JPS62141392A - Vacuum heat-insulating material - Google Patents

Vacuum heat-insulating material

Info

Publication number
JPS62141392A
JPS62141392A JP60283647A JP28364785A JPS62141392A JP S62141392 A JPS62141392 A JP S62141392A JP 60283647 A JP60283647 A JP 60283647A JP 28364785 A JP28364785 A JP 28364785A JP S62141392 A JPS62141392 A JP S62141392A
Authority
JP
Japan
Prior art keywords
vacuum
fine powder
heat insulating
vacuum insulation
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60283647A
Other languages
Japanese (ja)
Other versions
JPH0820032B2 (en
Inventor
川崎 保
稔 森田
敬記 有賀
桑名 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP60283647A priority Critical patent/JPH0820032B2/en
Publication of JPS62141392A publication Critical patent/JPS62141392A/en
Publication of JPH0820032B2 publication Critical patent/JPH0820032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、保冷庫等の断熱壁部等に埋設して用いられる
真空断熱材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a vacuum heat insulating material that is used by being embedded in a heat insulating wall of a refrigerator or the like.

「従来技術」 近年、省エネルギー等の観点から、j;り優れた断熱材
が望まれており、このような要望に答えてユニット化さ
れた真空断熱材が提供されている。
"Prior Art" In recent years, from the viewpoint of energy saving, etc., there has been a demand for superior heat insulating materials, and in response to such demands, unitized vacuum heat insulating materials have been provided.

この真空断熱材は、断熱性材料からなる芯材を、ラミネ
ートフィルムなどからなる非通気性外包材(以下、外包
材と略称する)に収容して、その内部を減圧真空したも
のである。
This vacuum heat insulating material has a core material made of a heat insulating material housed in a non-breathable outer wrapping material (hereinafter referred to as outer wrapping material) made of a laminate film or the like, and the inside of the core material is evacuated under reduced pressure.

従来、この種の真空断熱材に収容される断熱性材料には
例えば発泡パーライトを第3図に示すように卵殻の破片
状に粉砕したものが用いられていた。
Conventionally, as a heat insulating material housed in this type of vacuum heat insulating material, for example, foamed perlite pulverized into eggshell fragments as shown in FIG. 3 has been used.

「発明の解決しようとする問題点」 一般にこの種の真空断熱材は、その断熱性能が内部の真
空度に依存する。ところが、発泡パーライトを粉砕した
粉末が充填された従来の真空断熱材にあっては、外包材
内の圧力が0.1mHO〜1mrtHg程度と極く低く
維持されている間は良好な断熱性を発揮するものの、内
部の真空度が1sHG以上になると第4図に示す如く熱
伝導率が急激に大きくなってしまう不都合があった。
"Problems to be Solved by the Invention" Generally, the insulation performance of this type of vacuum insulation material depends on the degree of internal vacuum. However, conventional vacuum insulation materials filled with powder made by pulverizing foamed perlite exhibit good insulation properties while the pressure inside the outer packaging material is maintained at an extremely low level of about 0.1 mH0 to 1 mrtHg. However, when the internal vacuum level exceeds 1 sHG, the thermal conductivity suddenly increases as shown in FIG. 4, which is disadvantageous.

このため、この種の真空断熱材では包装内への外気侵入
を如何に少なくして包帯内の真空度を長期にわたって維
持するかが大きな問題である。
Therefore, with this type of vacuum insulation material, a major problem is how to reduce the intrusion of outside air into the package and maintain the degree of vacuum within the bandage over a long period of time.

しかるに一般に外包材の内部には、外包材として使用す
るプラスチックラミネートフィルムを透過してくる空気
成分、水分が侵入したり、又この真空断熱材を使用して
保温壁を形成するに際してこれを発泡ウレタンフオーム
中に埋め込んで固定するが、この時発泡ポリウレタンフ
オーム中のフレオンガス、炭酸ガス等が外包材を介して
侵入したり、更には外包材であるプラスチックラミネー
トフィルム自身の脱ガスがあって、これ等によって包材
内の真空度は経時とともに上昇する。たとえば第5図は
、真空度の劣化に対する脱ガスの影響と、ガス透過の影
響とを示したものである。
However, in general, air components and moisture that pass through the plastic laminate film used as the outer packaging material can enter the inside of the outer packaging material, and when forming a heat insulation wall using this vacuum insulation material, it is difficult to use foamed urethane. It is embedded in the polyurethane foam and fixed, but at this time, Freon gas, carbon dioxide gas, etc. in the foamed polyurethane foam may enter through the outer packaging material, and furthermore, the plastic laminate film itself, which is the outer packaging material, may degas. Therefore, the degree of vacuum inside the packaging material increases over time. For example, FIG. 5 shows the influence of degassing and the influence of gas permeation on the deterioration of the degree of vacuum.

