JPS621375B2 - - Google Patents

Info

Publication number
JPS621375B2
JPS621375B2 JP55046089A JP4608980A JPS621375B2 JP S621375 B2 JPS621375 B2 JP S621375B2 JP 55046089 A JP55046089 A JP 55046089A JP 4608980 A JP4608980 A JP 4608980A JP S621375 B2 JPS621375 B2 JP S621375B2
Authority
JP
Japan
Prior art keywords
dimethylstyrene
catalyst
hydrogen
cymene
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55046089A
Other languages
Japanese (ja)
Other versions
JPS56140933A (en
Inventor
Yasuhiko Horikawa
Takeshi Watanabe
Kazushi Aitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP4608980A priority Critical patent/JPS56140933A/en
Publication of JPS56140933A publication Critical patent/JPS56140933A/en
Publication of JPS621375B2 publication Critical patent/JPS621375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシメンの製造法に関し、更に詳しくは
ジメチルスチレンをパラジウム―アルミナ触媒の
存在下に水素接触還元(以下水添という)するこ
とにより、芳香核を実質的に還元することなく合
成クレゾールの中間体として有用なシメンを製造
する方法に関する。 従来よりジメチルスチレンの類似化合物である
α―メチルスチレンを水添してイソプロピルベン
ゼンを製造することは種々報告されている。 たとえば、A.I.Ch.E.Journal.,1957,Sep.366
〜369には、パラジウム触媒の固定床を用いて水
素を下方から、α―メチルスチレンを上方から対
向的に供給する方法が記載されているが、この方
法では触媒層における液の流れが偏流となり易い
ため触媒の効率が悪く、また水添によつて生成す
るガム状物が触媒層に沈着し易く、触媒の寿命が
短かくなるという欠点がある。 また、英国特許第942645号明細書にはパラジウ
ム―カーボン触媒の固定床により連続的に水添す
る方法が記載されているが、該触媒は触媒活性は
強いが機械的な強度が弱く、触媒の再生も不能で
あるという大きな欠点がある。またこの方法では
高温下でかつα―メチルスチレンに対して大過剰
の水素を使用するため、触媒活性が強いことと相
候つて大量の核水添物が生成するものと考えられ
る。 更にはニツケル触媒を用いる方法(英国特許第
677091号明細書)も提案されているが、ニツケル
触媒はパラジウム系触媒に比べて核水添物が生成
し易く、触媒の再生も困難であるという問題があ
る。 しかしながら、ジメチルスチレンを水添してシ
メンを製造することは従来全く知られておらず、
本発明者らはジメチルスチレンを水添してシメン
を製造すべく、かつ上記類似化合物の製造時にお
ける諸問題を生ぜしめることなく工業的有利にシ
メンを製造すべく種々検討の結果、特定触媒を使
用し、かつ特定方法で水添することにより、核水
添物が実質的に生成することなく有利にシメンが
製造し得ることを見出し、本発明に至つた。 すなわち本発明は、ジメチルスチレンを水素接
触還元してシメンを製造するにあたり、反応温度
10〜130℃で触媒としてパラジウム―アルミナ触
媒を使用し、かつジメチルスチレンおよび水素を
触媒層の下部から上部に向かつて共流的に上向方
向に通過させることを特徴とするシメンの製造法
である。 以下、本発明について詳細に説明する。 本発明は前記したようにパラジウム―アルミナ
触媒を使用するものであるが、該触媒中のパラジ
ウム含量については通常0.1〜1重量%、好まし
くは0.3〜0.5重量%である。含量が0.1重量%未満
では触媒活性が低いため触媒寿命が短くなり、1
重量%を越えると触媒活性が強すぎるため核水添
物が生成し易くなる傾向にあり、また触媒の価格
も高くなつて経済的でない。 水添温度は10〜130℃が適当であり、10℃未満
では反応速度が遅いため大過剰の水素が必要のた
め、経済的でなく、130℃を越えると核水添物が
飛躍的に増加すると共にガム状物質も生成しやす
くなり、触媒寿命の低下をきたす。 水添圧力は10Kg/cm2G以下で十分であり、10
Kg/cm2Gを越えると核水添物が生成しやすく、ま
た設備費も増加するため経済的でない。 原料ジメチルスチレンたとえばO―メチル―α
―メチルスチレンまたはこのm―,p―異性体あ
るいはこれらの混合物は、これ単独で反応系に供
給することも可能であるが、通常は反応に不活性
な溶媒で希釈して用いられる。かかる溶媒として
最も好適なのは生成物と同じシメンであつて、こ
の場合の希釈割合は触媒の寿命から考えて触媒層
の入口、出口の温度差をあまり大きくすることは
好ましくないため、通常5〜50倍程度である。 ジメチルスチレンに対する水素の使用量は、過
剰水素を再使用しない場合には1〜2倍モル使用
するのが経済的であり、過剰水素を再使用する場
合には核水添物の生成を抑制するため1〜10倍モ
ル程度が適当である。 本発明においてかかるジメチルスチレンと水素
はその両方が触媒層の下部から上部に向かつて、
触媒層を共流的に上向方向に通過するように供給
することが必要である。これがたとえば対向的に
なる場合には、触媒効率が低下し、反応収率も低
下する。 以下、実施例により本発明を説明する。 実施例 1 0.3%パラジウム―アルミナペレツト200mlを充
填した反応塔の下部から混合ジメチルスチレン
(組成比o,α体:m,α体:p,α体=5:
75:20)5%を含有する混合シメン1000ml/Hr
(毎時液体空間速度5)および水素15Nl/Hr(ジ
メチルスチレンに対するモル比2)を触媒層を上
向方向に通過するように連続的に供給した。この
時反応塔の入口温度は60℃、出口温度は70℃であ
