JPS62135348A - Manufacture of fiber reinforced plastic - Google Patents

Manufacture of fiber reinforced plastic

Info

Publication number
JPS62135348A
JPS62135348A JP60276212A JP27621285A JPS62135348A JP S62135348 A JPS62135348 A JP S62135348A JP 60276212 A JP60276212 A JP 60276212A JP 27621285 A JP27621285 A JP 27621285A JP S62135348 A JPS62135348 A JP S62135348A
Authority
JP
Japan
Prior art keywords
film
laminate
frame
liquid rubber
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60276212A
Other languages
Japanese (ja)
Inventor
Michio Futakuchi
二口 通男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60276212A priority Critical patent/JPS62135348A/en
Publication of JPS62135348A publication Critical patent/JPS62135348A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material

Abstract

PURPOSE:To easily obtain FRP without defects even for the complicated shape- FRP by a method in which while covering a laminate with a film and drawing, its inside to e vacuum, the laminate is received in a frame, and then after room temperature-curcing liquid rubber has been injected into this frame and cured, the whole is heated and pressurized by press forming. CONSTITUTION:The laminate 6 laminated on a core member 7 is wrapped in a film 8, and its inside is drawn to be vacuum, and then these are all received in a frame 10. Next, liquid rubber 9 is injected into the frame 10. While keeping the inside of the film 8 in vacuum, the liquid rubber 9 is cured at the room temperature or the temperature at which the resin in the laminate 6 is not cured. In this process, the air between the lapped layers of the laminate 6 is almost removed. Here, the liquid rubber 9 must be treated so that voids or air layers do not enter the frame 10. Further, the rubber elastomer 9 formed by the curing of the liquid rubber is pressurized and heated with the platen 12 of a heating press by way of a pressurizing plate 11, whereby press forming is carried out. The vacuum in the film 8 is preferably kept until the finishing of the laminate 6 curing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は繊維強化プラスチックをゴム弾性体を用いて
製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing fiber reinforced plastic using a rubber elastic body.

〔従来の技術〕[Conventional technology]

従来よシ繊維強化プラスチック(以下、FRPと称す)
の製造方法としては、ハンドレイアッゾ法、プレス法、
真空バッグ法、オートクレーブ法。
Conventional fiber reinforced plastic (hereinafter referred to as FRP)
Manufacturing methods include the hand-lay azzo method, the press method,
Vacuum bag method, autoclave method.

ゴムモールド法等種々の製造法があシ、使用する材料や
成形品の形状等にょシ選択し適用されている。なかでも
ガラス、カーボン、ケブラー等の長繊維を樹脂で固めた
高性能の成形品を製造する場合、成形品をバッグフィル
ムで包み、この内部を真空に引く真全バッグ法や、さら
にその外側をガスで加圧するオートクレーブ法が一般的
に使用されている(以下、これら真空バッグ法およびオ
ートクレーブ法をバッグ成形法という)。
Various manufacturing methods such as the rubber molding method are used, depending on the materials used and the shape of the molded product. Among these, when manufacturing high-performance molded products made of long fibers such as glass, carbon, and Kevlar hardened with resin, we use the Shinzen bag method, in which the molded product is wrapped in bag film and the inside is evacuated, and the outside of the An autoclave method using gas pressurization is commonly used (hereinafter, the vacuum bag method and autoclave method will be referred to as the bag molding method).

