JPS62139266A - Polymer solid electrolyte - Google Patents

Polymer solid electrolyte

Info

Publication number
JPS62139266A
JPS62139266A JP27891985A JP27891985A JPS62139266A JP S62139266 A JPS62139266 A JP S62139266A JP 27891985 A JP27891985 A JP 27891985A JP 27891985 A JP27891985 A JP 27891985A JP S62139266 A JPS62139266 A JP S62139266A
Authority
JP
Japan
Prior art keywords
peo
molecular weight
polyethylene oxide
mixture
ionic conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27891985A
Other languages
Japanese (ja)
Inventor
Yukio Ito
由喜男 伊藤
Masahiko Hiratani
正彦 平谷
Keiichi Kanebori
恵一 兼堀
Katsumi Miyauchi
宮内 克己
Tetsuichi Kudo
徹一 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27891985A priority Critical patent/JPS62139266A/en
Publication of JPS62139266A publication Critical patent/JPS62139266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes

Abstract

PURPOSE:To obtain a polymer solid electrolyte having high ion conductivity at room temperature by using a polyethylene oxide comprising a mixture of high molecular weight PEO and low molecular weight PEO. CONSTITUTION:In a complex comprising polyethylene oxide and alkali metal salt, polyethylene oxide comprising a mixture of high molecular weight PEO having a molecular weight of 10,000 or more and low molecular weight PEO having a molecular weight of 1,000 or less is used. For example, PEO having a mean molecular weight of 6000,00 and PEO having a mean molecular weight of 1,000 and LiCF3SO4 powder are weighed so as to obtain a desired composi tion, and dissolved in acetonitrile and CH3CN and stirred for 48hr with a mag netic stirrer. The ratio of PEO (600,000) to PEO (1,000) is 5:1, and the concentra tion of acetonitrile is 4wt%. The solution is casted on a substrate, and the solvent is gradually vaporized with nitrogen gas flowing, then the mixture is heated under vacuum at 150 deg.C for 24hr to completely remove the solvent.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高分子電解質に係り、特に電池および他の電気
化学デバイス用材料として好適な高分子固体電解質に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to polymer electrolytes, and particularly to solid polymer electrolytes suitable as materials for batteries and other electrochemical devices.

〔発明の背景〕[Background of the invention]

ポリエチレンオキシド(P E O、+CHx−CHz
−0池)とアルカリ金属塩とからなる錯体が高いアルカ
リイオン伝導性を示すことはピー・バアシスタ(P。
Polyethylene oxide (P E O, +CHx-CHz
P. Baasista (P. -0ike) and an alkali metal salt exhibit high alkali ion conductivity.

Vashista)ら(ファースト・イオン・トランス
ポート・イン・ソリッド(Fast Ion Tran
sport 1nSolid) 131頁(1979)
)により報告された。それ以来1本系あるいは関連系か
らなる高分子電解質に関して、そのイオン伝導機構、構
造などの純学術的観点、あるいは電池などの電気化学デ
バイスへの応用面から活発に研究されている。
Vashista et al. (Fast Ion Transport in Solid)
sport 1nSolid) 131 pages (1979)
) reported by. Since then, polymer electrolytes consisting of single or related systems have been actively researched from purely academic viewpoints such as their ionic conduction mechanism and structure, and from the viewpoint of application to electrochemical devices such as batteries.

高分子固体電解質は高分子特有の柔軟性、粘弾性を具備
しているため、電極とのイオン電子交換過程で生じる体
積変化に順応できるなどの機械的性質が無機固体電解質
に比べて優れている。また。
Solid polymer electrolytes have flexibility and viscoelasticity unique to polymers, so they have superior mechanical properties compared to inorganic solid electrolytes, such as being able to adapt to changes in volume that occur during the ion-electron exchange process with electrodes. . Also.

