JPS62140456A - Semiconductor storage - Google Patents

Semiconductor storage

Info

Publication number
JPS62140456A
JPS62140456A JP60281027A JP28102785A JPS62140456A JP S62140456 A JPS62140456 A JP S62140456A JP 60281027 A JP60281027 A JP 60281027A JP 28102785 A JP28102785 A JP 28102785A JP S62140456 A JPS62140456 A JP S62140456A
Authority
JP
Japan
Prior art keywords
capacitor
groove
island
layer
mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60281027A
Other languages
Japanese (ja)
Other versions
JPH0793372B2 (en
Inventor
Masashi Wada
和田 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60281027A priority Critical patent/JPH0793372B2/en
Publication of JPS62140456A publication Critical patent/JPS62140456A/en
Publication of JPH0793372B2 publication Critical patent/JPH0793372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/39DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
    • H10B12/395DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce the occupying area of a memory cell while obtaining suffi cient capacitor capacitance by forming a MOS capacitor and a MOS transistor in a MOS type dynamic RAM having the memory cell structure of one transistor /one capacitor by utilizing the side walls of grooves. CONSTITUTION:A p<-> Si layer 12 is shaped onto a p<+> type Si substrate 11, grooves reaching the p<+> Si substrate 11 are dug in field regions in the layer 12, and Si islands are formed in to an array shape. With the Si island, the groove is buried with an SiO2 film 15 in one direction, a capacitor electrode 19 is buried in the lower section of the residual groove, and a gate electrode 22 is formed on the upper section of the groove. A gate electrode 22 is shaped with each cell continued, thus constituting a word line. A drain 23 is formed on the upper section of the Si island, and Al 25 as a bit line is disposed crossed at a right angle with the word line. Consequently, a sufficiently large value can be ensured because a side surface surrounding an insular semiconductor layer is utilized in the capacitance of a capacitor. Accordingly, a highly integrated dRAM can be formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、1トランジスタ/1キヤパシタのメモリモル
構造を持つ半導体記憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device having a memory structure of one transistor/one capacitor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導体基板に形成される記憶装置として、−個の
MOSトランジスタと一個のMOSキャパシタによりメ
モリセルを構成するMO8型ダイナミックRA M (
d RAM )が知られている。このd R,AMでは
、情報の記憶はMOSキャパシタに電荷が蓄積されてい
るか否かにより行われ、情報の読み出しはMOSキャパ
シタの電荷をMOSトランジスタを介してビット線に放
出してその電位変化を検出することにより行われる。近
年の半導体技術の進歩、特に微細加工技術の進歩により
、dRAMの大容量化は急速に進んでいる。
Conventionally, as a memory device formed on a semiconductor substrate, there is an MO8 type dynamic RAM (MO8 type dynamic RAM) in which a memory cell is configured by - MOS transistors and one MOS capacitor.
dRAM) is known. In this dR,AM, information is stored depending on whether or not charge is accumulated in the MOS capacitor, and information is read by discharging the charge of the MOS capacitor to the bit line via the MOS transistor and observing the potential change. This is done by detecting. Due to recent advances in semiconductor technology, particularly advances in microfabrication technology, the capacity of dRAM is rapidly increasing.

dRAMを更に大容量化する上で最も大きい問題は、メ
モリセル面積を小さくしてしかもMOSキャパシタの容
量を如何に大きく保つかという点にある。dRAMの情
報読み出しの際の電位変化の大きさはMOSキャパシタ
の蓄積電荷量で決まり、動作余裕、α線入射等のノイズ
に対する余裕を考えると、最小限必要な電荷量が決まる
。そして蓄積電荷量はMOSキャパシタの容量と印加電
圧で決まり、印加電圧は電源電圧で決まるので、MOS
キャパシタ容量をある値以上確保することが必要となる
The biggest problem in increasing the capacity of dRAM is how to keep the capacitance of the MOS capacitor large while reducing the memory cell area. The magnitude of potential change when reading information from dRAM is determined by the amount of charge accumulated in the MOS capacitor, and the minimum required amount of charge is determined by considering operating margin and margin against noise such as α-ray incidence. The amount of accumulated charge is determined by the capacitance of the MOS capacitor and the applied voltage, and the applied voltage is determined by the power supply voltage, so the MOS
It is necessary to secure the capacitor capacity above a certain value.