り、圧力は2Kg/cm2Gであつた。定常状態に達し
たあと塔頂部より得たサンプルの分析値(ガスク
ロマトグラフ面積百分率法)は下記の通りであつ
た。
The present invention relates to a method for producing cymene, and more specifically, by hydrogen catalytic reduction (hereinafter referred to as hydrogenation) of dimethylstyrene in the presence of a palladium-alumina catalyst, an intermediate of synthetic cresol can be produced without substantially reducing aromatic nuclei. This invention relates to a method for producing cymene useful for human health. There have been various reports on the production of isopropylbenzene by hydrogenating α-methylstyrene, which is a compound similar to dimethylstyrene. For example, AICh.E.Journal., 1957, Sep.366
~369 describes a method of supplying hydrogen from below and α-methylstyrene from above using a fixed bed of palladium catalyst, but in this method, the flow of liquid in the catalyst bed becomes uneven. This has disadvantages in that the efficiency of the catalyst is poor and gum-like substances produced by hydrogenation tend to deposit on the catalyst layer, shortening the life of the catalyst. Furthermore, British Patent No. 942645 describes a method for continuous hydrogenation using a fixed bed of palladium-carbon catalyst, but this catalyst has strong catalytic activity but weak mechanical strength. The major drawback is that it cannot be played back. Furthermore, since this method uses hydrogen in large excess with respect to α-methylstyrene at high temperatures, it is thought that, together with the strong catalytic activity, a large amount of nuclear hydrogenated products are produced. Furthermore, a method using a nickel catalyst (UK patent no.
677091) has also been proposed, but the problem is that nickel catalysts tend to generate nuclear hydrogenated products more easily than palladium-based catalysts, and it is difficult to regenerate the catalysts. However, it was not known at all that cymene could be produced by hydrogenating dimethylstyrene.
The present inventors have conducted various studies in order to produce cymene by hydrogenating dimethylstyrene, and in order to produce cymene industrially without causing problems during the production of the above-mentioned similar compounds. The inventors have discovered that cymene can be advantageously produced without substantially producing a nuclear hydrogenated product by using and hydrogenating in a specific manner, leading to the present invention. In other words, the present invention provides a method for producing cymene by hydrogen catalytic reduction of dimethylstyrene.
A method for producing cymene, characterized in that a palladium-alumina catalyst is used as a catalyst at 10 to 130°C, and dimethylstyrene and hydrogen are cocurrently passed upward from the bottom to the top of the catalyst layer. be. The present invention will be explained in detail below. As described above, the present invention uses a palladium-alumina catalyst, and the palladium content in the catalyst is usually 0.1 to 1% by weight, preferably 0.3 to 0.5% by weight. If the content is less than 0.1% by weight, the catalyst activity will be low and the catalyst life will be shortened.