高分子のもつ良加工性から薄膜化が容易であるなどの特
徴を有する。このため、高分子固体電解質は高エネルギ
ー密度電池、特に薄膜電池用の固体電解質材流として注
目をあびている。しかしながら、高分子固体電解質は一
般に無機物と比較してイオン伝導度が小さく、その応用
が遅れている。
It has characteristics such as being easy to form into thin films due to the good processability of polymers. For this reason, solid polymer electrolytes are attracting attention as a solid electrolyte material for high energy density batteries, especially thin film batteries. However, polymer solid electrolytes generally have lower ionic conductivity than inorganic materials, and their application has been delayed.

以上が高いイオン伝導性を有する高分子固体電解質の開
発がまたれる所以である。
These are the reasons why solid polymer electrolytes with high ionic conductivity are being developed.

ポリエチレンオキシド(PEO)と種々のアルカリ金属
塩(LiCFsSOa、 LiI t LiCl0a、
 NaINaCFaSOa、 KCF8SOaなど)か
らなる錯体も高温(100℃付近)において10−”〜
10−”S / mと比較的高いイオン伝導度を有する
が、60℃以下の温度で急激にイオン伝導度が低下し、
室温では10−’S/m以下と小さいという欠点があっ
た。
Polyethylene oxide (PEO) and various alkali metal salts (LiCFsSOa, LiI t LiClOa,
Complexes consisting of NaINaCFaSOa, KCF8SOa, etc.) also exhibit 10-”~
It has a relatively high ionic conductivity of 10-”S/m, but the ionic conductivity decreases rapidly at temperatures below 60°C.
It has the disadvantage that it is as small as 10-'S/m or less at room temperature.

〔発明の目的〕[Purpose of the invention]

本発明はこの問題を解決するために、室温で高いイオン
伝導性を有する高分子固体電解質を提供することにある
The present invention aims to solve this problem by providing a solid polymer electrolyte that has high ionic conductivity at room temperature.

〔発明の概要〕[Summary of the invention]

従来、ポリエチレンオキシド(PEO)とアルカリ金属
塩からなる高分子錯体固体電解質は、分子量60,00
0あるいは4,000,000などの高分子のPEOと
アルカリ金属塩をアセトニトリルCHsCNなどの有機
溶媒に溶解し、キャスティング塗布法によりフィルムと
して得られている。これらのイオン伝導度は60℃近傍
を境にして急変する現象が観察される。すなわち、60
℃以上ではイオン伝導の活性化エネルギーが小さく比較
的大きなイオン伝導度(例えば100℃で10−2〜1
O−IS / m )を示すのに対して、60℃より低
温では、活性化エネルギーが大きくなりイオン伝導度が
急激に低下し、室温で10−’S/m以下と極めて小さ
な値しか示さない。
Conventionally, polymer complex solid electrolytes made of polyethylene oxide (PEO) and alkali metal salts have a molecular weight of 60.00.
Polymer PEO such as 0 or 4,000,000 and an alkali metal salt are dissolved in an organic solvent such as acetonitrile CHsCN, and a film is obtained by a casting coating method. A phenomenon is observed in which these ionic conductivities suddenly change around 60°C. That is, 60
Above ℃, the activation energy of ion conduction is small and the ionic conductivity is relatively large (for example, 10-2 to 1 at 100℃).
On the other hand, at temperatures lower than 60°C, the activation energy increases and the ionic conductivity decreases rapidly, showing only an extremely small value of 10-'S/m or less at room temperature. .

このイオン伝導度が急変する温度60℃はPRO(分子
量10,000以上)の融点に相当していることから、
イオン伝導度が60℃以上で大きくなるのは、融解状態
のPEO構造領域の存在に起因するものと考えられる。
Since the temperature at which the ionic conductivity suddenly changes at 60°C corresponds to the melting point of PRO (molecular weight 10,000 or more),
The reason why the ionic conductivity increases at 60° C. or higher is considered to be due to the presence of the PEO structure region in a molten state.