MOSキャパシタの容量を大きくするためには、用いる
ゲート絶縁膜の膜厚を小さくするか、誘電率を大きくす
るか、または面積を大きくすることが必要である。しか
し、絶縁膜厚を小さくすることは信頼性上限界がある。
In order to increase the capacitance of a MOS capacitor, it is necessary to reduce the thickness, increase the dielectric constant, or increase the area of the gate insulating film used. However, reducing the thickness of the insulating film has a limit in terms of reliability.

誘電率を大きくすることは例えば、酸化膜(Sin、膜
)に代わって窒化膜(Si3N、膜)を用いること等が
考えられるが、これも主として信頼性上問題があり実用
的でない。
One possible way to increase the dielectric constant is to use a nitride film (Si3N film) instead of an oxide film (Sin film), but this also mainly poses problems in terms of reliability and is not practical.

そうすると必要な容量を確保するためには、MOSキャ
パシタの面積を一定値以上確保することが必要になり、
これがメモリセルの面積を小さくしてd几AMの高密度
化、大容量化を達成する上で大きな障害になっている。
Then, in order to secure the necessary capacity, it is necessary to secure the area of the MOS capacitor over a certain value.
This is a major obstacle in reducing the area of the memory cell and achieving higher density and larger capacity of the DRAM.

メモリセルの占有面積を大きくすることなくMOSキャ
パシタの容量を大きくする方法として、半導体基板内に
格子縞状の溝を設け、この溝により囲まれた領域を一つ
のメモリセル領域とし、溝の底部を分離領域として、溝
の側面にMOSキャパシタを形成するものが提案されて
いる(特開昭59−72161号公報)。その構造を第
6図に示す。61はpus i基板であり、これに格子
縞状の@62が形成されて、この溝の側壁にキャパシタ
絶縁膜63を介してキャパシタ電極64が溝62に埋め
込まれ、溝で囲まれた島領域を囲むようにMOSキャパ
シタが構成されている。溝62の底部には素子分離用の
p+型層65が形成されている。MOSトランジスタは
、溝62で囲まれた領域の基板平坦部にゲート絶縁膜6
6を介してゲート電極67を形成して構成されている。
As a method of increasing the capacitance of a MOS capacitor without increasing the area occupied by the memory cell, a checkered groove is formed in the semiconductor substrate, the area surrounded by this groove is defined as one memory cell area, and the bottom of the groove is It has been proposed that a MOS capacitor is formed on the side surface of a trench as an isolation region (Japanese Patent Application Laid-open No. 72161/1983). Its structure is shown in FIG. Reference numeral 61 denotes a PUS I substrate, on which a checkered pattern @62 is formed, and a capacitor electrode 64 is embedded in the groove 62 through a capacitor insulating film 63 on the side wall of this groove, forming an island region surrounded by the groove. MOS capacitors are arranged to surround it. A p+ type layer 65 for element isolation is formed at the bottom of the groove 62. The MOS transistor has a gate insulating film 6 on a flat part of the substrate in a region surrounded by a trench 62.
A gate electrode 67 is formed through the gate electrode 6.

68はドレインとなる計型層、69はSiO,膜であり
、70はビット線となる金属配線である。
Reference numeral 68 is a metering layer that becomes a drain, 69 is an SiO film, and 70 is a metal wiring that becomes a bit line.

この構成では全ての溝の側面をMOSキャパシタとして
利用しているため、大きい容量を容易に得ることができ
るという利点を有する。反面、溝で囲まれた島領域が一
つのメモリセル領域に対応し、かつこの島領域内で中央
部にコンタクト孔を設け、その周囲にMO8I−ランジ
スタのゲート電極を形成するため、MOSトランジスタ
の占有面積が大きいものとなり、結局メモリセル全体と
しての占有面積を充分に小さくすることができない、と
いう欠点があった。
This configuration has the advantage that a large capacitance can be easily obtained because the side surfaces of all the grooves are used as MOS capacitors. On the other hand, since the island region surrounded by the groove corresponds to one memory cell region, and a contact hole is provided in the center of this island region, and the gate electrode of the MO8I-transistor is formed around it, the MOS transistor is This results in a large occupied area, which has the disadvantage that the occupied area of the memory cell as a whole cannot be made sufficiently small.

又、1つの島領域に1つのメモリセルしか形成できない
ため、集積度が上がらないという問題点があった。
Further, since only one memory cell can be formed in one island region, there is a problem that the degree of integration cannot be increased.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みなされたもので、メモリセル占
有面積を小さくしてしかも充分なキャパシタ容量を実現
した半導体記憶装置を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor memory device that reduces the area occupied by memory cells and realizes sufficient capacitor capacity.