If it exceeds % by weight, the catalytic activity is too strong and nuclear hydrogenation products tend to be generated easily, and the price of the catalyst becomes high, making it uneconomical. The appropriate hydrogenation temperature is 10 to 130℃; if it is less than 10℃, the reaction rate is slow and a large excess of hydrogen is required, which is not economical, and if it exceeds 130℃, nuclear hydrogenated products will increase dramatically. At the same time, gummy substances are also likely to be produced, resulting in a reduction in catalyst life. A hydrogenation pressure of 10Kg/cm 2 G or less is sufficient;
If it exceeds Kg/cm 2 G, it is not economical because nuclear hydrogenated products are likely to be produced and equipment costs also increase. Raw material dimethylstyrene such as O-methyl-α
-Methylstyrene, its m-, p-isomers, or a mixture thereof can be supplied to the reaction system alone, but it is usually used after being diluted with a solvent inert to the reaction. The most suitable solvent for such a solvent is cymene, which is the same as the product, and the dilution ratio in this case is usually 5 to 50%, since it is not desirable to make the temperature difference between the inlet and outlet of the catalyst layer too large considering the life of the catalyst. It's about double that. It is economical to use 1 to 2 times the molar amount of hydrogen relative to dimethylstyrene when excess hydrogen is not reused, and when excess hydrogen is reused to suppress the generation of nuclear hydrogen products. Therefore, about 1 to 10 times the molar amount is appropriate. In the present invention, both dimethylstyrene and hydrogen are directed from the bottom to the top of the catalyst layer,
It is necessary to feed cocurrently upwardly through the catalyst bed. If this happens, for example, in opposite directions, the catalyst efficiency will be reduced and the reaction yield will also be reduced. The present invention will be explained below with reference to Examples. Example 1 Mixed dimethylstyrene (composition ratio o, α form: m, α form: p, α form = 5:
75:20) Mixed cymene containing 5% 1000ml/Hr
(liquid hourly space velocity 5) and hydrogen 15 Nl/Hr (molar ratio to dimethylstyrene 2) were continuously fed upwardly through the catalyst bed. At this time, the inlet temperature of the reaction tower was 60°C, the outlet temperature was 70°C, and the pressure was 2Kg/cm 2 G. The analytical values (gas chromatography area percentage method) of the sample obtained from the top of the column after reaching a steady state were as follows.