そこで、室温で高いイオン伝導度をもつPE0−アルカ
リ塩錯体を得る方策として、融点の低い低分子量(io
oo以下)のPEOを原料に用いることが当然考えられ
る。しかしながら、この低分子量のPEOは液体であり
、そのままでは固体状の高分子電解質を形成することが
できない。
Therefore, as a measure to obtain a PE0-alkaline salt complex with high ionic conductivity at room temperature, low molecular weight (io
Naturally, it is conceivable to use PEO of 0 or less) as a raw material. However, this low molecular weight PEO is a liquid and cannot form a solid polymer electrolyte as it is.

以上の考察結果、高分子(分子量1oooo以上)と低
分子(分子量1000以下)の混合物からなるPEOを
用いることにより、高分子領域で固体状のマトリックス
を形成し、その中に存在する低分子のPEOが室温にお
けるイオン伝導の向上に寄与することをねらったもので
ある。その結果、室温で高いイオン伝導度を有する高分
子固体電解質を作成することに成功した。
As a result of the above considerations, by using PEO consisting of a mixture of high molecules (molecular weight of 1000 or more) and low molecules (molecular weight of 1000 or less), a solid matrix is formed in the high molecular region, and the low molecules present in it are The purpose is for PEO to contribute to improving ionic conduction at room temperature. As a result, they succeeded in creating a solid polymer electrolyte with high ionic conductivity at room temperature.

高分子のものと低分子のものの混合比率は、全高分子化
合物のうち、高分子のものが95〜10重量%が好まし
く、90〜30重量%がより好ましい。
The mixing ratio of high molecular weight compounds and low molecular weight compounds is preferably 95 to 10% by weight, more preferably 90 to 30% by weight of all the high molecular weight compounds.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using Examples.

実施例1 ポリエチレンオキシド(PEO)とトリフルオロメタン
スルホン酸リチウム(LiCFsSO+)とからなる錯
体簿膜に関する実施例を示す。本錯体の組成は一般式(
P E O)xLjCFaSOsで表わされ、XはPE
O単位分子中の酸素(0)とリチウム(Li)の原子比
0/Liである。
Example 1 An example regarding a complex film made of polyethylene oxide (PEO) and lithium trifluoromethanesulfonate (LiCFsSO+) is shown. The composition of this complex is expressed by the general formula (
P E O) x LjCFaSOs, where X is P E
The atomic ratio of oxygen (0) and lithium (Li) in the O unit molecule is 0/Li.

出発原料に平均分子量600,000のPEOと平均分
子量1000のPEOおよびLiCF+sSOδ粉末を
用いた。
PEO with an average molecular weight of 600,000, PEO with an average molecular weight of 1000, and LiCF+sSOδ powder were used as starting materials.

これらの原料を所望組成になるように秤量し、アセトニ
トリルとCl1aCNに溶解後、マグネテイックスター
ラで48時間撹伴した。この時、PE0(600,00
0) PEO(1000) (7)割合は5対1、アセ
トニトリル溶液の濃度は4wt%であった。この溶液を
石英などの基板上にキャスティングし、その後溶媒を窒
素ガスフロー中でゆっくり蒸発させ、さらに真空下(〜
10−’P a )で150℃、24時間処理し、溶媒
を完全に除去した。得られた膜は白濁色の緻密なもので
あった。また、赤外線吸収スペクトルを調べた結果、隔
解状態および結晶状態のPEOにみられる特徴的な赤外
バンドが共に観察されることから、本薄膜は結晶状態と
融解状態の領域が共存した構造になっていることが推定
される。
These raw materials were weighed so as to have the desired composition, dissolved in acetonitrile and Cl1aCN, and then stirred with a magnetic stirrer for 48 hours. At this time, PE0(600,00
0) PEO (1000) (7) The ratio was 5:1 and the concentration of the acetonitrile solution was 4 wt%. This solution is cast onto a substrate such as quartz, after which the solvent is slowly evaporated in a nitrogen gas flow and further under vacuum (~
10-'Pa) at 150°C for 24 hours to completely remove the solvent. The obtained film was cloudy and dense. In addition, as a result of examining the infrared absorption spectrum, characteristic infrared bands seen in both the interphase and crystalline states of PEO were observed, indicating that this thin film has a structure in which crystalline and molten states coexist. It is presumed that this is the case.