〔発明の概要〕[Summary of the invention]

本発明では、基板上に格子縞状の溝により分離された複
数の島状半導体層が配列形成され、各島状半導体層にそ
れぞれ1トランジスタ/1キヤパシタ構成のメモリセル
が形成される。この場合、MOSキャパシタは溝の途中
までキャパシタ電極が埋め込まれた状態で溝側壁を利用
して形成され、MOSトランジスタはこのキャパシタ電
極上にゲート電極が埋め込まれた状態でやはり溝側壁を
利用して形成される。従って溝で囲まれた島状半導体層
の上面にはMO8I−ランジスタのドレイン領域のみが
設けられる。
In the present invention, a plurality of island-shaped semiconductor layers separated by lattice-shaped grooves are arranged and formed on a substrate, and a memory cell having a one-transistor/one-capacitor configuration is formed in each island-shaped semiconductor layer. In this case, the MOS capacitor is formed using the trench sidewalls with the capacitor electrode buried halfway into the trench, and the MOS transistor is formed using the trench sidewalls with the gate electrode buried on the capacitor electrode. It is formed. Therefore, only the drain region of the MO8I transistor is provided on the upper surface of the island-shaped semiconductor layer surrounded by the groove.

又、島状半導体層の対向する側壁部には絶縁膜が埋設さ
れ、これ以外の溝に前記キャパシタ電極とゲート電極が
埋め込まれる。従って2cell/1sland  構
成が達成される。
Further, an insulating film is buried in the opposing sidewall portions of the island-shaped semiconductor layer, and the capacitor electrode and the gate electrode are buried in the other grooves. Therefore, a 2cell/1sland configuration is achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、MOSキャパシタのみならずMOSト
ランジスタも溝側壁を利用して形成されるため、メモリ
セル占有面積を従来に比べて小さいものとすることがで
き、しかもキャパシタ容量は島状半導体層を取り囲む側
面を利用することで充分大きい値を確保することができ
る。従って高集積化d RA Mを実現することができ
る。
According to the present invention, since not only the MOS capacitor but also the MOS transistor is formed using the trench sidewall, the area occupied by the memory cell can be made smaller than that of the conventional method, and the capacitance is smaller than that of the island-shaped semiconductor layer. A sufficiently large value can be secured by using the side surfaces surrounding the . Therefore, highly integrated dRAM can be realized.

又、2 cell/1sland構成が可能となるため
高集積度が可能となる。
Furthermore, since a 2 cell/1 sland configuration is possible, a high degree of integration is possible.

また本発明によれば、キャパシタ電極およびトランジス
タのゲート電極が共に格子縞状溝に埋め込まれるため、
これらの電極が形成された後の基板表面を平坦なものと
することができ、その後の金属配線工程で微細パターン
の形成が容易になるこのことはd几A Mの一層の高集
積化と信頼性向上に寄与する。
Further, according to the present invention, since both the capacitor electrode and the gate electrode of the transistor are embedded in the checkered groove,
After these electrodes are formed, the surface of the substrate can be flattened, making it easier to form fine patterns in the subsequent metal wiring process. Contributes to sexual improvement.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図は一実施例のd几AM構成を示すもので、平面図
を示し、第2図(a)〜(i)はA −A1位置の製造
工程断面図である。
FIG. 1 shows a plan view of the d-type AM configuration of one embodiment, and FIGS. 2(a) to 2(i) are sectional views of the manufacturing process at the A-A1 position.

即ち、り型Si基板11上にpsi層12が設けられ、
そのフィールド領域にf8 i基板11iC達する溝が
堀られてSi島がアレイ状に形成されている。そして、
Si島は、一方向について溝が5in2膜15で埋込ま
れ、残る溝の下部にキャパシタ電極19が埋設され、溝
上部にはゲート電極22が設けられている。ゲート電極
22は各セル連続して設けられ、ワード線を構成してい
る。またSi島上部にはドレイン23が設けられ、ビッ
ト線であるA425がワード線と直交して配設されてい
る。
That is, a psi layer 12 is provided on a rectangular Si substrate 11,
A groove reaching the f8 i substrate 11iC is dug in the field region, and Si islands are formed in an array. and,
In the Si island, a groove is filled in one direction with a 5in2 film 15, a capacitor electrode 19 is buried in the lower part of the remaining groove, and a gate electrode 22 is provided in the upper part of the groove. The gate electrode 22 is provided continuously in each cell and constitutes a word line. Further, a drain 23 is provided above the Si island, and a bit line A425 is arranged perpendicular to the word line.

