JPS62136882A - High-speed field effect semiconductor device - Google Patents

High-speed field effect semiconductor device

Info

Publication number
JPS62136882A
JPS62136882A JP27703685A JP27703685A JPS62136882A JP S62136882 A JPS62136882 A JP S62136882A JP 27703685 A JP27703685 A JP 27703685A JP 27703685 A JP27703685 A JP 27703685A JP S62136882 A JPS62136882 A JP S62136882A
Authority
JP
Japan
Prior art keywords
layer
gaas
superlattice
layers
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27703685A
Other languages
Japanese (ja)
Inventor
Masahisa Suzuki
雅久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27703685A priority Critical patent/JPS62136882A/en
Publication of JPS62136882A publication Critical patent/JPS62136882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • H01L29/365Planar doping, e.g. atomic-plane doping, delta-doping

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To increase the carrier concentration of a two-dimensional carrier gas layer and avoid the influence of the deep impurity level of a semiconductor layer and avoid decline of a gate dielectric strength by a method wherein the undoped semiconductor channel layer of a high-speed field effect semiconductor device are provided between the 1st super-lattice and the 2nd super-lattice and a high concentration impurity is doped only into the well layers in those super- lattices. CONSTITUTION:An impurity is introduced into well layers 13B and 15B by a planar doping method. In other words, if only a molecular beam of Si is applied while a molecular beam of Ga is shut off after a GaAs layer is made to grow, the growth of GaAs is discontinued and only Si is made to grow with a very thin thickness. Therefore, by repeating such growths of GaAs and growths of Si proper times, GaAs layers can be doped with two-dimensionally. With this process, energy sub-bands are formed in the well layer 15B held between barrier layers 15A and in the well layer 13B held between barrier layers 13A and electron energy is elevated so that electrons can be easily injected into a channel layer 14 and the electron concentration of a two-dimensional electron gas layer 21 can be increased.

Description

【発明の詳細な説明】 〔概要〕 本発明は、高速電界効果半導体装置に於いて、アン・ド
ープ半導体チャネル層を第1の超格子と第2の超格子と
で挟み、それ等超格子内のウェル層にのみ高濃度の不純
物をドーピングし、それ以外のゲート電極直下に於ける
半導体層はアン・ドープとすることに依り、2次元キャ
リヤ・ガス層のキャリヤ濃度を増加させ、半導体層に於
ける深い不純物準位の影響を回避し、ゲート耐圧を向上
させ得るようにしたものである。
[Detailed Description of the Invention] [Summary] The present invention provides a high-speed field effect semiconductor device in which an undoped semiconductor channel layer is sandwiched between a first superlattice and a second superlattice. By doping only the well layer with a high concentration of impurity and leaving the other semiconductor layer directly under the gate electrode undoped, the carrier concentration in the two-dimensional carrier gas layer is increased and the semiconductor layer is This is to avoid the influence of deep impurity levels in the semiconductor device and to improve the gate breakdown voltage.

〔産業上の利用分野〕[Industrial application field]

本発明は、ヘテロ界面に生成される2次元電子ガス層を
チャネルとして利用する高速電界効果半導体装置の改良
に関する。
The present invention relates to improvements in high-speed field effect semiconductor devices that utilize a two-dimensional electron gas layer generated at a heterointerface as a channel.

〔従来の技術〕[Conventional technology]

第3図は一般的なこの種の高速電界効果半導体装置のゲ
ート電極直下に於けるエネルギ・バンド・ダイヤグラム
を表している。
FIG. 3 shows an energy band diagram immediately below the gate electrode of a general high-speed field effect semiconductor device of this type.

図に於いて、lは金属ゲート電極、2はn型AβGaA
s電子供給層、3はアン・ドープGaAsチャネル層、
4は2次元電子ガス層、F、cは伝導帯の下端、EFは
フェルミ・レベル、Evは価電子帯の上端をそれぞれ示
している。
In the figure, l is a metal gate electrode, 2 is an n-type AβGaA
s electron supply layer; 3 is an undoped GaAs channel layer;
4 is a two-dimensional electron gas layer, F and c are the lower end of the conduction band, EF is the Fermi level, and Ev is the upper end of the valence band.

