JPS6213558A - Alloy having superior h2s resistance - Google Patents

Alloy having superior h2s resistance

Info

Publication number
JPS6213558A
JPS6213558A JP15253685A JP15253685A JPS6213558A JP S6213558 A JPS6213558 A JP S6213558A JP 15253685 A JP15253685 A JP 15253685A JP 15253685 A JP15253685 A JP 15253685A JP S6213558 A JPS6213558 A JP S6213558A
Authority
JP
Japan
Prior art keywords
corrosion
alloy
resistance
liquid
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15253685A
Other languages
Japanese (ja)
Inventor
Akihiro Miyasaka
明博 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15253685A priority Critical patent/JPS6213558A/en
Publication of JPS6213558A publication Critical patent/JPS6213558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To improve the corrosion resistance in an environment where liq. H2S coexists with liq. H2O by adding specified amounts of Mn, Cr, Mo and Ni as essential components to Fe. CONSTITUTION:This alloy has a composition consisting of, by weight, 0.02-1.0% Si, 0.02-1.5% P, <=0.004% S and the balance Fe with impurities. By the composition, the stress corrosion cracking and sulfide stress corrosion cracking of the steel in liq. H2S contg. H2O and chloride can be prevented over a wide temp. range. The occurrence of pitting corrosion and crevice corrosion can be reduced especially by the added Mo. Much superior corrosion resistance can be provided to the alloy by adding one or more among <=2.5% Cu, <=4% Co, <=10% W and <=0.3% N.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐H2S性の優れた合金に係り、さらに詳しく
は石油・天然ガスの掘削、輸送或いは貯蔵等もしくは化
学プラント等において液体1(2S及び液体H20の存
在する液体環境にあっても腐食が少なくかつ応力腐食割
れ抵抗の高い合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an alloy with excellent H2S resistance. The present invention also relates to an alloy that exhibits little corrosion and high stress corrosion cracking resistance even in a liquid environment where liquid H20 is present.

(従来の技術) 近年生産される石油・天然ガス中には湿潤な硫化水素、
炭酸ガスや塩化物などの腐食性物質を含む場合が多い。
(Conventional technology) Oil and natural gas produced in recent years contain wet hydrogen sulfide,
It often contains corrosive substances such as carbon dioxide and chlorides.

そして生産流体中にH2Sが非常に多い場合には、温度
低下や全圧の上昇に伴なりて気体中のH2Sが液化する
場合がある。このような環境の一例としてガス井戸の底
部で生産ガス中のH2S分圧が非常に高いが温度も比較
的高い九めにH2Sがすべて気体であったものが、ガス
生産によってガスが井戸の上部に上昇してくるに従って
ガス温度が低下するために遂には生産ガス中のH2S分
圧が、ガス温度におけるH、8蒸気圧を超えてしまった
場合が挙げられる。加えて油井・ガス井の底部において
は、石油・天然ガス中に底部温度における蒸気圧6にほ
ぼ対応する量の水蒸気が含まれておシ、井戸上部は井戸
底部よシも温度が低いため式水の凝縮が起こるので、生
産流体は一般に液体の水を含んでいる。さらに通常こう
した水中には塩化物が含まれている。
If there is a large amount of H2S in the production fluid, the H2S in the gas may liquefy as the temperature decreases or the total pressure increases. An example of such an environment is that at the bottom of a gas well, the H2S partial pressure in the produced gas is very high, but the temperature is also relatively high. As the gas temperature increases, the gas temperature decreases, so that the H2S partial pressure in the produced gas eventually exceeds the H2S vapor pressure at the gas temperature. In addition, at the bottom of an oil or gas well, the oil or natural gas contains water vapor in an amount roughly corresponding to the vapor pressure 6 at the bottom temperature, and the temperature at the top of the well is lower than that at the bottom, so the equation The production fluid generally contains liquid water since water condensation occurs. Furthermore, these waters usually contain chloride.