従って、Sin、膜15を挟んでSi島には側壁を利用
して2つのdRAMセルが・配される事になる。
Therefore, two dRAM cells are arranged on the Si island with the Si film 15 in between, using the side walls.

製遁lこ際しては、高不純物濃度のp型Si基板11上
こ低不純物濃度のp−型Si層12をエピタキシャル成
長させ、島状半導体領域を形成する部分にシリコン酸化
膜13を形成し、これをフォトレジスト14をマスクに
パターニングする(第2図a)。
At this time, a p-type Si layer 12 with a low impurity concentration is epitaxially grown on a p-type Si substrate 11 with a high impurity concentration, and a silicon oxide film 13 is formed on the part where the island-shaped semiconductor region is to be formed. This is then patterned using the photoresist 14 as a mask (FIG. 2a).

次屹これらをマスクにf型Si層12を反応性イオンエ
ツチング(RIB)でエツチングし、格子縞状の溝をS
i基板11に達して形成する。そして、この溝にCVD
5iO,膜15を平担に埋込む(第2図b)。
Next, using these as a mask, the f-type Si layer 12 is etched by reactive ion etching (RIB) to form checkered grooves.
The i-substrate 11 is reached and formed. Then, CVD is applied to this groove.
5iO, and the film 15 is buried flat (FIG. 2b).

次に、複数のSi島を横切ってフォトレジストマスク1
6をストライプ状lこ設け、これをマスクニシテ、CV
 D S io 2 膜15 ヲRI Eでx−、チン
グする。(第2図C)。これにより、ワード線配設方向
に、Si島間の湾力≦CVD5iO!膜で埋められる。
Next, a photoresist mask 1 is applied across the plurality of Si islands.
6 is provided in a striped pattern, and this is used as a mask, CV
DS io 2 film 15 x- and ching with RI E. (Figure 2C). As a result, in the word line arrangement direction, the gulf force between Si islands ≦CVD5iO! Filled with membrane.

この後、PS、GPIX(図示せず)を全面にCVI)
被着し、熱処理を施すことにより酸化膜15を除去した
部分のSi島側壁にリンを拡散してn−型層17を形成
し、PEG膜を除去してキャパシタ絶縁膜18として1
00A程度の熱酸化膜を形成する(第2図d)。
After this, PS, GPIX (not shown) is applied to the entire surface (CVI)
The n-type layer 17 is formed by diffusing phosphorus onto the side wall of the Si island where the oxide film 15 has been removed by applying heat treatment, and the PEG film is removed to form a capacitor insulating film 18.
A thermal oxide film of about 00A is formed (FIG. 2d).

次いで、第1層多結晶シリコン膜19を全面に堆積する
。この時、多結晶シリコン膜19の表面は図示のように
平担化する(第2図e)。そして、多結晶シリコン戻1
9を全面エツチングして溝の底部に残し、キャパシタ電
極とする。このキャパシタ電極19は溝の途中まで埋込
まれた状態で形成される。
Next, a first layer polycrystalline silicon film 19 is deposited over the entire surface. At this time, the surface of the polycrystalline silicon film 19 is flattened as shown in the figure (FIG. 2e). And polycrystalline silicon return 1
9 is etched on the entire surface and left at the bottom of the groove to serve as a capacitor electrode. This capacitor electrode 19 is formed so as to be buried halfway into the groove.

この後、キャパシタ絶縁膜18を除去し、BSG膜(図
示しない)等によって側壁及び上面にトランジスタのチ
ャネル領域となるp−型層20を形成する(第2図f)
。このとき、f型層20の形成時の拡散によってキャパ
シタの基板側電極となるn−型層16が後退する。これ
を補償するためには予めこの後過分を引込んでキャパシ
タ電極の厚みを少し厚く選んでおいて、p−型層20の
形成後にキャパシタを極19表面を僅かにエツチングす
る争が望よしい。
Thereafter, the capacitor insulating film 18 is removed, and a p-type layer 20, which will become the channel region of the transistor, is formed on the sidewalls and top surface using a BSG film (not shown) or the like (FIG. 2f).
. At this time, the n-type layer 16, which becomes the substrate-side electrode of the capacitor, recedes due to diffusion during the formation of the f-type layer 20. In order to compensate for this, it is preferable to select a slightly thicker capacitor electrode by retracting the excess, and then slightly etching the surface of the capacitor electrode 19 after forming the p-type layer 20.