なお、測定には、平均粒径40μの発泡粉砕パーライト
をクラフトの紙袋に充填して120℃で2時間乾燥し、
このものを12μ雇−アルミ蒸着ポリエステルフィルム
に熱融着層としての60μmポリエチレンがラミネート
されたプラスチックラミネートフィルム製の外包材に入
れ、真空包装機にて5分間排気し、真空状態を保ったま
まヒートシールを行って作成した真空断熱材を用いた。
For the measurement, foamed crushed perlite with an average particle size of 40μ was filled into a kraft paper bag and dried at 120°C for 2 hours.
This material was placed in an outer packaging material made of a plastic laminate film made by laminating a 12 μm aluminum vapor-deposited polyester film with a 60 μm polyethylene film as a heat-sealing layer, evacuated for 5 minutes using a vacuum packaging machine, and heated while maintaining the vacuum state. A vacuum insulation material made by sealing was used.

この第5図の結果から、フィルムの脱ガスが真空断熱材
の真空度劣化に及ぼす影響が大きいことが分る。そして
このため外包材の脱ガスを極力低減するよう外包材につ
いて種々検討されているが未だ充分満足し得るものが得
られないのが実状である。従って、真空度の低下による
断熱性能の低下を防止するためには、真空断熱材を製造
する際の真空排気処理に充分時間をかけているのが実情
である。しかしそのようにすると生産性を著しく悪化す
ることとなって好ましくない。
From the results shown in FIG. 5, it can be seen that the degassing of the film has a large effect on the deterioration of the vacuum degree of the vacuum insulation material. For this reason, various studies have been made regarding the outer packaging material in order to reduce the outgassing of the outer packaging material as much as possible, but the reality is that a fully satisfactory material has not yet been obtained. Therefore, in order to prevent a decrease in insulation performance due to a decrease in the degree of vacuum, the actual situation is that a sufficient amount of time is required for the evacuation process when manufacturing a vacuum insulation material. However, doing so will significantly reduce productivity, which is undesirable.

このようにこの種の真空断熱材にあっては、周囲からの
気体の侵入や外包材の脱ガスによる真空度劣化を充分防
止できないうえに、パーライトを断熱材として充填した
従来の真空断熱ではその断熱性能が真空度に大きく依存
しているため、そのわずかの真空度劣化によって断熱性
能が著しく劣化してしまい、充分な耐用期間が得られな
い等の問題があった。
As described above, this type of vacuum insulation material cannot sufficiently prevent deterioration of the vacuum level due to intrusion of gas from the surroundings or degassing of the outer packaging material, and conventional vacuum insulation materials filled with pearlite as an insulation material cannot Since the heat insulation performance is largely dependent on the degree of vacuum, there have been problems such as a slight deterioration in the vacuum level will cause the heat insulation performance to deteriorate significantly, making it impossible to obtain a sufficient service life.

「問題点を解決するための手段」 本発明者らは鋭意研究を重ねた結果、芯材をなす断熱材
料にフェロシリコン生産中に発生するフュームより生成
される微粉末を用いることににって、上記問題点の解決
をし得ることを知見し本発明をなすに至った。
"Means for Solving the Problem" As a result of extensive research, the inventors of the present invention have decided to use fine powder produced from fumes generated during the production of ferrosilicon for the heat insulating material that forms the core material. The inventors have discovered that the above problems can be solved, and have come up with the present invention.

以下、本発明の真空断熱材を詳しく説明する。Hereinafter, the vacuum heat insulating material of the present invention will be explained in detail.

第1図は、真空断熱材の一例を示すもので、図中符号1
は、芯材である。この芯材1はクラフト紙袋2等の通気
性包装に収容された状態で、非通気性外包材(外包材)
3に充填されている。
Figure 1 shows an example of a vacuum insulation material, and the reference numeral 1 in the figure shows an example of a vacuum insulation material.
is the core material. This core material 1 is housed in a breathable packaging such as a kraft paper bag 2, and is used as a non-breathable outer packaging material (outer packaging material).
It is filled with 3.