従って生産流体中にH2Sが非常に多い場合には、生産
のためのi弁管(チー−ピング及びケーシング)、輸送
のためのラインパイプ、貯蔵のための容器、各種処理の
ためのグランド配管・容器などは、液体H2Sと液体H
20とが共存し1場合によシ塩化物も溶解した腐食環境
にさらされる。
Therefore, when there is a large amount of H2S in the production fluid, it is necessary to use i-valve pipes (cheaping and casing) for production, line pipes for transportation, containers for storage, gland piping and Containers etc. are for liquid H2S and liquid H.
It is exposed to a corrosive environment in which 20 and 20 coexist and in some cases sulfur chloride is also dissolved.

一方、H2Sの製造・静置設備やH2Sを使用する化学
プラントでも、純粋のH2Sばかシではなく、液体H2
S中に不純物としてのH2Oを含む場合がある。
On the other hand, even in H2S production/stationary equipment and chemical plants that use H2S, liquid H2S is not used as pure H2S.
S may contain H2O as an impurity.

これに対し、こうした液体H2Sと液体H20とが共存
し、さらに場合によっては塩化物までも存在する環境中
での鋼の腐食および応力腐食割れに関する知見は従来ま
ったくみられない。当然のことながら上記の環境中で使
用する材料として如伺なる組成の金属が適しているかに
ついても知見は表い。
On the other hand, there has been no prior knowledge regarding corrosion and stress corrosion cracking of steel in an environment where liquid H2S and liquid H20 coexist, and even chloride exists in some cases. Naturally, there is no knowledge as to whether metals of various compositions are suitable as materials for use in the above environment.

従って上記のような環境を生ずる井戸は、開発が見過ら
れる場合が多かった。或いは、知識が不足したまま通常
の炭素鋼や低合金鋼、又は例えば池田等がシンポジ9ム
・オン・ライン/4’イブ・アンド・チューブラ−グツ
ズ・アット・ジ・ニーピーアイ・デパートメントのプロ
シーディング(]977)で報告しているような耐硫化
物応力割れ性に優れた鋼を使用する程度であっ九。
Therefore, development of wells that create the above-mentioned environment has often been overlooked. Or, without sufficient knowledge, ordinary carbon steel or low-alloy steel, or for example, Ikeda et al. All that is required is to use steel with excellent sulfide stress cracking resistance, as reported in [977].

(発明が解決しようとする問題点) 本発明はこうし次現状に鑑み、液体H2Sと液体H20
が共存し、さらに塩化物をも含む苛酷な腐食環境中にあ
っても耐食性の優れ九合金を提供することを目的とする
ものである。
(Problems to be Solved by the Invention) In view of the current situation, the present invention solves the problem of liquid H2S and liquid H2S.
The object of the present invention is to provide an alloy 9 that has excellent corrosion resistance even in a harsh corrosive environment that also contains chlorides.

(問題点を解決するための手段) 本発明者は前述の目的を達成すべく研究を行なり九結果
、以下の知見を得九。
(Means for Solving the Problems) The present inventor conducted research to achieve the above-mentioned object, and as a result, obtained the following knowledge.