この後、ゲートea膜21として例えば200A厚程度
の熱酸化膜を各p−型層の表面に形成し、次いでMOS
トランジスタのゲート電極として用いる第2層多結晶シ
リコン膜22をCVDで堆積する(第2図g)。この第
2層多結晶シリコン膜22は、図から明らかなように第
1層多結晶シリコン膜の場合のように表面は平担化しな
い。そして、この多結晶シリコン膜22を几IBなどの
異方性エツチングにより全面エツチングして81島の側
壁部及び埋込んだ酸化膜15の側壁部に自己整合して残
してゲート電極23を形成する。こうして縦方向につな
がるゲート電極23はワード線を構成する。この後、例
えばヒ素のイオン注入を行なって各St島表面にMOS
トランジスタのドレインとなるn型層23を形成する(
第2図11 )。
Thereafter, a thermal oxide film with a thickness of, for example, about 200A is formed as the gate EA film 21 on the surface of each p-type layer, and then the MOS
A second polycrystalline silicon film 22 to be used as the gate electrode of the transistor is deposited by CVD (FIG. 2g). As is clear from the figure, the surface of the second layer polycrystalline silicon film 22 is not flattened as in the case of the first layer polycrystalline silicon film. Then, this polycrystalline silicon film 22 is etched over the entire surface by anisotropic etching such as IB etching, and is left in self-alignment on the sidewalls of the 81 islands and the sidewalls of the buried oxide film 15 to form the gate electrode 23. . The gate electrodes 23 connected in the vertical direction constitute word lines. After this, for example, arsenic ion implantation is performed to form a MOS on the surface of each St island.
Form an n-type layer 23 that will become the drain of the transistor (
Figure 2 11).

最後に、全面にCVD酸化膜24を形成し、これに横方
向のメモリセルのドレインを接続し、ヒツト線となるk
t配線25を形成する(第2図1)。
Finally, a CVD oxide film 24 is formed on the entire surface, and the drains of the memory cells in the horizontal direction are connected to this, and the k
A t-wiring 25 is formed (FIG. 2 1).

かくして、ゲート電極はSi島の11111壁部に配置
されることとなり、1つの81島に2つのメモリセルが
配され、キャパシタ容量が大きく高奮度のdRAMセル
か提供される。
In this way, the gate electrode is placed on the 11111 wall of the Si island, two memory cells are placed on one 81 island, and a dRAM cell with a large capacitance and high performance is provided.

第3図は、ワード線の取り出しを示す、第1図のB −
B’断面を表わしている。
FIG. 3 shows the extraction of word lines from B-- in FIG. 1.
B' section is shown.

第1図の(11で示した線は、周辺回路領域とメモリセ
ルアレイ領域との境界を示している。この例では、ワー
ド線は90°ねじられて周辺のp−型平担なS i 層
12上に導出されている。これは次の様にして形成する
事が出来る。即ち、第2図(g)の上程で、第2層多結
晶シリコン漠22を被着した後、レジストマスク(図示
せず)を用いて第1図で(n)として示した領域部の段
差に被着された第2層多結晶シリコン膜22をウェット
エツチングで除去第2j輪多結晶シリコン膜22を覆い
(第3図a)へ それから第2図(h)で説明したRIEによる第2層多
結晶シリコン膜22の全面エツチングを行なう。
The line (11) in FIG. 1 indicates the boundary between the peripheral circuit area and the memory cell array area. 12. This can be formed in the following manner. That is, in the upper part of FIG. The second layer polycrystalline silicon film 22 deposited on the step in the region shown as (n) in FIG. 3a). Then, the entire surface of the second layer polycrystalline silicon film 22 is etched by RIE as explained in FIG. 2(h).

これにより、第3図(b)に示す如くワード線は90゜
ねじられて周辺部に延在される。希望によりこの延在部
上でktとのコンタクトを取っても良い。
As a result, the word line is twisted by 90 degrees and extended to the periphery as shown in FIG. 3(b). Contact with kt may be made on this extension if desired.