芯材1には、フェロシリコン生産時に発生するフューム
から得られた微粉末が用いられている。
The core material 1 is made of fine powder obtained from fumes generated during the production of ferrosilicon.

フェロシリコンは、製鋼用脱酸剤として、あるいはケイ
素鋼板、ばね鋼、i4酸鋳物などの81添加剤などに用
いられる、ケイ素(Si)ff120〜90%の鉄−ケ
イ素合金で、Si75%級のものが多い。このフェロシ
リコンは、通常電気アーク炉にケイ石と鋼くずおよび粉
コークスを混合装入し、精練することによって製造され
る。
Ferrosilicon is an iron-silicon alloy containing 120 to 90% silicon (Si) and is used as a deoxidizing agent for steel manufacturing or as an 81 additive for silicon steel sheets, spring steel, I4 acid castings, etc. There are many things. This ferrosilicon is usually produced by charging a mixture of silica stone, steel scrap, and coke powder into an electric arc furnace and scouring the mixture.

このようなフェロシリコンを製造する際には、副生ガス
としてフュームが発生する。このフュームの中にはシリ
カ等の微粉末が分散しており、これは、従来、集塵装置
等により捕集されていた。
When manufacturing such ferrosilicon, fumes are generated as a by-product gas. Fine powder such as silica is dispersed in this fume, and this has conventionally been collected by a dust collector or the like.

本発明の真空断熱材は、上記フェロシリコン生産時に発
生するフュームより生成した微粉末を芯材1としたもの
である。
In the vacuum heat insulating material of the present invention, the core material 1 is a fine powder produced from the fumes generated during the production of ferrosilicon.

このようなフェロシリコン製造時のフュームより得られ
る微粉末は、二酸化ケイ素の含有量が小さく、比表面積
が小さい特徴がある。
The fine powder obtained from the fume during the production of ferrosilicon is characterized by a low content of silicon dioxide and a small specific surface area.

その組成は一般に 二酸化ケイ素(Si2)    80 〜90(wt%
)酸化第2鉄(Fe203 )    2.(1〜7酸
化アルミニウム(AJ 203 )0.1〜1,5酸化
カルシウム(Cab)     0.3〜2酸化カリウ
ム(K20)     0.3〜2炭素(C)    
       0.2〜7である。
Its composition is generally silicon dioxide (Si2) 80-90 (wt%
) Ferric oxide (Fe203) 2. (1-7 aluminum oxide (AJ 203) 0.1-1,5 calcium oxide (Cab) 0.3-potassium dioxide (K20) 0.3-2 carbon (C)
It is 0.2-7.

第1表に、湿式法によって製造された含水無晶形シリカ
微粉末および精製四塩化ケイ素の燃焼によって得られる
無水シリカ微粉末との比較値を示す。
Table 1 shows comparative values between the hydrated amorphous silica fine powder produced by the wet method and the anhydrous silica fine powder obtained by combustion of purified silicon tetrachloride.

第  1  表 また、上記フェロシリコン製造時に発生ずるフュームよ
り生成される微粉末には0.5wt%〜7wt%の適宜
量の炭素が含有している。そしてこの芯材1に1wt%
以上より好ましくは1.5wt%以上の炭素を含有する
微粉末を用いると、含有炭素によって微粉末が黒色のも
のとなるので、この微粉末からなる芯材1によって熱の
輻射が効果的に阻止され、真空断熱材の断熱性能が向上
される。
Table 1 Also, the fine powder produced from the fumes generated during the production of ferrosilicon contains an appropriate amount of carbon of 0.5 wt% to 7 wt%. And 1wt% in this core material 1
From the above, if a fine powder containing 1.5 wt% or more of carbon is preferably used, the fine powder becomes black due to the carbon content, so the core material 1 made of this fine powder effectively blocks heat radiation. This improves the insulation performance of the vacuum insulation material.

上記外包材3としては、真空断熱材内部を気密に保つこ
とのできるものであれば各種利用できるが、通常、フィ
ルムを袋状に形成したものや、プラスチック板等が探線
り成形されてなるトレー型容器などが用いられる。この
外包材3の材質についても特に制限はないが、例えばポ
リエステルやポリビニルアルコール、ポリ塩化ビニリデ
ン、ナイロン、ポリエチレン、更にこれらにアルミ蒸着
したフィルムや又上記各種フィルムを二層以上ラミネー
トとだもの、およびアルミ箔等の金属箔ラミネートフィ
ルム等が使用される。
As the outer packaging material 3, various materials can be used as long as they can keep the inside of the vacuum insulation material airtight, but it is usually made of a film formed into a bag shape or a plastic plate etc. A tray-type container or the like is used. There are no particular restrictions on the material of the outer packaging material 3, but examples include polyester, polyvinyl alcohol, polyvinylidene chloride, nylon, polyethylene, a film made of aluminum vapor deposited on these, a laminate of two or more of the above-mentioned films, and A metal foil laminate film such as aluminum foil is used.