即ち本発明者は液体H2Sと液体1(20が共存する環
境における鋼の腐食挙動と応力腐食割れ挙動とを詳細に
調査した結果、以下のようなことを見出し九〇 まず、液体H2Sと水とが共存する環境では水の溶解し
fc液体H2S溶液とH2Sの溶解し元水溶液の2種類
の溶液が存在し得るが、液体H2S中に水をまっ九〈含
まない場合には炭素鋼及び低合金鋼は殆ど腐食しないが
、液体H2S中の水分量が増加するに従って炭素鋼及び
低合金鋼は著しく腐食するようになる。割れについても
同様で液体H2S中に水が溶解していない場合には炭素
鋼及び低合金鋼は6力腐食割れを生じないが、液体f(
2S中に水が溶解するとこれら材料は応力腐食割れを生
じ、液体H2S中の水分量が増加するに従ってよシ小さ
い応力で応力腐食割れを生ずるようになる。さらに水中
に塩化物を含む場合には腐食及び応力腐食割れが促進さ
れる。そして耐硫化物応力割れ性に優れた鋼であっても
液体H2S中に水が溶解し、あるいはさらに塩化物まで
も溶解し几環境での腐食に対しては効果がないことがわ
かっ九。
That is, as a result of detailed investigation into the corrosion behavior and stress corrosion cracking behavior of steel in an environment where liquid H2S and liquid 1 (20) coexist, the inventor found the following. In an environment where fc coexists, two types of solutions can exist: a water-dissolved fc liquid H2S solution and a H2S-dissolved original aqueous solution. Steel hardly corrodes, but carbon steel and low alloy steel become severely corroded as the water content in liquid H2S increases.The same goes for cracks, and if water is not dissolved in liquid H2S, carbon steel will corrode. Steel and low-alloy steel do not undergo six-force corrosion cracking, but liquid f(
When water is dissolved in H2S, these materials undergo stress corrosion cracking, and as the amount of water in liquid H2S increases, stress corrosion cracking occurs at smaller and smaller stresses. Furthermore, when water contains chlorides, corrosion and stress corrosion cracking are accelerated. It was also found that even steel with excellent sulfide stress cracking resistance dissolves water and even chlorides in liquid H2S, making it ineffective against corrosion in a cold environment.

なお、液体H2O中に、液体H2Sが溶解した環境にお
いて炭素鋼及び低合金鋼の腐食は小さい。但し、炭素鋼
及び低合金鋼はこの・環境で応力腐食割れを生ずるが、
この割れは、耐硫化物応力割れ性に優れ穴鋼を使用すれ
ば防止できることも見出した。
Note that corrosion of carbon steel and low alloy steel is small in an environment where liquid H2S is dissolved in liquid H2O. However, carbon steel and low alloy steel will undergo stress corrosion cracking in this environment;
It has also been found that this cracking can be prevented by using hole steel, which has excellent resistance to sulfide stress cracking.

さらに合金設計の面から各成分元素の添加効果について
検討し、次のような知見を得た。
Furthermore, we investigated the effects of adding each component element from the perspective of alloy design, and obtained the following knowledge.

まずFe中にCrを17%以上添加することによってH
2O及び塩化物を含有した液体H2S中における合金の
腐食速度を減少せしめることが可能であることがわかり
九。さらにかかる合金にNiを4%以上添加することに
よって室温を含めて広い範囲の温度にわ九りてH2O及
び塩化物を含有した液体H2S中においても応力腐食割
れや硫化物応力割れを防止できることがわかった。
First, by adding 17% or more of Cr to Fe, H
It has been found that it is possible to reduce the corrosion rate of alloys in liquid H2S containing 2O and chlorides9. Furthermore, by adding 4% or more Ni to such an alloy, stress corrosion cracking and sulfide stress cracking can be prevented over a wide range of temperatures, including room temperature, and even in liquid H2S containing H2O and chlorides. Understood.

ま九かかる合金に、さらにMe f 1.54以上添加
すれば孔食及び隙間腐食を著しく減少せしめることがで
きる上、一段と優れた耐全面腐食性と耐応力腐食割れ性
を得ることができた。加えてCr t−17−以上、N
%を4チ以上、Moを1.5チ以上含有する合金にCu
、CoaW*Nを単独または複合で添加すれば、よシ一
段と優れた耐食性が得られることが明らかとなう九。
Furthermore, by further adding Me f 1.54 or more to such an alloy, pitting corrosion and crevice corrosion can be significantly reduced, and further excellent general corrosion resistance and stress corrosion cracking resistance can be obtained. In addition, Cr t-17- or more, N
% or more and Mo content of 1.5 or more Cu.
It is clear that even more excellent corrosion resistance can be obtained by adding CoaW*N alone or in combination.9.