以上のようにして得た薄膜試料(厚さ〜1μm)につい
て、その表面上に金のくし型電極を蒸着法で形成し、イ
ンピーダンスアナライザーを用い5Hz〜13MHzで
インピーダンスを測り、Co1e−Co1.aプロット
からイオン伝導度を求めた。その結果を第1表に示す。
Regarding the thin film sample (thickness ~ 1 μm) obtained as described above, a gold comb-shaped electrode was formed on the surface by vapor deposition, and the impedance was measured at 5 Hz to 13 MHz using an impedance analyzer. The ionic conductivity was determined from the a plot. The results are shown in Table 1.

本発明の製造法により得た( P E O)xLicF
ssOg薄膜のイオン伝導度は、従来法で得た試料のよ
うな60℃以下における急激な低下はなく、室温におい
ても]0−8〜10”S/mの値を有し、組成を選ぶこ
とにより、例えば9< x < 30では2X10−”
87mにもなる。このイオン伝導度の値は従来の高分子
PEO(例えば分子量600,000)だけを用いて形
成した試料に比べて、3〜4桁大きく、固体電解質膜と
しても最大の部類に属する。
(PEO)xLicF obtained by the production method of the present invention
The ionic conductivity of the ssOg thin film does not drop sharply below 60°C unlike samples obtained by conventional methods, and has a value of 0-8 to 10"S/m even at room temperature. For example, for 9< x < 30, 2X10-”
It reaches 87 meters. This value of ionic conductivity is 3 to 4 orders of magnitude higher than that of a sample formed using only conventional polymeric PEO (for example, molecular weight 600,000), and is among the highest among solid electrolyte membranes.

実施例2 実施例1と同じPEOとLj、CFiSOaからなる錯
体において、出発原料のP E O(600,000)
とPE0(1000)の割合を3対1にした場合の実施
例を述べる。
Example 2 In the same complex as in Example 1, consisting of PEO, Lj, and CFiSOa, starting material P E O (600,000)
An example will be described in which the ratio of PE0 (1000) and PE0 (1000) is set to 3:1.

試料作成法は実施例1とまったく同じであった。The sample preparation method was exactly the same as in Example 1.

得られた試料も実施例1と同様、構造的には結晶状態と
融解状態が共存したものから成りたっていることが赤外
スペク1〜ルから明らかになった。
It was revealed from the infrared spectra that the obtained sample was structurally composed of a coexistence of a crystalline state and a molten state, as in Example 1.

この試料について、実施例1と同じ方法でイオン伝導度
を測定した結果、それは第1表に示すような室温におい
て〜10−”87mとかなり大きな値を示した。
The ionic conductivity of this sample was measured in the same manner as in Example 1, and as shown in Table 1, it showed a fairly large value of ~10-''87m at room temperature.

実施例3 上記実施例と同様P E O−LiCFaSOg系錯体
において、P E O(600,000)とPEO(1
000)の割合が1対1のPEO混合物から作成した試
料に関する実施例を述べる。
Example 3 Similar to the above example, in the P E O-LiCFaSOg complex, P E O (600,000) and PEO (1
An example is given for a sample made from a PEO mixture with a 1:1 ratio of 000).

試料作成法ならびに得られた膜の状態および構造は実施
例1,2とほぼ同じであった。また、イオン伝導度も第
1表に示すごとく、室温で〜1O−2S / mの値を
示し、実施例1,2と大差なかった。
The sample preparation method and the state and structure of the obtained film were almost the same as in Examples 1 and 2. Further, as shown in Table 1, the ionic conductivity showed a value of ~1O-2S/m at room temperature, which was not much different from Examples 1 and 2.