しかしこのよりなノ々ッグ成形法において、成形品が複
雑な形状のものになるとこれを加圧するためのバッグフ
ィルムが成形品に完全にはなじまないため、加圧不足の
部分が生じゃすく、ノ々ッグ成形法が適用できないこと
が多い。このような場合、例えば「抜合材料用弾性体型
の設計(ELASTOM−ERICTOOLING D
ESIGN FORADVANCEDCOMPO8IT
ES、  Dh;U’l’SCHH,M、  Conf
 AdvCompos Techno (USA)、 
120−142 (’ nd) ) J、「炭素繊維強
化プラスチックスの製造におけるゴムの利用(THE 
USE OF RUBBER3IN C,F、lt、P
MANUFACTURE、KING  R,L、MAT
ERIALS  INENGINEERING、 Vo
l 3. APRIL ] 982 Jおよび「ノンメ
タリック キャスタブル ツーリングフォー アドノ々
ンスド コンボジッッ(NONME−TALLICCA
STABLE TOOLING FORADVANCE
DCOMPO8ITES、 MORRIS S、L、 
 33rd Ann。
However, in this more advanced Nog molding method, if the molded product has a complex shape, the bag film used to press the molded product does not fit completely into the molded product, resulting in areas where insufficient pressure is applied. , the Nonogg molding method is often not applicable. In such cases, for example, "ELASTOM-ERICTOOLING D"
ESIGN FORAD VANCED COMPO8IT
ES, Dh; U'l'SCHH, M, Conf
AdvCompos Techno (USA),
120-142 ('nd)) J, "Use of Rubber in the Production of Carbon Fiber Reinforced Plastics (THE
USE OF RUBBER3IN C, F, lt, P
MANUFACTURE, KING R, L, MAT
ERIALS INENGINEERING, Vo
l 3. APRIL ] 982 J and “NONME-TALLICCA
STABLE TOOLING FORADVANCE
DCOMPO8ITES, MORRIS S, L,
33rd Ann.

Tech、 Conf、 of S、P、I (197
8) 5ection 21−E、 PAGE 1 )
 Jに示すように、ゴム弾性体製の押し型を使用したノ
々ッグ成形法もしくはゴム弾性体の熱膨張率の大きいこ
とを利用した♂ムモールド法が用いられる。
Tech, Conf, of S, P, I (197
8) 5ection 21-E, PAGE 1)
As shown in J, the Nog molding method using a mold made of rubber elastic material or the male molding method utilizing the high coefficient of thermal expansion of rubber elastic material is used.

次に代表的なゴム弾性体を使用したノ々ッグ成形法を図
面に基づいて説明する。第2図(a)、Φ)および第3
図は上記文献「炭素繊維強化プラスチックスの製造にお
けるtムの利用」に示されたゴム弾性体を使用したエビ
ーム製造におけるバッグ成形法の構成を示すもので、第
2図は第3図の状態に至る途中経過を示している。これ
らの図において、1は補強繊維に樹脂が含浸されたシー
トを積層した積層材、2はその内部を真空にしてこれK
よシ全体を加圧するためのノ々ッグフィルム、3は凹部
、特に隅角部を均一に加圧するためのゴム弾性体、4は
あて板、5は真空シールである。このようなバッグ成形
法では、予め製品の形状に合ゎせて形成されたゴム弾性
体3とあて板4で8を層材lを押え、これらをノ々ッグ
フィルムで覆って内部を真空にして積層材lへの加圧を
行うものである。このためノ々ッグフィルムのみではフ
ィルムの突張シ等により十分加圧できなかった隅角部へ
の加圧が他の部分と同様に加圧できるようになっている
Next, the Nogu molding method using a typical rubber elastic body will be explained based on the drawings. Figures 2(a), Φ) and 3
The figure shows the configuration of the bag molding method used in the production of EVEM using a rubber elastic body, which is shown in the above-mentioned document ``Utilization of TM in the production of carbon fiber reinforced plastics.'' Figure 2 shows the state shown in Figure 3. It shows the progress along the way. In these figures, 1 is a laminated material in which reinforcing fibers are laminated with resin-impregnated sheets, and 2 is a laminate made by vacuuming the inside.
3 is a rubber elastic body for uniformly pressurizing the recesses, especially the corners; 4 is a cover plate; and 5 is a vacuum seal. In such a bag forming method, a rubber elastic body 3 and a backing plate 4, which are formed in advance to match the shape of the product, hold down the layer material 1 of 8, and these are covered with a Nog film and the inside is evacuated. This applies pressure to the laminated material l. For this reason, pressure can be applied to the corners, which could not be applied sufficiently with the Nogu film alone due to the tension of the film, in the same way as other parts.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上記の製造方法においては、ゴム弾性体3を予め
製品の形状に合わせて形成する必要があるため、複雑な
形状、例えば微少な凹凸があるような形状やコイル形状
お工ひ曲がシ管のような三次元形状物の成形はきわめて
困難であった。
However, in the above manufacturing method, it is necessary to form the rubber elastic body 3 in advance according to the shape of the product. It was extremely difficult to mold a three-dimensional object like this.