【表】 実施例 2 0.3%パラジウム―アルミナペレツト200mlを充
填した反応塔の下部から実施例1で用いたと同じ
混合ジメチルスチレン15%を含有する混合シメン
1000ml/Hr(毎時液体空間速度5)および水素
45Nl/Hr(ジメチルスチレンに対するモル比
2)を触媒層を上向方向に通過するように連続的
に供給した。反応塔の入口温度は100℃、出口温
度は130℃であり、圧力は2Kg/cm2Gであつた。
定常状態に達したあと採取したサンプルの分析値
は下記の通りであつた。
[Table] Example 2 A mixed cylinder containing 15% of the same mixed dimethylstyrene used in Example 1 was added from the bottom of a reaction column packed with 200 ml of 0.3% palladium-alumina pellets.
1000ml/Hr (liquid hourly space velocity 5) and hydrogen
45Nl/Hr (molar ratio to dimethylstyrene: 2) was continuously fed upwardly through the catalyst layer. The inlet temperature of the reaction tower was 100°C, the outlet temperature was 130°C, and the pressure was 2Kg/cm 2 G.
The analytical values of the sample taken after reaching steady state were as follows.

【表】 実施例 3 0.5%パラジウム―アルミナペレツト200mlを充
填した反応塔の下部から、実施例1で用いたと同
じ混合ジメチルスチレン5%を含有する混合シメ
ン1000ml(毎時液体空間速度5)および水素
75Nl/Hr(ジメチルスチレンに対するモル比
10)を触媒層を上向方向に通過するように連続的
に供給した。この時反応塔の入口温度は30℃、出
口温度は35℃であり、圧力は2Kg/cm2Gであつ
た。定常状態に達したあと採取したサンプルの分
析値は下記の通りであつた。
[Table] Example 3 From the bottom of a reaction column filled with 200 ml of 0.5% palladium-alumina pellets, 1000 ml of the same mixed cymene containing 5% dimethylstyrene as used in Example 1 (liquid hourly space velocity 5) and hydrogen were added.
75Nl/Hr (molar ratio to dimethylstyrene
10) was continuously supplied so as to pass through the catalyst layer in an upward direction. At this time, the inlet temperature of the reaction tower was 30°C, the outlet temperature was 35°C, and the pressure was 2Kg/cm 2 G. The analytical values of the sample taken after reaching steady state were as follows.

【表】 実施例 4 0.5%パラジウム―アルミナペレツト200mlを充
填した反応塔の下部から、実施例1で用いたと同
じ混合ジメチルスチレン15%を含有する混合シメ
ン400ml(毎時液体空間速度2)および水素
18Nl/Hr(ジメチルスチレンに対するモル比
2)を触媒層を上向方向に通過するように連続的
に供給した。この時反応塔の入口温度は70℃、出
口温度は85℃であり、圧力は8Kg/cm2Gであつ
た。定常状態に達したあと採取したサンプルの分
析値は下記の通りであつた。
[Table] Example 4 From the bottom of a reaction column filled with 200 ml of 0.5% palladium-alumina pellets, 400 ml of mixed cymene containing 15% of the same mixed dimethylstyrene used in Example 1 (liquid hourly space velocity 2) and hydrogen were added.
18Nl/Hr (molar ratio to dimethylstyrene: 2) was continuously fed upward through the catalyst layer. At this time, the inlet temperature of the reaction tower was 70°C, the outlet temperature was 85°C, and the pressure was 8Kg/cm 2 G. The analytical values of the sample taken after reaching steady state were as follows.

【表】 比較例 1 2%パラジウム―カーボングラニユール200ml
を充填した反応塔の下部から、実施例1で用いた
と同じ混合ジメチルスチレン5%を含有する混合
シメン1000ml(毎時液体空間速度5)および水素
150NL/Hr(ジメチルスチレンに対するモル比
20)を触媒層を上向方向に通過するように供給し
た。反応塔の入口温度は127℃、出口温度は125℃
であり、圧力は2Kg/cm2Gであつた。定常状態に
達したあと採取したサンプルの分析値は下記の通
りであつた。
[Table] Comparative example 1 2% palladium-carbon granule 200ml
1000 ml of mixed cymene containing 5% of the same mixed dimethylstyrene used in Example 1 (liquid hourly space velocity 5) and hydrogen
150NL/Hr (molar ratio to dimethylstyrene
20) was supplied so as to pass through the catalyst layer in an upward direction. The inlet temperature of the reaction tower is 127℃, the outlet temperature is 125℃
The pressure was 2Kg/cm 2 G. The analytical values of samples taken after reaching steady state were as follows.