本発明は以上の知見に基づいてなされ丸もので、その要
旨とするところは、重tチでSi0.02〜1.0% 
、 Mn 0.02〜1.5%* Cr 17〜404
 * Mo L5〜15俤・N14〜60係を含有し、
C0,07係以下、P0.030俤以下、S 0.00
4係以下に制限し、あるいはさらにCu 2.5 %以
下、 Co 494以下、wio*以下。
The present invention has been made based on the above knowledge, and its gist is that Si0.02 to 1.0% is
, Mn 0.02-1.5%* Cr 17-404
* Contains Mo L5-15 翤 and N14-60,
C0.07 or less, P0.030 or less, S 0.00
4 or less, or further Cu 2.5% or less, Co 494 or less, wio* or less.

N013係以下のうち1種または2s以上を含有し、残
部F・及び不純物から成ることを特徴とする耐H2S性
の優れ九合金にある。
It is one of the nine alloys with excellent H2S resistance, which is characterized by containing one or more than 2s of N013 or lower, with the remainder consisting of F and impurities.

以下本発明の詳細な説明する・ (作用) 最初に本発明において各成分の範囲を前記の如く限定し
禽理由を以下に述べる。
The present invention will be described in detail below. (Function) First, the reasons for limiting the range of each component in the present invention as described above will be described below.

まず、Siは強度を向上させる元素であり、脱酸のため
にも11[!!な元素であるので0.02%以上含有す
ることが必要であるが、1%を超えるとこれらの効果が
飽和するため上限含有量を1%とする。
First of all, Si is an element that improves strength and is also used for deoxidation. ! Since it is a natural element, it is necessary to contain it in an amount of 0.02% or more, but if it exceeds 1%, these effects are saturated, so the upper limit content is set at 1%.

次にMnも強度を向上させる元素であり、脱酸の九めに
重要な元素であるので0.02−以上含有することが必
要であるが、1.5%を超えて添加しても効果が飽和す
るので上限含有量を1.5チとする。
Next, Mn is also an element that improves strength and is the ninth most important element for deoxidation, so it is necessary to contain it at 0.02% or more, but it is effective even if it is added in excess of 1.5%. is saturated, so the upper limit content is set to 1.5 inches.

またCrは水及び塩化物の溶解した液体H2S中におけ
る合金の耐食性を向上させるもっとも重要な元素である
が、171未満では腐食抑制効果が不充分であり、40
1を超えると効果が飽和することに加えて熱間加工性が
低下することからその範囲は17〜40憾とすべきであ
る。
Furthermore, Cr is the most important element for improving the corrosion resistance of alloys in water and liquid H2S containing dissolved chlorides, but if it is less than 171, the corrosion inhibiting effect is insufficient;
If it exceeds 1, the effect will be saturated and hot workability will decrease, so the range should be 17 to 40.

さらにMeは水及び塩化物の溶解し九液体H2S中にお
ける合金の耐孔食性及び耐隙間腐食性を向上させるが、
添加量が1.5%未満では充分な効果が得られず、また
]5チを超えて添加しても効果が飽和することからMo
の添加範囲は1.5〜15嗟とすべきである。
Furthermore, Me improves the pitting corrosion resistance and crevice corrosion resistance of the alloy in liquid H2S by dissolving water and chlorides;
Mo
The addition range should be 1.5 to 15 mo.

一方NiはCr及びMOを含有する合金の靭性を向上さ
せ、かつ、耐応力腐食割れ性を向上させる重要な元素で
あるが、4%未満では特に靭性向上と応力腐食割れの抑
制への効果が不充分であり、60係を超えて添加しても
効果が飽和する仁とからその成分範囲は4〜60嗟とす
べきである。
On the other hand, Ni is an important element that improves the toughness and stress corrosion cracking resistance of alloys containing Cr and MO, but if it is less than 4%, it is not particularly effective in improving toughness and suppressing stress corrosion cracking. The range of ingredients should be between 4 and 60 degrees, since the effect is saturated even if the amount is added in excess of 60 degrees.