この発明は上記のような問題点を解決するためになされ
たもので、複雑な形状のF RPであっても欠陥のない
FRPが容易に得られる繊維強化プラスチックの製造方
法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing fiber-reinforced plastic that can easily produce defect-free FRP even if it has a complex shape. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る繊維強化プラスチックの製造方法は、積
層材をフィルムで覆いかつ内部を真空に引いた状態で枠
型内に納め、この枠型内に常温硬化の液状ゴムを注入し
て硬化させた後、全体をプレス成形法により加熱・加圧
するものである。
The method for manufacturing fiber-reinforced plastics according to the present invention includes covering a laminated material with a film and placing it in a frame with the inside evacuated, and injecting liquid rubber that hardens at room temperature into the frame and curing it. After that, the whole is heated and pressurized using a press molding method.

〔作 用〕[For production]

この発明においては、積層材をフィルムで覆って内部を
真空にし、これを枠型に入れて液状tムを流し込んで硬
化させるため、積層材中の空気が除去されると共に極層
側の芯拐への密着性が良好となシ、また複雑な形状の積
層材であっても液状ゴムがその隅々まで入シ込んで硬化
し、このためすべての面を均一に加圧することができる
In this invention, the laminate is covered with a film, the inside is evacuated, it is placed in a frame mold, and liquid is poured into it to harden it, so that the air in the laminate is removed and the core on the polar layer side is removed. Even if the laminated material has a complicated shape, the liquid rubber will penetrate into every corner and harden, making it possible to apply pressure uniformly to all surfaces.

〔実施例〕〔Example〕

第1図はこの発明の一実施例によるFRPの製造方法を
説明するための断面図である8図において、6は補強繊
維に樹脂が含浸されたシートを積層した&層材であり、
この補強繊維としては、ガラス、カーゼン、1yロン、
アルミナ等の無機繊維はもちろん、ポリエチレン、ナイ
ロン、ケブラー等の有機繊維も用いることができる。ま
たこれらの繊維は長繊維を使用した一方向材やクロス駒
FIG. 1 is a cross-sectional view for explaining a method of manufacturing FRP according to an embodiment of the present invention. In FIG. 8, 6 is a laminated material in which reinforcing fibers are laminated with resin-impregnated sheets;
Examples of this reinforcing fiber include glass, carzen, 1yron,
In addition to inorganic fibers such as alumina, organic fibers such as polyethylene, nylon, and Kevlar can also be used. These fibers are also used for unidirectional materials and cross pieces using long fibers.

FW材およびこれらを併用することが可能で、更に短繊
維を使用したSMC材、BMC材でも使用することがで
きる。樹脂としては一般に用いられている熱硬化性樹脂
であれば用いることができるが、エポキシ樹脂、ポリエ
ステル樹脂等が好ましい。7は積層材6の芯材(成形型
)で、ここで芯材とは積層材6を成形硬化後も内部に残
存させたまま製品とするものを指し、成形型とは成形硬
化後製品よシ除去するものをいう。8は後述する液状ゴ
ム9と積層材6とを隔離すると共に、積層材6の内部を
真空に引き、ボイド等の除去と芯栃7への密着を行うた
めのフィルムで、非常に碧いしなやかで伸びの大きいフ
ィルムが選択される。このフィルム8としては例えば厚
みが10μ以下のナイロンフィルム、テフロンフィルム
、zvプロピレンフィルム等が用いられる。9はフィル
ム8で被包された積層材6を内部に配置した枠型10内
に注ぎ込まれた常温硬化形の液状ゴム(ゴム弾性体)で
あり、これには常態で液状でかつ常温(20〜40℃)
で硬化するゴムが使用可能であるが、粘度、熱安定性、
熱膨張係数1体積弾性率等の緒特性においてシリコンゴ
ムが優れているため、通常はシリコンゴムを用いる。1
1はゴム弾性体9の上面に配置された加圧板、12はこ
の加圧板11を介してゴム弾性体9を加熱および加圧す
るための加熱プレス定盤である。また、13はフィルム
8の内部を真空に保つためのシール材である。なお、枠
型lOはプレス圧に耐えられるよう強度の高いものを用
いる必要がある。
It is possible to use FW material and these together, and furthermore, SMC material and BMC material using short fibers can also be used. As the resin, any commonly used thermosetting resin can be used, but epoxy resins, polyester resins, etc. are preferable. 7 is a core material (molding mold) for the laminated material 6. Here, the core material refers to the material in which the laminated material 6 remains inside even after molding and hardening, and is used as a product. This refers to what is removed. 8 is a film for isolating the laminated material 6 from the liquid rubber 9, which will be described later, as well as evacuating the inside of the laminated material 6, removing voids, etc., and adhering it to the core 7, which is very blue and supple. A film with high elongation is selected. As this film 8, for example, a nylon film, a Teflon film, a zv propylene film, etc. having a thickness of 10 μm or less is used. Reference numeral 9 denotes a liquid rubber (rubber elastic material) that cures at room temperature and is poured into a frame 10 in which a laminated material 6 covered with a film 8 is placed. ~40℃)
It is possible to use rubber that hardens at
Silicone rubber is usually used because it has excellent properties such as thermal expansion coefficient and bulk modulus. 1
Reference numeral 1 denotes a pressure plate disposed on the upper surface of the rubber elastic body 9, and 12 a hot press surface plate for heating and pressurizing the rubber elastic body 9 via the pressure plate 11. Further, 13 is a sealing material for keeping the inside of the film 8 in a vacuum. Note that it is necessary to use a frame lO with high strength so that it can withstand press pressure.