【表】 比較例 2 0.3%パラジウム―アルミナペレツト200mlを充
てんした反応塔の下部から実施例1で使用したと
同じ混合ジメチルスチレン5%を含有する混合シ
メン1000ml/Hr(毎時液体空間速度5)と水素
15Nl/Hr(ジメチルスチレンに対するモル比
2)を触媒層を上向方向に通過するように連続的
に供給した。この時反応塔の入口温度は150℃、
出口温度は155℃であり、圧力は20Kg/cm2Gであ
つた。定常状態に達したあと採取したサンプルの
分析値は下記の通りであつた。
[Table] Comparative Example 2 1000 ml/Hr of the same mixed cymene containing 5% dimethylstyrene as used in Example 1 was added from the bottom of a reaction tower filled with 200 ml of 0.3% palladium-alumina pellets (liquid hourly space velocity 5). and hydrogen
15 Nl/Hr (molar ratio to dimethylstyrene: 2) was continuously fed upward through the catalyst layer. At this time, the inlet temperature of the reaction tower was 150℃,
The outlet temperature was 155°C and the pressure was 20Kg/cm 2 G. The analytical values of the sample taken after reaching steady state were as follows.

【表】 比較例 3 0.3%パラジウムアルミナペレツト200mlを充填
した反応塔の上部から実施例1に使用したと同じ
混合ジメチルスチレン5%を含有する混合シメン
1000ml/Hr(毎時液体空間速度5)を下向方向
に連続的に供給し、一方、水素15Nl/Hr(ジメ
チルスチレンに対するモル比2)を反応塔の下部
からジメチルスチレンと対向的に上向方向になる
ように連続的に供給した。この時の液入口温度は
60℃、液出口温度は70℃であり、圧力は2Kg/cm2
Gであつた。定常状態に達したあと採取したサン
プルの分析値は下記の通りであつた。
[Table] Comparative Example 3 A mixed cylinder containing 5% of the same mixed dimethylstyrene as used in Example 1 was added from the top of a reaction column packed with 200 ml of 0.3% palladium alumina pellets.
1000 ml/Hr (liquid hourly space velocity 5) is continuously supplied downward, while 15 Nl/Hr (molar ratio to dimethylstyrene of 2) of hydrogen is supplied upward from the bottom of the reaction tower opposite to dimethylstyrene. It was continuously supplied so that The liquid inlet temperature at this time is
60℃, liquid outlet temperature is 70℃, pressure is 2Kg/cm 2
It was G. The analytical values of the sample taken after reaching steady state were as follows.

【表】 比較例 4 2%パラジウム―カーボングラニユール200ml
を充填した反応塔の上部から実施例1に使用した
と同じ混合ジメチルスチレン5%を含有する混合
シメン1000ml/Hr(毎時液体空間速度5)下向
方向に連続的に供給し、一方、水素150Nl/Hr
(ジメチルスチレンに対するモル比20)を反応塔
の下部からジメチルスチレンと対向的に上向方向
となるように連続的に供給した。この時の液入口
温度は120℃、出口温度は125℃であり、圧力は2
Kg/cm2Gであつた。定常状態に達したあと採取し
たサンプルの分析値は下記の通りであつた。
[Table] Comparative example 4 2% palladium-carbon granule 200ml
1000 ml/Hr (liquid hourly space velocity 5) of the same mixed cymene containing 5% dimethylstyrene as used in Example 1 was continuously fed downward from the top of the reaction tower filled with hydrogen, while 150 Nl of hydrogen was supplied downward. /Hr
(molar ratio to dimethylstyrene: 20) was continuously fed from the bottom of the reaction tower upward, facing the dimethylstyrene. At this time, the liquid inlet temperature is 120℃, the outlet temperature is 125℃, and the pressure is 2.
It was Kg/cm 2 G. The analytical values of the sample taken after reaching steady state were as follows.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ジメチルスチレンを水素接触還元してシメン
を製造するにあたり、反応温度10〜130℃で触媒
としてパラジウム―アルミナ触媒を使用し、かつ
ジメチルスチレンおよび水素を触媒層の下部から
上部に向つて共流的に上向方向に通過させること
を特徴とするシメンの製造法。
1. In producing cymene by hydrogen catalytic reduction of dimethylstyrene, a palladium-alumina catalyst is used as a catalyst at a reaction temperature of 10 to 130°C, and dimethylstyrene and hydrogen are co-flowed from the bottom to the top of the catalyst layer. A method for producing cymene characterized by passing it through in an upward direction.
JP4608980A 1980-04-07 1980-04-07 Preparation of cymene Granted JPS56140933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4608980A JPS56140933A (en) 1980-04-07 1980-04-07 Preparation of cymene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4608980A JPS56140933A (en) 1980-04-07 1980-04-07 Preparation of cymene