この半導体装置では、2次元電子ガス層4をチャネルと
して用いている為、走行する電子がクーロン散乱を受け
ることがな(、従って、極めて高速で動作することが可
能である。
In this semiconductor device, since the two-dimensional electron gas layer 4 is used as a channel, traveling electrons are not subjected to Coulomb scattering (therefore, it is possible to operate at extremely high speed).

ところで、この種の半導体装置に於いて、大きな電流を
取り出す為には、2次元電子ガス層4に於ける電子濃度
を高くすることが必要であるが、第3図に見られるシン
グル・ペテロ接合構造では限界がある。
By the way, in order to extract a large current from this type of semiconductor device, it is necessary to increase the electron concentration in the two-dimensional electron gas layer 4. There are limits to the structure.

第4図は改良された高速電界効果半導体装置のゲート電
極直下に於けるエネルギ・バンド・ダイヤグラムを表し
、第3図に於いて用いた記号と同記号は同部分を示すか
或いは同じ意味を持つものとする。
Figure 4 shows an energy band diagram directly under the gate electrode of the improved high-speed field effect semiconductor device, and the same symbols as those used in Figure 3 indicate the same parts or have the same meaning. shall be taken as a thing.

この半導体装置では、アン・ドープGaAsチャネル層
3をn型AβGaAs電子供給層2A及び2Bで挟む構
成にし、その両方の電子供給層2A及び2Bから電子を
供給して2次元電子ガス層4に於ける電子濃度を高める
ようにしている。
In this semiconductor device, an undoped GaAs channel layer 3 is sandwiched between n-type AβGaAs electron supply layers 2A and 2B, and electrons are supplied from both electron supply layers 2A and 2B to form a two-dimensional electron gas layer 4. The electron concentration is increased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第4図について説明した従来例に於いては、確かに2次
元電子ガス層4に於ける電子ガス濃度を向上させる効果
はあるが、このような構造にすると、A/GaAs中の
深い不純物準位が半導体装置の特性に悪影響を与え、ま
た、チャネルとショットキ障壁界面までの距離が非常に
小さくなることからゲート耐圧が低下する旨の欠点があ
る。
In the conventional example explained with reference to FIG. 4, it is true that the electron gas concentration in the two-dimensional electron gas layer 4 is improved, but with such a structure, the deep impurity level in A/GaAs is reduced. This has disadvantages in that the gate voltage has an adverse effect on the characteristics of the semiconductor device, and the distance between the channel and the Schottky barrier interface becomes very small, resulting in a reduction in gate breakdown voltage.

本発明は、2次元キャリヤ・ガス層に於けるキャリヤ濃
度を高め、半導体の深い不純物準位の悪影響を解消し、
ゲート耐圧の低下がない高速電界効果半導体装置を提供
する。
The present invention increases the carrier concentration in the two-dimensional carrier gas layer, eliminates the adverse effects of deep impurity levels in semiconductors, and
Provided is a high-speed field effect semiconductor device with no reduction in gate breakdown voltage.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に依る高速電界効果半導体装置では、2次元キャ
リヤ・ガス層(例えば2次元電子ガス層21が生成され
るアン・ドープ半導体チャネル層(例えばi型GaAS
チャネル層14)と、前記チャネル層の下側に接する第
1の超格子(例えば第1の超格子13)及び上側に接す
る第2の超格子(例えば第2の超格子15)と、前記第
1の超格子に接するアン・ドープ半導体層(例えばi型
Alo、z Ga6.マAs層12)及び前記第2の超
格子に接するアン・ドープ半導体層(例えばi型A1o
、z Gao、7As層16)と、前記第2の超格子に
接するアン・ドープ半導体層にコンタクトするゲート電
極(例えばゲート電極20)とを備えてなり、前記第1
及び第2の各超格子は高濃度に不純物がドーピングされ
且つエネルギ・サブ・ハンドが生成される得るウェル層
(例えばn型GaAsウェル層13B及び15B)と該
ウェル層を挟み且つ前記チャネル層よりキャリヤ親和力
が小でエネルギ・バンド・ギャップが大であるバリヤ層
(例えばi型AlAsバリヤ層13A及び15A)とか
らなっていることを特徴とする構成を採っている。
In the fast field effect semiconductor device according to the present invention, a two-dimensional carrier gas layer (e.g. an undoped semiconductor channel layer (e.g. i-type GaAS) in which a two-dimensional electron gas layer 21 is generated)
a first superlattice (for example, first superlattice 13) in contact with the lower side of the channel layer, a second superlattice (for example, second superlattice 15) in contact with the upper side of the channel layer; an undoped semiconductor layer in contact with the first superlattice (e.g., i-type Alo, zGa6.Ma layer 12) and an undoped semiconductor layer in contact with the second superlattice (e.g., i-type A1o).
, z Gao, 7As layer 16), and a gate electrode (e.g., gate electrode 20) in contact with the undoped semiconductor layer in contact with the second superlattice;
Each of the second superlattices is sandwiched between a well layer (for example, n-type GaAs well layers 13B and 15B) doped with impurities at a high concentration and in which energy sub-hands can be generated, and is further away from the channel layer. The structure is characterized by comprising a barrier layer (for example, i-type AlAs barrier layers 13A and 15A) having a small carrier affinity and a large energy band gap.