一方、CはCrと結合してCr炭化物を生成して粒界腐
食を促進することから0.0796以下に制限すること
が必要である。
On the other hand, since C combines with Cr to produce Cr carbide and promotes intergranular corrosion, it is necessary to limit the content to 0.0796 or less.

次にPは0.0396を超えて含有すると応力腐食割れ
感受性を高めるので、0.031以下に制限する必要が
おる。
Next, P content exceeding 0.0396 increases stress corrosion cracking susceptibility, so it is necessary to limit it to 0.031 or less.

さらにSは合金の熱間加工性を低下させる元素であるの
でその上限含有量を0.0041に制限すべきである。
Furthermore, since S is an element that reduces the hot workability of the alloy, its upper limit content should be limited to 0.0041.

以上が本発明合金の基本成分であるが、本発明において
はこの他さらに耐H2S性を改善する目的でCu 、 
Co 、W、Nのうち1種または2種以上を含有させる
ことができるが、その範囲は以下の通りとすべきである
The above are the basic components of the alloy of the present invention, but in the present invention, in order to further improve the H2S resistance, Cu,
One or more of Co, W, and N can be included, but the range should be as follows.

まずCuは耐H2S性をさらに向上させるので必要に応
じて含有されるが、2.51を超えて含有させると合金
の熱間加工性が著しく低下するので上限含有量を2.5
%とすべきである。
First, Cu is added as necessary to further improve the H2S resistance, but if the content exceeds 2.51, the hot workability of the alloy will be significantly reduced, so the upper limit content should be set at 2.5.
It should be %.

次にCGは耐全面腐食性をさらに向上させる元素である
ので必要に応じて含有されるが、4%を超えて添加して
も効果が飽和するので上限含有量を41とする。
Next, CG is an element that further improves general corrosion resistance, so it is included as necessary, but the effect is saturated even if it is added in an amount exceeding 4%, so the upper limit content is set at 41.

またWは耐孔食性をさらに向上させる元素であるが、1
(lを超えて含有させてもよシ一層の改善効果はみられ
ず、脆化の原因にもなることから上限含有量を10%と
する。
In addition, W is an element that further improves pitting corrosion resistance, but 1
(Even if the content exceeds 1, no further improvement effect will be seen and it may cause embrittlement, so the upper limit content is set at 10%.

さらにNは耐孔食性を一段と向上させる元素であシ必要
に応じて含有されるが、0.34 f超えて含有させる
ことは固溶限の面から非常に困難であることに加えて欠
陥の原因となシやすいことから上限含有量t 0.3%
とする。
Furthermore, N is an element that further improves pitting corrosion resistance, and is contained as necessary, but it is extremely difficult to contain N in an amount exceeding 0.34 f due to solid solubility limits, and it also reduces defects. The upper limit content is 0.3% because it is easy to cause
shall be.

本発明合金は通常の工程によって溶解、鋳造。The alloy of the present invention is melted and cast using conventional processes.

加工して板や管などを製造可能であり、さらにこれを素
材として油井管やライソノ4イブなどの配管、パルプ材
などの部品、貯薦容器の本体や配管等において、単体と
して使用しても艮く、2層以上から成る複合材の被榎材
として使用することも可能である。
It can be processed and manufactured into plates and pipes, and it can also be used as a single material for piping such as oil country tubular goods and rhino 4 pipes, parts such as pulp materials, and the bodies and piping of storage containers. It is also possible to use it as a covering material for a composite material consisting of two or more layers.

以下に本発明の効果を実施例によりさらに具体的に示す
The effects of the present invention will be illustrated in more detail by way of examples below.