Publications (2)

Publication Number Publication Date
JPS56140933A JPS56140933A (en) 1981-11-04
JPS621375B2 true JPS621375B2 (en) 1987-01-13

Family

ID=12737252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4608980A Granted JPS56140933A (en) 1980-04-07 1980-04-07 Preparation of cymene

Country Status (1)

Country Link
JP (1) JPS56140933A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587583A (en) * 1981-11-06 1986-05-06 Tokyo Shibaura Denki Kabushiki Kaisha Tape player
JP2004203754A (en) * 2002-12-24 2004-07-22 Sumitomo Chem Co Ltd METHOD FOR PRODUCING alpha-METHYLSTYRENE
JP4400120B2 (en) * 2002-12-24 2010-01-20 住友化学株式会社 Cumene production method
JP4552378B2 (en) * 2003-01-16 2010-09-29 住友化学株式会社 Olefin hydrogenation method
KR101103212B1 (en) * 2003-09-18 2012-01-05 스미또모 가가꾸 가부시키가이샤 Process for Producing Cumene
CN112250535B (en) * 2020-11-17 2022-12-16 广西壮族自治区林业科学研究院 Preparation method of p-cymene

Also Published As

Publication number Publication date
JPS56140933A (en) 1981-11-04

Similar Documents

Publication Publication Date Title
US3412165A (en) Phenylcyclohexane process
KR100588178B1 (en) Process for the hydrogenation of phenyl acetylene in a styrene-containing medium with the aid of a catalyst
US5616806A (en) Process for preparing high-purity aniline
JP2001064213A (en) Alkylation of aromatic compound in vapor phase
JPS5919931B2 (en) Hydrogenation method of diacetoxybutene
JPS621375B2 (en)
US4205192A (en) Process for producing 5-alkylidenenorbornene
US5504268A (en) Process for the selective hydrogenation of aromatic acetylene compounds
US4310714A (en) Hydrogenation of α-pinene to cis-pinane
WO2005011854A9 (en) Process for the selective hydrogenation of phenylacetylene
JP2819171B2 (en) Method for producing aromatic alcohol
JP2613648B2 (en) Method for Isomerizing Butene-1 to Butene-2 in Isobutylene
WO2004060838A1 (en) Method of hydrogenating aromatic compound
KR910004883B1 (en) Process for selective hydrogenation of dienes in pyrolysis gasoline
RU2095136C1 (en) Nickel hydrogenation catalyst on carrier and method of preparing modified nickel hydrogenation catalyst on carrier
JP4312334B2 (en) Indan manufacturing method
US4422954A (en) Method to restore the metal content of a noble metal hydrogenation catalyst
MXPA04007730A (en) Method for the production of cyclohexanol from benzole.
US6750374B2 (en) Manufacture of cyclohexane from benzene and a hydrogen source containing impurities
JPH0456012B2 (en)
US2970954A (en) Selective demethylation of hydrocarbon mixtures containing saturated and unsaturated hydrocarbons
KR100550962B1 (en) Catalyst for Hydrogenation Purification of Terephthalic Acid
JPH0430933B2 (en)
JPH03202152A (en) Hydrogenating catalyst
JPH02121946A (en) Continuous production of succinic acid