上記導出例では、第1図の(It)の部分の第2層多結
晶シリコン膜22をフォトレジストマスクを用いて除去
した。しかし、この様な選択除去に代えて次の方法も可
能である。
In the above derivation example, the second layer polycrystalline silicon film 22 in the part (It) in FIG. 1 was removed using a photoresist mask. However, instead of such selective removal, the following method is also possible.

即ち、第2図(a)の工程に先立って、第1図の周辺回
路とメモリセルアレイ領域との境界部のp−型Si層に
Si基板11に達するV溝をテーパーエツチングにより
形成しておく。これにより、境界■のf型Si層12段
差部に例えば4fの傾きを持たせる。このようにすると
、第3図(a)の工程で第2層多結晶シリコン膜22に
レジストパターン31を載せて、几IEで全面エツチン
グする時、隣り合うワード線間は自動的に分離される。
That is, prior to the process shown in FIG. 2(a), a V groove reaching the Si substrate 11 is formed in the p-type Si layer at the boundary between the peripheral circuit and the memory cell array region shown in FIG. 1 by taper etching. . As a result, the stepped portion of the f-type Si layer 12 at the boundary (3) is given an inclination of, for example, 4f. By doing this, when the resist pattern 31 is placed on the second layer polycrystalline silicon film 22 and the entire surface is etched using the IE in the process shown in FIG. .

以上の実施例では、Si島を45°回転させた矩形の平
面パターンとした。しかし、第4図(a)に示す如く、
回転前の形としてもよいし、(b)のように円形として
もよく、又、(C)に示す如く小判状の長円パターンと
しても良い。
In the above embodiment, a rectangular planar pattern in which the Si islands were rotated by 45 degrees was used. However, as shown in Figure 4(a),
It may be in the shape before rotation, it may be circular as in (b), or it may be in an oval-shaped oval pattern as shown in (c).

これらの形は、先に本発明者により提案された1 ce
ll/1sland形態のメモリセル(特願昭60−8
0619号)に適用する事が可能である。
These shapes are similar to the 1ce previously proposed by the inventor.
ll/1sland type memory cell (patent application 1986-8)
No. 0619).

第5図は、この様な例屹第4図(b)の円形パターンを
適用した例を示しており、(a)は平面図、(b)。
FIG. 5 shows an example in which the circular pattern shown in FIG. 4(b) is applied, where (a) is a plan view and FIG. 5(b) is a plan view.

(C)は夫々A−AI、B−Bl断面を示している。酸
化膜15及びこれをパターニングするレジストマスク1
6を設けないだけで、後は第2図(a)〜(i)と同一
工程で形成される。
(C) shows the A-AI and B-Bl cross sections, respectively. Oxide film 15 and resist mask 1 for patterning it
6 is not provided, and the rest is formed in the same process as in FIGS. 2(a) to 2(i).

即ち、Si島は、全周がキャパシタ電極とゲート電極の
積1−構造で囲まれ、l cell/1sland構成
となっており、第2図(g)の工程で第2層多結晶シリ
コン膜22を、ワード線形成方向のSi島間の溝幅の1
/2より厚く成長させる事lこより、連続したワード線
と為している。
That is, the Si island is surrounded all around by a product 1-structure of a capacitor electrode and a gate electrode, and has an 1 cell/1 sland structure, and the second layer polycrystalline silicon film 22 is is 1 of the groove width between Si islands in the word line forming direction.
By growing the word line thicker than /2, a continuous word line is formed.

さて、以上の説明では、センスアンプとつながれる一対
のビット線(BL、、BL’、)、(BL、、BLI、
)は夫々1つおきにSi島と接続したフォールデッド・
ビットライン構成としたか、オープン・ビットライン構
成として良い。また、素子間のアイソレーションはp”
W基r111により行なったが、このようなエピタキシ
ャル成長ウェハを用いず、p−型Si基板を用いて、素
子間の溝底部にフィールド絶縁膜を一定厚さに埋設した
り、その下部に1層を形成する方法を採用する墨も出来
る。
Now, in the above explanation, a pair of bit lines (BL,, BL',), (BL,, BLI,
) are folded islands connected to every other Si island.
A bit line configuration or an open bit line configuration may be used. Also, the isolation between elements is p”
However, instead of using such an epitaxial growth wafer, a p-type Si substrate is used, and a field insulating film is buried to a constant thickness at the bottom of the groove between the elements, or a single layer is placed below it. You can also make ink using the forming method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の平面図、第2図はその工程断
面図、第3図は導出部の断面図、第4図はSi島の例を
示す平面図、第5図は他の例を示す図、第6図は従来例
を示す断面図である。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 第  1 図 CC) 第  2 図 (d) (e) (J) 第  2 図 第  2 図 (α) 第3図 (a) 第  4 図 第5図 (b) (C) 第5図
FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2 is a sectional view of the process, FIG. 3 is a sectional view of the lead-out part, FIG. 4 is a plan view showing an example of Si islands, and FIG. FIG. 6 is a sectional view showing a conventional example. Agent Patent Attorney Yudo Nori Chika Kikuo Takehana Figure 1 CC) Figure 2 (d) (e) (J) Figure 2 Figure 2 (α) Figure 3 (a) Figure 4 Figure 5 (b) (C) Figure 5