「実施例」 次に、実施例に沿って本発明の真空断熱材をさらに詳し
く説明する。
"Example" Next, the vacuum heat insulating material of the present invention will be described in more detail with reference to Examples.

実施例1 フェロシリコン生産時のフュームから得られ
た微粉末(平均粒径1.4μm、比表面積23′IIt
/9.炭素1.5wt%、嵩比重0.2g/cm3)を
、クラフトの紙袋2に充填した後乾燥した。次いでこの
ものを、12μmアルミ蒸着ポリエステル2層と熱融着
層としての60μのポリエチレンがラミネートされたプ
ラスチックフィルム製の外包材3に入れた。
Example 1 Fine powder obtained from fume during ferrosilicon production (average particle size 1.4 μm, specific surface area 23'IIt)
/9. A kraft paper bag 2 was filled with carbon (1.5 wt%, bulk specific gravity 0.2 g/cm3) and then dried. Next, this product was placed in an outer packaging material 3 made of a plastic film laminated with two layers of 12 μm aluminum vapor-deposited polyester and 60 μm polyethylene as a heat-sealing layer.

このものを複数個作成した後、真空包装機を用いてそれ
らの内部を各々1 sHg、 5MHg、 10mmH
(1,20姻H(1,60悶HOに真空排気して熱融着
し、真空度の異なる真空断熱材を製作した。又得られた
真空断熱材は350mX 650m、厚さ20mのもの
であった。出来上りの密度は、およそ0゜30g/Cl
R3であった。
After making multiple pieces of this, use a vacuum packaging machine to seal the insides of each to 1 sHg, 5MHg, and 10mmH.
Vacuum insulation materials with different degrees of vacuum were manufactured by evacuation to 1,20mm (1,60mm) and heat fusion.The vacuum insulation materials obtained were 350m x 650m and 20m thick. The density of the finished product was approximately 0°30g/Cl.
It was R3.

得られた各々の真空断熱材の熱伝導率を測定した。結果
を第2表に示す。
The thermal conductivity of each of the obtained vacuum insulation materials was measured. The results are shown in Table 2.

第  2  表 この結果を従来の真空断熱材(20μm発泡粉砕パーラ
イトを芯材に用いたもの)と比較したところ、第2図に
示す結果を得た。
Table 2 When these results were compared with a conventional vacuum insulation material (using 20 μm foamed pulverized pearlite as the core material), the results shown in FIG. 2 were obtained.

第2図の結果から、本発明の真空断熱材は、内部の真空
度が低下しても良好な断熱性能を有するものであること
が判明した。
From the results shown in FIG. 2, it was found that the vacuum heat insulating material of the present invention has good heat insulating performance even when the internal degree of vacuum decreases.

m  本発明の微粉末が充填された真空断熱材と、従来
の含水無晶形シリカ微粉末が充填された真空断熱材につ
いて、その含水量の違いによる内部真空度の変化の差を
調らべた。実験は次のような条件で真空断熱材を製作し
、その真空度を測定することによって行った。
m The difference in internal vacuum degree due to the difference in water content was investigated between a vacuum insulation material filled with the fine powder of the present invention and a vacuum insulation material filled with a conventional hydrated amorphous silica fine powder. The experiment was conducted by fabricating a vacuum insulation material under the following conditions and measuring the degree of vacuum.

フェロシリコン生産時のフュームから得られた微粉末(
゛平均粒径1.4um、比表面積23TIt/グ、炭素
1.5wt%)をクラフトの紙袋2に充填し、120℃
の乾燥器に入れ2時間乾燥する。
Fine powder obtained from fumes during ferrosilicon production (
"Average particle size 1.4 um, specific surface area 23 TIt/g, carbon 1.5 wt%) was filled into a kraft paper bag 2 and heated at 120°C.
Place in a dryer and dry for 2 hours.