実施例1〜3では、出発原料に平均分子量600 、0
00と1000のPEOの混合物を用いたが、これに限
るわけでなく、分子量to、ooo以上のPE0(例え
ば20,000.300,000.900,000.4
,000,000あるいは5,000,000など)と
分子量1000以下のもの(例えば600,400など
)の混合物を用いても、本実施例とほぼ同等の性質を有
する( P E O)xLicFasO+高分子固体電
解質が得られる。
In Examples 1 to 3, the starting materials had an average molecular weight of 600,0
A mixture of PEO of 00 and 1000 was used, but it is not limited to this.
,000,000 or 5,000,000) and those having a molecular weight of less than 1000 (for example, 600,400), the polymer has almost the same properties as this example (P E O)xLicFasO + polymer. A solid electrolyte is obtained.

実施例4〜6 ポリエチレンオキシド(PEO)とヨウ化リチウム(L
iI)からなる高分子錯体を本発明の製造法により作成
した実施例を述べる。
Examples 4-6 Polyethylene oxide (PEO) and lithium iodide (L
An example in which a polymer complex consisting of iI) was prepared by the production method of the present invention will be described.

出発原料に平均分子量4,000,000ノP E O
トロ00のPEOおよびLiIを用いた。これらを所望
組成になるように秤量後、アセトニトリルに溶解し、実
施例1と同じプロセスでキャスティング膜を形成した。
The starting material contains PEO with an average molecular weight of 4,000,000
Toro 00 PEO and LiI were used. After weighing these to have the desired composition, they were dissolved in acetonitrile, and a cast film was formed using the same process as in Example 1.

この時ノP E O(4,000,000) トP E
 O(600)の割合は4:1(実施例4)、2:1(
実施例5)および1:1(実施例6)であった。また、
本実施例で選んだ組成は一般式(PEO)xLiIにお
いて、!=3.6,9,1.8.60であった。
At this time, P E O (4,000,000) P E
The ratio of O(600) was 4:1 (Example 4), 2:1 (
Example 5) and 1:1 (Example 6). Also,
The composition selected in this example is the general formula (PEO)xLiI, ! = 3.6, 9, 1.8.60.

得られた膜はいずれの試料の場合も無色透明で緻密なも
のであり、赤外線吸収スペクトルの測定結果から、基本
的には(PEO)xLiI錯体がらなっており、かつ部
分的に融解状態のPEOの構造領域を有することが認め
られた。
The obtained films were colorless, transparent, and dense in all cases, and from the measurement results of infrared absorption spectra, they basically consisted of a (PEO)xLiI complex, and were partially composed of PEO in a molten state. It was recognized that the structure has a structural area of .

これらの薄膜試料に関して、上記実施例と同じ方法で求
めたイオン伝導度は第1表に示すように10−4〜10
1とがなり大きな値を示した。
Regarding these thin film samples, the ionic conductivity determined by the same method as in the above example was 10-4 to 10, as shown in Table 1.
1, indicating a large value.

このように、本発明の方法により作成した(PEO)x
LiI錯体は、従来法で形成した試料のような60℃(
PEOの融点(分子量10,000以上))以下でイオ
ン伝導度が急激に低化するような現象がみられず、室温
でも極めて高いイオン伝導性を示す。
Thus, (PEO)x produced by the method of the present invention
The LiI complex was heated at 60°C (like the sample formed by the conventional method).
No phenomenon in which the ionic conductivity suddenly decreases below the melting point of PEO (molecular weight 10,000 or more) is observed, and the ionic conductivity is extremely high even at room temperature.

以上の実施例ではPEOとLICFsSOsあるいはL
iIを組合せた系について述べたが、別にこれらに限る
わけでなく、PEOと他のLi塩(例えばLiBFa、
 LiClO4など)あるいは他のアルカリ金属塩(例
えばNaCF35Oa、 NaI、 KCFaSO4な
ど)とからなる錯体、また、PEO以外のポリエーテル
(例えば、ポリプロピレンオキシド、ポリエチレンサク
シネートなど)とアルカリ金属塩とからなる錯体、ひい
てはアルカリ金属塩と、錯体を形成するような高分子電
解質の場合も、本発明を適用することにより、室温で高
いイオン伝導度を有する高分子固体電解質を得ることが
可能である。
In the above embodiments, PEO and LICFsSOs or L
Although a system combining iI has been described, the system is not limited to these, and PEO and other Li salts (e.g. LiBFa,
(LiClO4, etc.) or other alkali metal salts (e.g., NaCF35Oa, NaI, KCFaSO4, etc.); complexes consisting of polyethers other than PEO (e.g., polypropylene oxide, polyethylene succinate, etc.) and alkali metal salts; Furthermore, even in the case of a polymer electrolyte that forms a complex with an alkali metal salt, by applying the present invention, it is possible to obtain a polymer solid electrolyte that has high ionic conductivity at room temperature.