Claims (1)

【特許請求の範囲】[Claims]  半導体基板のフィールド領域に溝を設けて形成された
島状半導体領域と、この島状半導体領域の対向する側壁
部分の溝に埋設された絶縁膜と、この絶縁膜から露出す
る前記溝部に順次埋込まれたキャパシタ電極及びゲート
電極と、前記島状半導体領域上面に設けられた逆導電型
領域とを備えた事を特徴とする半導体記憶装置。
An island-shaped semiconductor region formed by providing a groove in a field region of a semiconductor substrate, an insulating film buried in the groove on opposing sidewall portions of this island-shaped semiconductor region, and a groove portion exposed from this insulating film sequentially buried. 1. A semiconductor memory device comprising a capacitor electrode and a gate electrode embedded therein, and an opposite conductivity type region provided on an upper surface of the island-shaped semiconductor region.
JP60281027A 1985-12-16 1985-12-16 Semiconductor memory device Expired - Lifetime JPH0793372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60281027A JPH0793372B2 (en) 1985-12-16 1985-12-16 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60281027A JPH0793372B2 (en) 1985-12-16 1985-12-16 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS62140456A true JPS62140456A (en) 1987-06-24
JPH0793372B2 JPH0793372B2 (en) 1995-10-09

Family

ID=17633265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60281027A Expired - Lifetime JPH0793372B2 (en) 1985-12-16 1985-12-16 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0793372B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351667A (en) * 1986-08-21 1988-03-04 Matsushita Electronics Corp Semiconductor memory device
JPS6428951A (en) * 1987-07-24 1989-01-31 Sony Corp Semiconductor memory device
JPH01108762A (en) * 1987-10-21 1989-04-26 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPH02132855A (en) * 1988-06-09 1990-05-22 Texas Instr Inc <Ti> Dynamic ram cell having insulating trench-capacitor
US5028980A (en) * 1988-12-21 1991-07-02 Texas Instruments Incorporated Trench capacitor with expanded area
US5057896A (en) * 1988-05-28 1991-10-15 Fujitsu Limited Semiconductor device and method of producing same
US5106775A (en) * 1987-12-10 1992-04-21 Hitachi, Ltd. Process for manufacturing vertical dynamic random access memories
EP0510604A2 (en) * 1991-04-23 1992-10-28 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same
EP0905771A2 (en) * 1997-09-30 1999-03-31 Siemens Aktiengesellschaft Trench capacitor DRAM cell and method of making the same
WO2002011200A1 (en) * 2000-07-31 2002-02-07 Infineon Technologies Ag Semiconductor memory cell arrangement and method for producing the same
WO2003028104A3 (en) * 2001-09-05 2003-08-14 Infineon Technologies Ag Semiconductor memory with memory cells comprising a vertical selection transistor and method for production thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134385A (en) * 1976-05-04 1977-11-10 Siemens Ag Semiconductor memory
JPS57196565A (en) * 1981-05-22 1982-12-02 Ibm Method of forming vertical fet
JPS59117258A (en) * 1982-12-24 1984-07-06 Hitachi Ltd Semiconductor device and manufacture thereof
JPS60152056A (en) * 1984-01-20 1985-08-10 Hitachi Ltd Semiconductor memory device
JPS61174670A (en) * 1984-10-31 1986-08-06 テキサス インスツルメンツ インコ−ポレイテツド Dram cell and making thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134385A (en) * 1976-05-04 1977-11-10 Siemens Ag Semiconductor memory
JPS57196565A (en) * 1981-05-22 1982-12-02 Ibm Method of forming vertical fet
JPS59117258A (en) * 1982-12-24 1984-07-06 Hitachi Ltd Semiconductor device and manufacture thereof
JPS60152056A (en) * 1984-01-20 1985-08-10 Hitachi Ltd Semiconductor memory device
JPS61174670A (en) * 1984-10-31 1986-08-06 テキサス インスツルメンツ インコ−ポレイテツド Dram cell and making thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351667A (en) * 1986-08-21 1988-03-04 Matsushita Electronics Corp Semiconductor memory device
JPS6428951A (en) * 1987-07-24 1989-01-31 Sony Corp Semiconductor memory device