又、単粒子径20〜30TrLμ、比表面積320m3
/gの含水無晶形シリカ微粉末をクラフトの紙袋2に充
填し、同様に乾燥する。これらのものを乾燥後、ただち
に、25μmアルミ蒸着ポリニスチルに熱融着層として
の60μmの高密度ポリエチレンがラミネートされたプ
ラスチックフィルム製の外包材3に入れ、真空包装機を
用いて2分間排気した。得られた真空断熱材の真空度を
測定した結果を第3表に示す。
Also, single particle diameter 20-30TrLμ, specific surface area 320m3
A kraft paper bag 2 is filled with /g of hydrated amorphous silica fine powder and dried in the same manner. After drying, these items were immediately placed in an outer wrapping material 3 made of a plastic film made of a 25 μm aluminum vapor-deposited polynystyl laminated with a 60 μm high-density polyethylene as a heat-sealing layer, and evacuated for 2 minutes using a vacuum packaging machine. Table 3 shows the results of measuring the degree of vacuum of the obtained vacuum insulation material.

第  3  表 第3表の結果から、フェロシリコン生産時に得られる微
粉末を芯材1とした本発明の真空断熱材は、真空度の劣
化が小であることが判明した。害m  フェロシリコン
生産時に得られた炭素含有量1.5wt%の微粉末と、
炭素含有量0.2wt%及び0.5wt%の微粉末とを
用いて真空断熱材を作成した。なお、いずれの微粉末も
平均粒径的1.4μm、比表面積的23Td、7gであ
った。
Table 3 From the results shown in Table 3, it was found that the vacuum insulation material of the present invention in which the core material 1 was made of fine powder obtained during the production of ferrosilicon had little deterioration in the degree of vacuum. Harm m Fine powder with a carbon content of 1.5 wt% obtained during the production of ferrosilicon,
A vacuum insulation material was created using fine powder with a carbon content of 0.2 wt% and 0.5 wt%. In addition, each fine powder had an average particle size of 1.4 μm, a specific surface area of 23 Td, and 7 g.

各微粉末を各々クラフトの紙袋2に充填し、乾燥する。Each fine powder is filled into a kraft paper bag 2 and dried.

このものを乾燥後、ただちに25μmアルミ蒸着ポリエ
ステルに熱融着層として60μmの高密度ポリエチレン
がラミネートされたプラスチックフィルム製の外包材3
に入れ、真空包装機を用いて1mmH(lに真空排気し
、真空に保つ状態で熱融着し、真空断熱材を得た。得ら
れた真空断熱材の熱伝導率を第4表に示す。
After drying this material, immediately apply an outer packaging material 3 made of plastic film, which is made of 25 μm aluminum-deposited polyester and 60 μm high-density polyethylene laminated as a heat-sealing layer.
The vacuum insulation material was obtained by evacuation to 1 mmH (l) using a vacuum packaging machine and heat-sealing while maintaining the vacuum. The thermal conductivity of the obtained vacuum insulation material is shown in Table 4. .

第  4  表 第4表の結果から、炭素含有量が1.5w1−%の微粉
末が充填された真空断熱材は、炭素含有量0.5wt%
のシリカ粉末より断熱性能が優れていることが判明した
。そして更に炭素含有量が減少すると初期の熱伝導率は
O、OO9KC8’/m、h。
Table 4 From the results in Table 4, the vacuum insulation material filled with fine powder with a carbon content of 1.5w1-% has a carbon content of 0.5wt%.
The insulation performance was found to be superior to that of silica powder. When the carbon content further decreases, the initial thermal conductivity becomes O, OO9KC8'/m, h.

℃以上となる。℃ or more.

「作用」 本発明の真空断熱材にあっては、フェロシリコン生産時
において生じるフュームから得られる微粉末を真空断熱
材の芯材1として使用したので、第1に上記実施例1の
第2図に示す如く、!ll!造時における熱伝導率が従
来の発泡バーライ1〜粉砕粉末を充填したものとほぼ同
等であるばかりでなく、経時にともない真空度が劣化し
ても熱伝導率の変化の真空度依存性が極めて小さく、こ
の結果、本考案の真空断熱材は内部の真空度がかなり劣
化しても、充分良好な断熱性能を有するものとなる。
"Function" In the vacuum insulation material of the present invention, fine powder obtained from fumes generated during ferrosilicon production was used as the core material 1 of the vacuum insulation material. As shown in ! ll! Not only is the thermal conductivity at the time of manufacturing almost the same as that of conventional foamed barley 1 filled with pulverized powder, but even if the degree of vacuum deteriorates over time, the change in thermal conductivity is extremely dependent on the degree of vacuum. As a result, the vacuum heat insulating material of the present invention has sufficiently good heat insulating performance even if the internal vacuum degree deteriorates considerably.

