05 アイシン・エィ・ダブリュ株式会社 Shaft
JP2019120546A (en) * 2017-12-28 2019-07-22 日本製鉄株式会社 Test piece and test method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106896A (en) * 2008-10-28 2010-05-13 Aisin Aw Co Ltd Shaft, planetary gear device, and automatic transmission
US8187133B2 (en) 2010-03-31 2012-05-29 Ford Global Technologies, Llc Fatigue resistant transverse lubrication passage for transmission shafts
WO2017169892A1 (en) * 2016-03-30 2017-10-05 アイシン・エィ・ダブリュ株式会社 Shaft
CN108779795A (en) * 2016-03-30 2018-11-09 爱信艾达株式会社 Axis
JP2019120546A (en) * 2017-12-28 2019-07-22 日本製鉄株式会社 Test piece and test method

Similar Documents

Publication Publication Date Title
EP1211026B1 (en) Rolling and roller tools, roller constructions and roller equipment
CA2236547C (en) Taperlock axle apparatus and flange
US6742376B2 (en) Method and apparatus for manufacturing structures with improved fatigue life
US8176765B2 (en) Die assembly and a method of making it
US6691542B2 (en) Method and apparatus for manufacturing a cylindrical member, and cylindrical member having splines
US6711928B1 (en) Method and apparatus for producing beneficial stresses around apertures, and improved fatigue life products made by the method
JP2007253235A (en) Method for manufacturing outer ring member for constant-velocity joint
JP2007000873A (en) Method for manufacturing outer wheel member for constant velocity joint
US20180318910A1 (en) Method for manufacturing tubular member
US20130247636A1 (en) Flow formed spline and design suitable for burr free machining
US20020148270A1 (en) Method and apparatus for improving the fatigue life of components and structures
US6230537B1 (en) Method and apparatus for producing beneficial stresses around apertures by use of focused stress waves, and improved fatigue life products made by the method
JPS62142044A (en) Reinforcing method for transmission shaft with circular hole
JP4673090B2 (en) Manufacturing method and punch of outer ring member for constant velocity joint
US4580432A (en) Method of making a metal cruciform journal forging
JP2008111469A (en) Method of manufacturing constant velocity joint outer ring member
JPH08270670A (en) Manufacture of pipe yoke for drive-line-assembly
JPH0542483B2 (en)
US20100003105A1 (en) Method for producing a locking ring bolt and locking ring bolt
US6615636B2 (en) Method and apparatus for improving the fatigue life of components and structures using the stresswave process
US2952902A (en) Manufacture of turbine rotors
JPS60222622A (en) Outer wheel of universal joint having cross grooves
US7347077B2 (en) Method of manufacturing outer ring member for constant velocity joint
EP1953414B1 (en) Power transmission chain pin and manufacture method thereof
KR20000075926A (en) lever