(lO) 〔発明の効果〕 以上述べてきたように、ポリエチレンオキシド(PEO
)とアルカリ金属塩からなる高分子錯体において、出発
原料のPEOに分子量10,000以上の高分子と10
00以下の低分子の混合物を用いたことを特徴とする本
発明に係る高分子固体電解質の製造法によれば、従来お
こなわれていた高分子(分子量600,000.4,0
00,000など)のPEOのみを用いて形成した試料
にみられるようなイオン伝導度の60℃以下における急
激な低下はなく、室温においても10−8〜10”−”
S/mと極めて高いイオン伝導度を有する高分子固体電
解質を提供することができる。
(lO) [Effects of the invention] As stated above, polyethylene oxide (PEO)
) and an alkali metal salt, a polymer with a molecular weight of 10,000 or more and 10
According to the method for producing a polymer solid electrolyte according to the present invention, which is characterized by using a mixture of low molecular weight molecules having a molecular weight of 600,000.
There is no sudden drop in ionic conductivity below 60°C, as seen in samples formed using only PEO (e.g.
A solid polymer electrolyte having an extremely high ionic conductivity of S/m can be provided.

したがって、本発明により得た高分子固体電解質は室温
動作の電池をはじめとする各種電気化学デバイス用の固
体電解質材料として好適であり、特に高分子の特徴であ
る機械的強度、良加工性を生かした応用が期待される。
Therefore, the solid polymer electrolyte obtained according to the present invention is suitable as a solid electrolyte material for various electrochemical devices including batteries that operate at room temperature, and in particular takes advantage of the mechanical strength and good processability that are characteristics of polymers. It is expected that it will have many applications.

Claims (1)

【特許請求の範囲】[Claims] ポリエチレンオキシドとアルカリ金属塩からなる錯体に
おいて、ポリエチレンオキシドに分子量10,000以
上の高分子と分子量1,000以下の低分子の混合物を
用いたことを特徴とする高分子固体電解質。
1. A solid polymer electrolyte, characterized in that, in a complex consisting of polyethylene oxide and an alkali metal salt, a mixture of a polymer having a molecular weight of 10,000 or more and a low molecule having a molecular weight of 1,000 or less is used for polyethylene oxide.
JP27891985A 1985-12-13 1985-12-13 Polymer solid electrolyte Pending JPS62139266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27891985A JPS62139266A (en) 1985-12-13 1985-12-13 Polymer solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27891985A JPS62139266A (en) 1985-12-13 1985-12-13 Polymer solid electrolyte

Publications (1)

Publication Number Publication Date
JPS62139266A true JPS62139266A (en) 1987-06-22

Family

ID=17603915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27891985A Pending JPS62139266A (en) 1985-12-13 1985-12-13 Polymer solid electrolyte

Country Status (1)