従って本発明の真空断熱材は初期の断熱性能を従来のも
のに比較し5倍以上の長期間にわたって保持することが
可能となった。
Therefore, the vacuum heat insulating material of the present invention has been able to maintain its initial heat insulating performance for a long period of time more than five times as long as that of the conventional vacuum heat insulating material.

また、本発明のフェロシリコン生産時に発生するフュー
ムより生成される微粉末には炭素が適宜量含有されてお
り、その含有量が1wt%以上のものを用いた場合には
、芯材1が輻射エネルギーの吸収効率に優れたものとな
るので、真空断熱材を介して伝わる輻射エネルギーがこ
こで遮られることとなり、真空断熱材の断熱性能の向上
が図られる。
Further, the fine powder generated from the fumes generated during the production of ferrosilicon of the present invention contains an appropriate amount of carbon, and when carbon is used with a carbon content of 1 wt% or more, the core material 1 is free from radiation. Since it has excellent energy absorption efficiency, radiant energy transmitted through the vacuum insulation material is blocked here, and the insulation performance of the vacuum insulation material is improved.

また、従来の真空断熱材として、湿式法で製造した含水
無晶形シリカ微粉末や精製四塩化ケイ素の燃焼によって
つくられる無水シリカ微粉末を芯材1として充填したも
のもあるが、これらのものに比べて、本発明のものは次
のような利点がある。
In addition, some conventional vacuum insulation materials are filled with hydrated amorphous silica fine powder manufactured by a wet method or anhydrous silica fine powder produced by combustion of purified silicon tetrachloride as the core material 1. In comparison, the present invention has the following advantages.

まず、従来の湿式法による含水無晶形シリカ微粉末を真
空断熱材に使用した場合、このものは水分の含有量が多
いので外包材に充填する前に加熱乾燥処理を長時間性な
わねばならず、しかも出来上った真空断熱材の真空度も
悪い等の欠点がある。
First, when using conventional wet-method hydrated amorphous silica fine powder for vacuum insulation, it has a high moisture content, so it must be heated and dried for a long time before being filled into the outer packaging material. Moreover, there are drawbacks such as the vacuum degree of the finished vacuum insulation material being poor.

一方、精製四塩化ケイ素の燃焼によってつくられる無水
シリカ微粉末は本発明の真空断熱材に用いられる微粉末
同様、含水量が少なく前記のような欠点はない。しかし
比表面積が大であるため、吸着平衡水分による吸湿量が
多く、保管方法が限定される。また、この無水シリカ微
粉末は高価である。
On the other hand, the anhydrous silica fine powder produced by combustion of purified silicon tetrachloride has a low water content and does not have the above-mentioned drawbacks, like the fine powder used in the vacuum insulation material of the present invention. However, since the specific surface area is large, the amount of moisture absorbed due to adsorption equilibrium moisture is large, and storage methods are limited. Moreover, this anhydrous silica fine powder is expensive.

これらのシリカ粉末に対して、本発明の真空断熱材に充
填されるフェロシリコン生産時のフコームから得られる
微粉末は、含水量が含水無局シリカ微粉末の1/10以
下と少ないうえ、比表面積が無水シリカ微粉末の1/6
〜1/10以下なので、充填前の加熱乾燥処理時間が短
かくて済みしかも吸湿量も小さいのでその保管管理も容
易刃ある。従って、本発明のフェロシリコン生産時の微
粉末が充填された真空断熱材は、非常に生産性が良く、
その出来上り真空度も良いものとなる。
In contrast to these silica powders, the fine powder obtained from fucome during the production of ferrosilicon, which is filled in the vacuum insulation material of the present invention, has a lower water content of less than 1/10 of the hydrated inorganic silica fine powder, and Surface area is 1/6 of anhydrous silica fine powder
Since it is ~1/10 or less, the time required for heating and drying before filling is short, and the amount of moisture absorbed is small, making storage management easy. Therefore, the vacuum insulation material filled with fine powder produced during the production of ferrosilicon according to the present invention has very good productivity.
The finished product has a good degree of vacuum.