〔作用〕[Effect]

前記構成に依り、2次元キャリヤ・ガス層に於けるキャ
リヤ濃度は高められ、また、半導体の深い不純物単位の
悪影響は解消され、更にまた、ゲート耐圧の低下を防止
することが可能となる。
With the above structure, the carrier concentration in the two-dimensional carrier gas layer is increased, the adverse effects of deep impurity units in the semiconductor are eliminated, and furthermore, it is possible to prevent the gate breakdown voltage from decreasing.

〔実施例〕〔Example〕

第1図は本発明一実施例の要部切断側面図を表している
FIG. 1 shows a cutaway side view of essential parts of an embodiment of the present invention.

図に於いて、11は半絶縁性であるGaAs基斗反、1
2はi型A(lo、x Gao、7As層、13は第1
の超格子、14はi型GaAsチャネル層、15は第2
の超格子、16はi型Al−6,3Gap、?、6.s
ji、17はi (或いはn)型GaAsキャップ層、
18はソース電極、19はドレイン電極、20はゲート
電極、21は2次元電子ガス層をそれぞれ示している。
In the figure, 11 is a semi-insulating GaAs substrate;
2 is i-type A (lo, x Gao, 7As layer, 13 is the first
14 is an i-type GaAs channel layer, 15 is a second superlattice.
superlattice, 16 is i-type Al-6, 3Gap, ? ,6. s
ji, 17 is an i (or n) type GaAs cap layer,
18 is a source electrode, 19 is a drain electrode, 20 is a gate electrode, and 21 is a two-dimensional electron gas layer.

尚、第1及び第2の超格子層13及び15の内容は第2
図にて説明される。
Note that the contents of the first and second superlattice layers 13 and 15 are as follows.
This is explained in the figure.

第2図は第1図に関して説明した実施例に於けるゲート
電極直下のエネルギ・バンド・ダイヤグラムを表し、第
1図に於いて用いた記号と同記号は同部分を表すか或い
は同じ意味を持つものとする。
FIG. 2 shows an energy band diagram directly under the gate electrode in the embodiment explained with reference to FIG. 1, and the same symbols as those used in FIG. 1 represent the same parts or have the same meaning. shall be taken as a thing.

図に於いて、13A及び15Aはi型Ajl!Asバリ
ヤ層、13B及び15Bはn型GaAsウェル層を示し
、バリヤ層13A及びウェル層13Bで第1の超格子1
3が、そして、バリヤ層15A及びウェル層15Bで第
2の超格子が構成されている。
In the figure, 13A and 15A are i type Ajl! The As barrier layers 13B and 15B represent n-type GaAs well layers, and the barrier layer 13A and the well layer 13B form the first superlattice 1.
3, and a second superlattice is constituted by the barrier layer 15A and the well layer 15B.

第1図及び第2図に見られる実施例に於ける各半導体層
及び電極に関する諸データを例示すると次の通りである
Examples of data regarding each semiconductor layer and electrode in the embodiment shown in FIGS. 1 and 2 are as follows.