Country Link
JP (1) JPS62139266A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129603A (en) * 1989-10-13 1991-06-03 Matsushita Electric Ind Co Ltd Solid electrolyte
EP0628848A1 (en) * 1992-12-28 1994-12-14 Tonen Corporation Electrochromic device
US5424150A (en) * 1992-12-01 1995-06-13 Sumitomo Chemical Company, Ltd. Polymeric solid electrolyte
US7820908B2 (en) * 2003-10-01 2010-10-26 Korea Institute Of Science And Technology Solid state dye-sensitized solar cell employing composite polymer electrolyte
ES2944407A1 (en) * 2021-12-20 2023-06-20 M Torres Disenos Ind S A Unipersonal SOLID ELECTROLYTE, ITS MANUFACTURING METHOD, AND ITS IMPREGNATION METHOD (Machine-translation by Google Translate, not legally binding)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129603A (en) * 1989-10-13 1991-06-03 Matsushita Electric Ind Co Ltd Solid electrolyte
US5424150A (en) * 1992-12-01 1995-06-13 Sumitomo Chemical Company, Ltd. Polymeric solid electrolyte
EP0628848A1 (en) * 1992-12-28 1994-12-14 Tonen Corporation Electrochromic device
EP0628848A4 (en) * 1992-12-28 1995-12-20 Tonen Corp Electrochromic device.
US7820908B2 (en) * 2003-10-01 2010-10-26 Korea Institute Of Science And Technology Solid state dye-sensitized solar cell employing composite polymer electrolyte
ES2944407A1 (en) * 2021-12-20 2023-06-20 M Torres Disenos Ind S A Unipersonal SOLID ELECTROLYTE, ITS MANUFACTURING METHOD, AND ITS IMPREGNATION METHOD (Machine-translation by Google Translate, not legally binding)
WO2023118631A1 (en) * 2021-12-20 2023-06-29 M. Torres Diseños Industriales, S.A. U. Solid electrolyte, manufacturing method and impregnation method thereof

Similar Documents

Publication Publication Date Title
Wang et al. Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries
US5731104A (en) Batteries, conductive compositions, and conductive films containing organic liquid electrolytes and plasticizers
US5548055A (en) Single-ion conducting solid polymer electrolytes
Hayashi et al. Development of sulfide glass-ceramic electrolytes for all-solid-state lithium rechargeable batteries
US6015638A (en) Batteries, conductive compositions, and conductive films containing organic liquid electrolytes and plasticizers
JP7450299B2 (en) Composite polymer solid electrolyte material and its preparation method and use
Abraham et al. Polyphosphazene‐Poly (Olefin Oxide) Mixed Polymer Electrolytes: I. Conductivity and Thermal Studies of
Nicotera et al. A study of stability of plasticized PEO electrolytes
Hu et al. Solid polymer electrolyte based on ionic bond or covalent bond functionalized silica nanoparticles
JPH06275311A (en) Fibrous solid electrolyte, mold thereof, manufacture thereof, and battery using same
Ushakova et al. Free-standing Li+-conductive films based on PEO–PVDF blends
Karuppasamy et al. Combined effect of nanochitosan and succinonitrile on structural, mechanical, thermal, and electrochemical properties of plasticized nanocomposite polymer electrolytes (PNCPE) for lithium batteries
KR101930478B1 (en) Method of controls of conductivity, mechanical properties, and morphology of polymer electrolytes via end-group chemistry
Maitra et al. POSS based electrolytes for rechargeable lithium batteries
Capiglia et al. Poly (ethylene oxide) LiN (SO 2 CF 2 CF 3) 2 Polymer Electrolytes: IV. Raman Characterization
Liang et al. High lithium-ion conductivity in all-solid-state lithium batteries by Sb doping LLZO
JP3098248B2 (en) Ion conductor or electrolyte for batteries
Wang et al. Ion-conducting polymer electrolyte based on poly (ethylene oxide) complexed with Li1. 3Al0. 3Ti1. 7 (PO4) 3 salt
JPS62139266A (en) Polymer solid electrolyte
Trevisanello et al. Influence of the Polymer Structure and its Crystallization on the Interface Resistance in Polymer-LATP and Polymer-LLZO Hybrid Electrolytes
Nancy et al. Preparation and characterization of a new PEO-PPG blend polymer electrolyte system
JPH0229614B2 (en)
Muthupradeepa et al. Physical and electrochemical chattels of phosphonium ionic liquid-based solid and gel-polymer electrolyte for lithium secondary batteries
Li et al. Poly (ethylene oxide)/poly (2-vinylpyridine)/lithium perchlorate blends. New materials for solid polymer electrolytes
Zhang et al. Ionic transport and interfacial stability of sulfonate-modified fumed silicas as nanocomposite electrolytes