また、本発明の真空断熱材に用いられる微粉末は、フェ
ロシリコン生産時に副産物と得られていたものなので、
極めて安価である。従って、この微粉末からなる本発明
の真空断熱材は、安価に製造でき冷蔵庫等の断熱箱体に
好適に用い得る〜bのとなる。
In addition, the fine powder used in the vacuum insulation material of the present invention is obtained as a by-product during the production of ferrosilicon.
It is extremely cheap. Therefore, the vacuum heat insulating material of the present invention made of this fine powder can be produced at a low cost and can be suitably used for heat insulating boxes such as refrigerators.

「発明の効果」 以上詳しく説明したように、本発明の真空断熱材は、減
圧真空に保たれた外包材にフェロシリコン生産時に発生
するフュームから得られる微粉末を充填したものなので
、良好な断熱性能を有するうえその断熱性能の真空度依
存性が小である。その結果、外包材がプラスチックラミ
ネートフィルム製で、脱ガスや周囲の気体の侵入による
真空度の劣化が少々あっても、本発明の真空断熱材は良
好な断熱性能を長期間発揮し得るものとなる。従って、
本発明の真空断熱材は、短い真空排気処理時間で製造で
きる優れた生産性と長い寿命を兼ね備えたものとなる。
"Effects of the Invention" As explained in detail above, the vacuum insulation material of the present invention has good insulation properties because the outer packaging material kept in a reduced pressure vacuum is filled with fine powder obtained from fumes generated during the production of ferrosilicon. In addition to having high performance, its insulation performance has little dependence on the degree of vacuum. As a result, even if the outer packaging material is made of plastic laminate film and the degree of vacuum deteriorates slightly due to degassing or intrusion of surrounding gases, the vacuum insulation material of the present invention can exhibit good insulation performance for a long period of time. Become. Therefore,
The vacuum heat insulating material of the present invention can be manufactured in a short evacuation process time, has excellent productivity, and has a long life.

しかも、本発明の真空断熱材に用いられている微粉末は
フェロシリコン生産時に副産物として得られるものなの
で、極めて安価である。従って本発明の真空断熱材にあ
っては生産コストの低減を図ることができる。
Furthermore, the fine powder used in the vacuum heat insulating material of the present invention is obtained as a by-product during the production of ferrosilicon, so it is extremely inexpensive. Therefore, with the vacuum heat insulating material of the present invention, production costs can be reduced.

また、本発明の真空断熱材に充填される微粉末は、従来
用いられていた含水無晶形シリカ微粉末に比べて含水量
が少ないので、加熱処理時間を短時間で終了できるうえ
、無水シリカ微粉末に比べて吸湿量が小であるので、保
管管理が掻く容易である。従って、本発明の真空断熱材
は、生産し易く、しかも生産性が良いものとなる。
In addition, the fine powder filled in the vacuum insulation material of the present invention has a lower water content than the conventionally used hydrated amorphous silica fine powder, so the heat treatment time can be completed in a short time, and the anhydrous silica fine powder Since it absorbs less moisture than powder, it is easy to store and manage. Therefore, the vacuum heat insulating material of the present invention is easy to produce and has good productivity.

加えて、外包材3をプラスチックラミネー1−フィルム
製のものとした場合、従来の真空断熱材にあってはガス
透過による真空度劣化に対処するため断熱材内に高価な
吸着剤を多量に充填していたが、本発明の真空断熱材は
真空度が多少劣化しても良好な断熱性能を有しているの
で、吸着剤の使用量を大巾に減らし、材料コストの低減
を図ることができる。
In addition, when the outer packaging material 3 is made of plastic laminate 1-film, conventional vacuum insulation materials require a large amount of expensive adsorbent to be filled into the insulation material in order to cope with deterioration of the vacuum level due to gas permeation. However, since the vacuum insulation material of the present invention has good insulation performance even if the degree of vacuum deteriorates to some extent, it is possible to significantly reduce the amount of adsorbent used and reduce material costs. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の真空断熱材の一実施例を示す一部破断
視した斜視図、第2図は本発明の真空断熱材の真空度−
熱伝導率の関係を示すグラフ、第3図は従来の真空断熱
材に用いられていた発泡パーライト粉砕粉末を示す平面
図、第4図は平均粒径20μmの発泡パーライト粉砕粉
末が充填された真空断熱材の真空度−熱伝導率の関係を
示すグラフ、第5図はプラスチックフィルムの脱ガスに
よる真空断熱材の真空度の劣化を説明するためのグラ、
フである。 1・・・・・・芯材、3・・・・・・外包材。
FIG. 1 is a partially cutaway perspective view showing an embodiment of the vacuum heat insulating material of the present invention, and FIG. 2 shows the degree of vacuum of the vacuum heat insulating material of the present invention.
A graph showing the relationship between thermal conductivity. Figure 3 is a plan view showing pulverized foamed perlite powder used in conventional vacuum insulation materials. Figure 4 is a vacuum filled with pulverized foamed perlite powder with an average particle size of 20 μm. A graph showing the relationship between the degree of vacuum and thermal conductivity of the insulation material, Figure 5 is a graph to explain the deterioration of the degree of vacuum of the vacuum insulation material due to degassing of the plastic film,
It is f. 1...Core material, 3...Outer packaging material.