(1)  i型A11o、3Ga(+、7 A s層1
2について厚さ:1500(人〕 (2)バリヤ層13A及び15Aについて厚さ:20 
〔人〕 (3)  ウェル層13B及び15Bについて厚さ:6
0 〔人〕 不純物:5i Stのドナー濃度:シート濃度にしてIX1lX101
2(”) (3)  チャネル層14について 厚さ:100C人〕 (4)i型Alo、+ Gao、、As層16について
厚さ:300C30 0C)  ソース電極18及びドレイン電極19につい
て 材料:Au−Ge/Au 厚さ:200(人)/2800(人〕 (6)  ゲート電極20について 材料:A1 厚さ:4000  (人〕 本実施例に於けるウェル層13B及び15Bに不純物を
導入する場合、所謂、プレーナ・ドーピング法を適用す
ると高濃度化することが極めて容易である。即ち、n型
G a A sウェル層13B或いは15Bを分子線エ
ピタキシャル成長(m o 1ecular  bea
m  epitaxy:MBE)法を適用して成長させ
るに際し、先ず、GaAs層の成長を行い、次いで、G
aの分子線を遮断した状態でSiの分子線のみを放射す
ると、GaAsは成長されず、極めて薄<Siのみが成
長するので、そのGaAsの成長とSiの成長とを適宜
回数繰り返すと、GaAs層中にSiを2次元的にドー
ピングすることができ、通常の技法では得られない高濃
度にすることができる。
(1) i-type A11o, 3Ga(+, 7A s layer 1
Thickness for 2: 1500 (person) (2) Thickness for barrier layer 13A and 15A: 20
[People] (3) Thickness for well layers 13B and 15B: 6
0 [Human] Impurity: 5i St donor concentration: IX11X101 as sheet concentration
2('') (3) Thickness of channel layer 14: 100C] (4) Thickness of i-type Alo, + Gao, As layer 16: 300C300C) Material of source electrode 18 and drain electrode 19: Au- Ge/Au Thickness: 200 (people)/2800 (people) (6) Regarding the gate electrode 20 Material: A1 Thickness: 4000 (people) When introducing impurities into the well layers 13B and 15B in this example, It is extremely easy to increase the concentration by applying the so-called planar doping method.In other words, the n-type GaAs well layer 13B or 15B is grown by molecular beam epitaxial growth (mol bea epitaxial growth).
When growing a GaAs layer by applying the m epitaxy (MBE) method, first a GaAs layer is grown, and then a GaAs layer is grown.
If only the molecular beam of Si is emitted while the molecular beam of It is possible to dope Si into the layer two-dimensionally, resulting in high concentrations that cannot be obtained using conventional techniques.

さて、本実施例では、バリヤ層15Aに挟まれたウェル
層15B、バリヤ層13Aに挟まれたウェル層13Bに
はエネルギ・サブ・バンドが生成され、それに依り、電
子のエネルギは高められて容易にチャネル層14に注入
され2次元電子ガス層21に於ける電子濃度は向上され
る。
Now, in this embodiment, energy sub-bands are generated in the well layer 15B sandwiched between the barrier layers 15A and the well layer 13B sandwiched between the barrier layers 13A. Injected into the channel layer 14, the electron concentration in the two-dimensional electron gas layer 21 is improved.

また、GaAs−A/As系の場合に於いては、本発明
に依る高速電界効果半導体装置の半導体層には、深い不
純物単位を有するn型AlGaAsを使用していない為
、低温度(例えば液体窒素温度)で動作させた場合でも
、室温の場合と比較してしきい値電圧の変化はない。
Furthermore, in the case of the GaAs-A/As system, the semiconductor layer of the high-speed field effect semiconductor device according to the present invention does not use n-type AlGaAs having deep impurity units, so the temperature is low (for example, liquid There is no change in threshold voltage compared to room temperature even when the device is operated at room temperature (nitrogen temperature).

更にまた、ゲート電極20とチャネル層14との間には
i型Ano、z Gao、7Aslill 6が存在し
ているので、チャネル層14に多量の電子が存在してい
るにも拘わらず、ゲート耐圧が低下することは絶無であ
る。尚、前記A6GaASに於けるA1のモル濃度はゲ
ート耐圧向上の為、更に大きくしても良い。
Furthermore, since i-type Ano, z Gao, and 7 Asrill 6 are present between the gate electrode 20 and the channel layer 14, the gate breakdown voltage is low even though a large amount of electrons are present in the channel layer 14. There is no way that this will decrease. Note that the molar concentration of A1 in the A6GaAS may be further increased in order to improve the gate breakdown voltage.