(実施例) 第1表に示す組成の合金を真空溶解炉を用いて溶製し、
熱間圧延によって9.0 m厚さの板に加工し九後、ノ
販1〜16及び扁20〜22については溶体化処理(1
200℃X 60 min保持保持端水冷施し、417
〜19については焼入れ焼戻し処理(焼入れ=A17に
対しては980℃X 30 min保持保持端水冷18
〜19に対しては980℃×30m1n保持後空冷、焼
戻しニア00℃X 30 min保持保持端空冷施した
。さらに414〜16については溶体化処理後強度上昇
の目的で冷間圧延(圧下率20俤)を行なり几。
(Example) An alloy having the composition shown in Table 1 was melted using a vacuum melting furnace,
After processing into a 9.0 m thick plate by hot rolling, No. 1 to 16 and No. 20 to 22 were subjected to solution treatment (1
Holding at 200°C for 60 min with water cooling at the holding end, 417
For ~19, quenching and tempering treatment (for quenching = A17, hold at 980°C for 30 min, hold and hold end with water cooling 18
- No. 19 were held at 980° C. for 30 ml, then air cooled, and tempered at 00° C. for 30 min. The holding end was air cooled. Further, 414 to 16 were cold rolled (reduction rate of 20 yen) for the purpose of increasing strength after solution treatment.

次にこれらの合金から試験片を採取して耐食性評価試験
に供した。なお、第1表中でム1〜16が本発明合金、
417〜22が比較材である。
Next, test pieces were taken from these alloys and subjected to a corrosion resistance evaluation test. In addition, in Table 1, Mu 1 to 16 are the alloys of the present invention,
417 to 22 are comparative materials.

耐食性評価試験のうち腐食速度の測定のためには上記板
よシそれぞれ厚さ4+wX幅20mX長さ50霞の試験
片を採取し、試験溶液に浸漬する前後の重量変化と試験
片表面積及び浸漬時間から腐食速度を算出し九。一方、
応力腐食割れ抵抗の判定の九めには上記板より圧延方向
と直角に厚さ2鴎×幅101×長さ70mの試験片を採
取し、第1図に示す4点支持曲げ治具を使用して試験片
1に0.2%耐力に相当する引張応力を与えた状態で試
験環境中に浸漬し、一定時間後割れの有無を観察した。
In order to measure the corrosion rate in the corrosion resistance evaluation test, test specimens of thickness 4 + w x width 20 m x length 50 m are taken from each of the above-mentioned plates, and the change in weight before and after immersion in the test solution, the surface area of the test piece, and the immersion time are measured. Calculate the corrosion rate from 9. on the other hand,
For the ninth step in determining stress corrosion cracking resistance, a test piece with a thickness of 2 mm x width of 101 x length of 70 m was taken from the above plate at right angles to the rolling direction, and a 4-point support bending jig was used as shown in Figure 1. The test piece 1 was immersed in a test environment with a tensile stress corresponding to 0.2% proof stress applied thereto, and the presence or absence of cracks was observed after a certain period of time.

第1図において2は4点支持曲げ治具の本体、3は試験
片1に曲げをおこさせる次めの押込みネジ、4は試験片
1を支持しかつ押込みネジ3による力を試験片1にかけ
さらには試験片1と4点支持曲げ治具本体2及び押込み
部5と’tt気的に絶縁するための支持棒であって、例
えばガラスやアルミナなどから成る。押込みネジ3を押
込んで試験片1に曲げ変形を生ぜしめ、これにより生じ
九引張応力を試験片IK与え九まま試験片1及び4点支
持曲げ治具を試験溶液中に浸漬することによって試験片
10当該試験溶液中における応力腐食割れ感受性を判定
するものである。
In Figure 1, 2 is the main body of the four-point support bending jig, 3 is the next push-in screw that bends the test piece 1, and 4 is the one that supports the test piece 1 and applies the force of the push-in screw 3 to the test piece 1. Furthermore, there is a support rod for electrically insulating the test piece 1 from the four-point support bending jig main body 2 and the pushing part 5, and is made of, for example, glass or alumina. The push-in screw 3 is pushed in to cause bending deformation in the test piece 1, and the resulting tensile stress is applied to the test piece IK.The test piece is made by immersing the test piece 1 and the 4-point support bending jig in a test solution. 10 This is to judge the stress corrosion cracking susceptibility in the test solution.