Claims (2)

【特許請求の範囲】[Claims] (1)断熱性材料からなる芯材を非通気性外包材に収容
しその内部を減圧真空せしめてなる真空断熱材において
、 上記断熱性材料として、フェロシリコン生産で発生する
フュームより生成される微粉末を用いたことを特徴とす
る真空断熱材。
(1) In a vacuum insulation material made by encasing a core material made of a heat insulating material in a non-breathable outer packaging material and evacuating the inside of the core material, the heat insulating material is a microorganism produced from fumes generated in the production of ferrosilicon. A vacuum insulation material characterized by using powder.
(2)上記微粉末には少なくとも炭素が1wt%以上含
有されていることを特徴とする特許請求の範囲第1項記
載の真空断熱材。
(2) The vacuum heat insulating material according to claim 1, wherein the fine powder contains at least 1 wt% or more of carbon.
JP60283647A 1985-12-17 1985-12-17 Vacuum insulation Expired - Lifetime JPH0820032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283647A JPH0820032B2 (en) 1985-12-17 1985-12-17 Vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283647A JPH0820032B2 (en) 1985-12-17 1985-12-17 Vacuum insulation

Publications (2)

Publication Number Publication Date
JPS62141392A true JPS62141392A (en) 1987-06-24
JPH0820032B2 JPH0820032B2 (en) 1996-03-04

Family

ID=17668225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283647A Expired - Lifetime JPH0820032B2 (en) 1985-12-17 1985-12-17 Vacuum insulation

Country Status (1)

Country Link
JP (1) JPH0820032B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946207A (en) * 1972-09-11 1974-05-02
JPS55155996A (en) * 1979-03-23 1980-12-04 Schilf Lothar Construction of heat insulator for high pressure vessel* high pressure piping and others and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946207A (en) * 1972-09-11 1974-05-02
JPS55155996A (en) * 1979-03-23 1980-12-04 Schilf Lothar Construction of heat insulator for high pressure vessel* high pressure piping and others and method of producing same

Also Published As

Publication number Publication date
JPH0820032B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
KR100540522B1 (en) Vacuum insulating material and device using the same
US7210308B2 (en) Refrigerator
US5076984A (en) Method for fabricating thermal insulation
JP2001336691A (en) Vacuum insulation material and refrigerator using vacuum insulation material
US7833327B2 (en) Thermal insulator
US4594279A (en) Heat insulator
JP2017106526A (en) Vacuum heat insulation body, heat insulation equipment including the same, and manufacturing method of vacuum heat insulation body
WO2010087039A1 (en) Vacuum insulation material and insulation box using the same
JP4797387B2 (en) Insulator and refrigeration / refrigeration equipment or refrigeration equipment
TW536614B (en) Refrigerator
JP2001108187A (en) Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel
JPS59225275A (en) Vacuum heat-insulating material
JP2008215492A (en) Vacuum heat insulation material
JP2000291881A (en) Decompressed heat insulating body and manufacture thereof
JPS62141392A (en) Vacuum heat-insulating material
JP2009287791A (en) Vacuum heat insulating housing
JP2008215538A (en) Vacuum heat insulation material
JP2003314786A (en) Vacuum heat insulating material as well as refrigerating equipment and cooling equipment using vacuum heat insulating material
JP4797614B2 (en) Insulation
JPH06281089A (en) Vacuum heat-insulating material
JP2006124013A (en) Portable heat insulating container
JP2008095840A (en) Vacuum heat insulating material
JP3527727B2 (en) Vacuum insulation material and equipment using the vacuum insulation material
JPH0233917B2 (en) DANNETSUBAN
JP7129979B2 (en) Vacuum insulation material manufacturing method