本実施例に於ける閾値電圧Vthは、A7!ゲート電極
20とコンタクトするi型A’Q、3Ga0.7As層
16の厚さに依存し、例えば300  (人〕である場
合、約0.1 (V)のエンハンスメント・モードとな
り、そして、ゲート長L9が1 〔μm〕である場合の
相互コンダクタンスg、は室温で350(ms)が得ら
れた。
The threshold voltage Vth in this embodiment is A7! Depending on the thickness of the i-type A'Q, 3Ga0.7As layer 16 in contact with the gate electrode 20, for example, if it is 300 (people), it will be an enhancement mode of about 0.1 (V), and the gate length will be A mutual conductance g of 350 (ms) was obtained at room temperature when L9 was 1 [μm].

また、ゲート耐圧は、通常のダブル・ヘテロ接合構造、
即ち、第4図に見られる従来例のものに於ける6〔■〕
に対し、本発明のものに於いては15(V)と著しい向
上が見られ、更にまた、室温と低温(液体窒素温度)に
於けるしきい値電圧の変動量は約100100(であっ
て、従来例の200〜400(mV)と比較すると非常
に小さい。
In addition, the gate breakdown voltage is the same as the normal double heterojunction structure.
That is, 6 [■] in the conventional example shown in FIG.
On the other hand, the device of the present invention showed a remarkable improvement of 15 (V), and furthermore, the amount of variation in threshold voltage at room temperature and low temperature (liquid nitrogen temperature) was approximately 100,100 (V). , which is very small compared to 200 to 400 (mV) in the conventional example.

〔発明の効果〕〔Effect of the invention〕

本発明に依る高速電界効果半導体装置では、アン・ドー
プ半導体チャネル層を第1の超格子と第2の超格子とで
挟み、それ等超格子内のウェル層にのみ高濃度の不純物
をドーピングし、それ以外のゲート電極直下に於ける半
導体層はアン・ドープとすることに依り、2次元キャリ
ヤ・ガス層に於けるキャリヤ濃度を増加させ、また、半
導体層に於ける深い不純物単位の悪影響を解消し、更に
また、ゲート耐圧の低下を防止することを可能にしてい
る。
In the high speed field effect semiconductor device according to the present invention, an undoped semiconductor channel layer is sandwiched between a first superlattice and a second superlattice, and only the well layer in the superlattice is doped with a high concentration of impurity. By making the other semiconductor layers directly under the gate electrode undoped, the carrier concentration in the two-dimensional carrier gas layer is increased and the adverse effects of deep impurity units in the semiconductor layer are reduced. In addition, it is possible to prevent the gate breakdown voltage from decreasing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の要部切断側面図、第2図は第
1図に見られる実施例のエネルギ・バンド・ダイヤグラ
ム、第3図及び第4図は従来例のエネルギ・バンド・ダ
イヤグラムを表している。 図に於いて、llは半絶縁性であるGaAs基板、12
はi型A16.3 Ga、、、 As層、13は第1の
超格子、14はi型GaAsチャネル層、15は第2の
超格子、16はi型Affi6.3 Gao、。 As層、17はi (或いはn)型GaAsキャップ層
、18はソース電極、19はドレイン電極、20はゲー
ト電極、21は2次元電子ガス層、13A及び15Aは
i型AffiAsバリヤ層、13B及び15Bはn型G
aASウェル層をそれぞれ示している。 特許出願人   冨士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 一 実施例の要部切断側面図 第1図 実施例のエネルギ・バント・ダイヤグラム第2図 従来例のエネルギ・パン8・ダイヤグラム第3図
FIG. 1 is a cutaway side view of essential parts of an embodiment of the present invention, FIG. 2 is an energy band diagram of the embodiment shown in FIG. 1, and FIGS. 3 and 4 are energy band diagrams of the conventional example. represents a diagram. In the figure, ll is a semi-insulating GaAs substrate, 12
is an i-type A16.3 Ga,..., As layer, 13 is a first superlattice, 14 is an i-type GaAs channel layer, 15 is a second superlattice, and 16 is an i-type Affi6.3 Gao. 17 is an i (or n) type GaAs cap layer, 18 is a source electrode, 19 is a drain electrode, 20 is a gate electrode, 21 is a two-dimensional electron gas layer, 13A and 15A are i-type AffiAs barrier layers, 13B and 15B is n-type G
Each aAS well layer is shown. Patent Applicant: Fujitsu Co., Ltd. Representative Patent Attorney: Akira Aitani Representative Patent Attorney: Hiroshi Watanabe Pan 8 Diagram Figure 3