JPH01108762A (en) * 1987-10-21 1989-04-26 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
US5106775A (en) * 1987-12-10 1992-04-21 Hitachi, Ltd. Process for manufacturing vertical dynamic random access memories
US5057896A (en) * 1988-05-28 1991-10-15 Fujitsu Limited Semiconductor device and method of producing same
JPH02132855A (en) * 1988-06-09 1990-05-22 Texas Instr Inc <Ti> Dynamic ram cell having insulating trench-capacitor
US5028980A (en) * 1988-12-21 1991-07-02 Texas Instruments Incorporated Trench capacitor with expanded area
US6373099B1 (en) 1991-04-23 2002-04-16 Canon Kabushiki Kaisha Method of manufacturing a surrounding gate type MOFSET
EP0510604A3 (en) * 1991-04-23 2001-05-09 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same
EP0510604A2 (en) * 1991-04-23 1992-10-28 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same
EP0905771A2 (en) * 1997-09-30 1999-03-31 Siemens Aktiengesellschaft Trench capacitor DRAM cell and method of making the same
EP0905771A3 (en) * 1997-09-30 2001-10-24 Siemens Aktiengesellschaft Trench capacitor DRAM cell and method of making the same
WO2002011200A1 (en) * 2000-07-31 2002-02-07 Infineon Technologies Ag Semiconductor memory cell arrangement and method for producing the same
US6853023B2 (en) 2000-07-31 2005-02-08 Infineon Technologies Ag Semiconductor memory cell configuration and a method for producing the configuration
WO2003028104A3 (en) * 2001-09-05 2003-08-14 Infineon Technologies Ag Semiconductor memory with memory cells comprising a vertical selection transistor and method for production thereof
US6977405B2 (en) 2001-09-05 2005-12-20 Infineon Technologies, Ag Semiconductor memory with memory cells comprising a vertical selection transistor and method for fabricating it

Also Published As

Publication number Publication date
JPH0793372B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US5629226A (en) Method of manufacturing a buried plate type DRAM having a widened trench structure
US5336629A (en) Folder Bitline DRAM having access transistors stacked above trench storage capacitors, each such transistor employing a planar semiconductor body which spans adjacent capacitors
US5716883A (en) Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
JP3940440B2 (en) Capacitor manufacturing method for semiconductor memory device
JP3434488B2 (en) Manufacturing method of DRAM cell
US4894697A (en) Ultra dense dram cell and its method of fabrication
JPH0682800B2 (en) Semiconductor memory device
KR970003168B1 (en) Method for manufacturing a capacitor in semiconductor memory device
JPH05267614A (en) Manufacture of vertical parallel cell capacitor having memory node capacitor plate with center fin for electric connection between parallel rings
JPH08116037A (en) Soi trench structure and its preparation
JPH0744225B2 (en) Vertical DRAM memory cell array
GB2288276A (en) Dram memory cell utilising surrounding gate transistor and method of manufacture
JPH027465A (en) Semiconductor memory device
US5034787A (en) Structure and fabrication method for a double trench memory cell device
JPH06318680A (en) Semiconductor storage device and its manufacture
JPH10313100A (en) Dram cell device and manufacture thereof
JPH0371786B2 (en)
US5156993A (en) Fabricating a memory cell with an improved capacitor
US5470778A (en) Method of manufacturing a semiconductor device
JPS62140456A (en) Semiconductor storage
JP2513287B2 (en) Method for manufacturing stacked memory cell
US6080622A (en) Method for fabricating a DRAM cell capacitor including forming a conductive storage node by depositing and etching an insulative layer, filling with conductive material, and removing the insulative layer
JPH05291528A (en) Semiconductor memory device and manufacture thereof
JP2613077B2 (en) Method for manufacturing semiconductor device
JPS6362370A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term