試験溶液としては腐食速度測定、応力腐食割れ感受性判
定のいずれにおいてもモル分率にて液体H,8: 0.
9 、人工海水:0.1の割合で混合して生ずるH2S
−rich溶液、即ち水および塩化物の溶解した液体H
2S溶液を用b、試験温度は35℃とし、試験時間はい
ずれも720時間とした@耐H2S性評価試験結果を第
2表に示す。@2表から明らかなように本発明合金はい
ずれも腐食速度が小さくかつ応力腐食割れ抵抗が高い、
即ち耐H2S性に優れているのに対し、比較鋼は耐H2
S性に劣ることがわかる。
The test solution was liquid H, 8:0.
9. Artificial seawater: H2S produced by mixing at a ratio of 0.1
-rich solution, i.e. liquid H in which water and chloride are dissolved
2S solution was used, the test temperature was 35° C., and the test time was 720 hours. The results of the H2S resistance evaluation test are shown in Table 2. As is clear from Table 2, all the alloys of the present invention have a low corrosion rate and high stress corrosion cracking resistance.
In other words, the comparative steel has excellent H2S resistance, while the comparative steel has excellent H2S resistance.
It can be seen that it is inferior to S-character.

第2表 (発明の効果) 前記の実施例からもわかる通り、本発明は液体H2S中
に水、塩化物を多量に含む苛酷な環境にあっても、優れ
几耐食t!t、を有する合金を提供することを可能にし
次ものであシ、産業の発展に貢献するところ極めて大で
ある。
Table 2 (Effects of the Invention) As can be seen from the above examples, the present invention provides excellent corrosion resistance even in a harsh environment containing a large amount of water and chloride in liquid H2S! The present invention makes it possible to provide an alloy having the following characteristics, and contributes greatly to the development of industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験片に引張応力を与える究め04点支持曲げ
治具の構造を示す正面図である。 1・・・試験片、2・・・4点支持曲げ治具本体、3・
・・押込みネジ、4・・・支持棒、5・・・押込み部。
FIG. 1 is a front view showing the structure of a four-point support bending jig that applies tensile stress to a test piece. 1... Test piece, 2... 4-point support bending jig body, 3...
... Push-in screw, 4... Support rod, 5... Push-in part.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%でSi0.02〜1.0%、Mn0.02
〜1.5%、Cr17〜40%、Mo1.5〜15%、
Ni4〜60%を含有し、C0.07%以下、P0.0
30%以下、S0.004%以下に制限し、残部Fe及
び不純物から成ることを特徴とする耐H_2S性の優れ
た合金。
(1) Si0.02-1.0%, Mn0.02 in weight%
~1.5%, Cr17~40%, Mo1.5~15%,
Contains 4-60% Ni, C0.07% or less, P0.0
An alloy with excellent H_2S resistance characterized by limiting S to 30% or less and S to 0.004% or less, with the remainder consisting of Fe and impurities.
(2)重量%でSi0.02〜1.0%、Mn0.02
〜1.5%、Cr17〜40%、Mo1.5〜15%、
Ni4〜60%を含有し、C0.07%以下、P0.0
30%以下、S0.004%以下に制限し、かつCu2
.5%以下、Co4%以下、W10%以下、N0.3%
以下のうち1種または2種以上を含有し、残部Fe及び
不純物から成ることを特徴とする耐H_2S性の優れた
合金。
(2) Si0.02-1.0%, Mn0.02 in weight%
~1.5%, Cr17~40%, Mo1.5~15%,
Contains 4-60% Ni, C0.07% or less, P0.0
30% or less, S0.004% or less, and Cu2
.. 5% or less, Co4% or less, W10% or less, N0.3%
An alloy with excellent H_2S resistance, characterized by containing one or more of the following, with the remainder consisting of Fe and impurities.
JP15253685A 1985-07-12 1985-07-12 Alloy having superior h2s resistance Pending JPS6213558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15253685A JPS6213558A (en) 1985-07-12 1985-07-12 Alloy having superior h2s resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15253685A JPS6213558A (en) 1985-07-12 1985-07-12 Alloy having superior h2s resistance