Claims (1)

【特許請求の範囲】  2次元キャリヤ・ガス層が生成されるアン・ドープ半
導体チャネル層と、 前記チャネル層の下側に接する第1の超格子及び上側と
接する第2の超格子と、 前記第1の超格子に接するアン・ドープ半導体層及び前
記第2の超格子に接するアン・ドープ半導体層と、 前記第2の超格子に接するアン・ドープ半導体層にコン
タクトするゲート電極と を備えてなり、 前記第1及び第2の各超格子は高濃度に不純物がドーピ
ングされ且つエネルギ・サブ・バンドが生成され得るウ
ェル層と該ウェル層を挟み且つ前記チャネル層よりキャ
リヤ親和力が小でエネルギ・バンド・ギャップが大であ
るバリヤ層とからなっていること を特徴とする高速電界効果半導体装置。
Claims: an undoped semiconductor channel layer in which a two-dimensional carrier gas layer is produced; a first superlattice in contact with the lower side of the channel layer and a second superlattice in contact with the upper side; an undoped semiconductor layer in contact with the first superlattice, an undoped semiconductor layer in contact with the second superlattice, and a gate electrode in contact with the undoped semiconductor layer in contact with the second superlattice. , each of the first and second superlattices is sandwiched between a well layer doped with impurities at a high concentration and in which an energy sub-band can be generated, and has a lower carrier affinity than the channel layer and an energy band. - A high-speed field effect semiconductor device characterized by comprising a barrier layer with a large gap.
JP27703685A 1985-12-11 1985-12-11 High-speed field effect semiconductor device Pending JPS62136882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27703685A JPS62136882A (en) 1985-12-11 1985-12-11 High-speed field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27703685A JPS62136882A (en) 1985-12-11 1985-12-11 High-speed field effect semiconductor device

Publications (1)

Publication Number Publication Date
JPS62136882A true JPS62136882A (en) 1987-06-19

Family

ID=17577883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27703685A Pending JPS62136882A (en) 1985-12-11 1985-12-11 High-speed field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS62136882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794758A (en) * 1991-09-12 1995-04-07 Pohang Iron & Steel Co Ltd Manufacture of delta-doped quantum well type field-effect transistor
EP0841704A1 (en) * 1996-11-07 1998-05-13 Paul-Drude-Institut für Festkörperelektronik Semiconductor transistor device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794758A (en) * 1991-09-12 1995-04-07 Pohang Iron & Steel Co Ltd Manufacture of delta-doped quantum well type field-effect transistor
EP0841704A1 (en) * 1996-11-07 1998-05-13 Paul-Drude-Institut für Festkörperelektronik Semiconductor transistor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5081511A (en) Heterojunction field effect transistor with monolayers in channel region
US4673959A (en) Heterojunction FET with doubly-doped channel
JPS6028273A (en) Semiconductor device
JPS62136882A (en) High-speed field effect semiconductor device
JPH04162539A (en) Field-effect transistor
JPH06188271A (en) Field effect transistor
JPS62256477A (en) Semiconductor device
JPS61158183A (en) Electrical field effect type semiconductor device
JPH08316461A (en) Field-effect semiconductor device
JPS60149169A (en) Field effect type semiconductor device
JPS63114176A (en) High-speed field effect semiconductor device
JPS61268069A (en) Semiconductor device
JPS6235678A (en) Double-hetero type field effect transistor
JP2669325B2 (en) Field effect transistor and method of manufacturing the same
JPS61230379A (en) Semiconductor device
JPS61276269A (en) Hetero-junction type field-effect transistor
JPS62291974A (en) Semiconductor device
JPH04298050A (en) Heterostructure device having strained carrier supply layer
GB2262385A (en) Velocity modulation transistor
JPS61248569A (en) Hetrojunction field effect transistor
JPH01166568A (en) Semiconductor device
JPH0327537A (en) Modulation-doped field effect transistor
JPS63229763A (en) Semiconductor device
JPS6235677A (en) Inversion type high electron mobility transistor device
JPH06151469A (en) Compound semiconductor device