Publications (1)

Publication Number Publication Date
JPS6213558A true JPS6213558A (en) 1987-01-22

Family

ID=15542586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15253685A Pending JPS6213558A (en) 1985-07-12 1985-07-12 Alloy having superior h2s resistance

Country Status (1)

Country Link
JP (1) JPS6213558A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191344A (en) * 1990-11-26 1992-07-09 Mitsubishi Motors Corp Heat resisting alloy for valve
US6016021A (en) * 1998-02-20 2000-01-18 Northern Magnetics, Inc. Linear stepper motor
JP2010159438A (en) * 2009-01-06 2010-07-22 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
JP2015507697A (en) * 2011-12-20 2015-03-12 エイティーアイ・プロパティーズ・インコーポレーテッド High strength corrosion resistant austenitic alloy
WO2019146504A1 (en) * 2018-01-26 2019-08-01 日本製鉄株式会社 Cr-Ni ALLOY AND SEAMLESS STEEL PIPE FORMED OF Cr-Ni ALLOY

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191344A (en) * 1990-11-26 1992-07-09 Mitsubishi Motors Corp Heat resisting alloy for valve
JP2611871B2 (en) * 1990-11-26 1997-05-21 三菱自動車工業株式会社 Heat resistant alloy for valves
US6016021A (en) * 1998-02-20 2000-01-18 Northern Magnetics, Inc. Linear stepper motor
JP2010159438A (en) * 2009-01-06 2010-07-22 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
JP2015507697A (en) * 2011-12-20 2015-03-12 エイティーアイ・プロパティーズ・インコーポレーテッド High strength corrosion resistant austenitic alloy
JP2018080381A (en) * 2011-12-20 2018-05-24 エイティーアイ・プロパティーズ・エルエルシー High strength, corrosion resistant austenitic alloys
WO2019146504A1 (en) * 2018-01-26 2019-08-01 日本製鉄株式会社 Cr-Ni ALLOY AND SEAMLESS STEEL PIPE FORMED OF Cr-Ni ALLOY
JPWO2019146504A1 (en) * 2018-01-26 2020-12-17 日本製鉄株式会社 Seamless steel pipe made of Cr-Ni alloy and Cr-Ni alloy

Similar Documents

Publication Publication Date Title
US4788036A (en) Corrosion resistant high-strength nickel-base alloy
RU2452785C2 (en) Titanium alloy material, structural element, and container for radioactive wastes
JPS6134498B2 (en)
AU596745B2 (en) Corrosion resisting alloy
US5424029A (en) Corrosion resistant nickel base alloy
Yadla et al. A review on corrosion of metals and protection
JPS625976B2 (en)
JPS6213558A (en) Alloy having superior h2s resistance
EP0396821B1 (en) Zirconium alloy having improved corrosion resistance in nitric acid and good creep strength
JP2620809B2 (en) High-strength martensitic stainless steel excellent in high-temperature high-chloride-ion-concentration wet high-pressure carbon dioxide gas environment corrosion resistance and stress corrosion cracking resistance, and method for producing the same
JPS6261107B2 (en)
KR900007118B1 (en) Corrosion resistant nickel base alloy
US3837847A (en) Corrosion resistant ferritic stainless steel
JP2742948B2 (en) Martensitic stainless steel excellent in corrosion resistance and method for producing the same
JP2602319B2 (en) High-strength, high-temperature, high-chloride-ion-concentration, wet carbon dioxide gas-corrosion-resistant, martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same
JPS6144135B2 (en)
JPS6363608B2 (en)
JPS6144132B2 (en)
JPS6363610B2 (en)
JPS61186451A (en) Alloy having superior sour resistance
KR100188555B1 (en) Nickel alloy
JPH0232343B2 (en)
JPS6363609B2 (en)
US4547338A (en) Fe-Ni-Cr corrosion resistant alloy
JPS5912737B2 (en) Duplex stainless steel for oil country tubular goods with excellent corrosion resistance