次にこのよりなFRPの製造工程を説明する。Next, the manufacturing process of this flexible FRP will be explained.

先ず、窓側7に積層された積層材6をフィルム8で被包
して内部を真空に引き、これら全体を枠型10の中に入
れる。次に枠型10内に液状ゴム9を注入し、常温もし
くは積層材6中の樹脂が硬化しない程度の温度でフィル
ム8内部を真空に引いたiiま液状ゴム9を硬化させる
。この工程で積層側6の積層間の空気はほとんど除去さ
れる。なお、ここで液状ゴム9は枠型JO内にボイドま
たは空気層が入らないよう注意する必要がある。そして
更に液状ゴムが硬化して形成されたゴム弾性体9を、加
圧板11を介して加熱プレス定盤12により加圧−加熱
することKよシラレス成形が行われる。また、フィルム
8内の真空は積層材6の硬化終了まで保っておくのが望
ましいが、積層材6がさほど複雑な形状でない場合はプ
レス加圧を行った後真空を解除してもよい。
First, the laminated material 6 laminated on the window side 7 is covered with a film 8, the inside is evacuated, and the whole is placed in a frame mold 10. Next, the liquid rubber 9 is injected into the frame mold 10, and the liquid rubber 9 is cured while the inside of the film 8 is evacuated at room temperature or at a temperature that does not cure the resin in the laminate 6. In this step, most of the air between the laminated layers on the laminated side 6 is removed. Note that here, it is necessary to take care that the liquid rubber 9 does not create voids or air spaces in the frame JO. Then, the rubber elastic body 9 formed by hardening the liquid rubber is pressurized and heated by a heating press surface plate 12 via a pressure plate 11, thereby performing shirales molding. Further, it is desirable to maintain the vacuum in the film 8 until the curing of the laminated material 6 is completed, but if the laminated material 6 does not have a very complicated shape, the vacuum may be released after pressurization.

次に上記FRPの製造方法で成形を行った具体例を示す
Next, a specific example of molding performed using the above FRP manufacturing method will be shown.

芯材7として十字形状のアルミ製芯金上に、積層材6と
して例えば浮み0.1■の高強度カーボンファイバシ平
織クロスにビスフェノールA系エポキシ樹脂/芳香族ア
ミン硬化剤の樹脂を含浸させプリプレグとしたものを1
0枚重ね、肉厚約1−の積層材を積層した。そしてこれ
をフィルム8として例えは厚み0.1簡のテフロン系フ
ィルムで覆い、内部を真空に引いた。この時フィルム8
に局部的なしわや突張りが生じないよう注意深く徐々。
A cross-shaped aluminum core is used as the core material 7, and a high-strength carbon fiber plain weave cloth with a float of 0.1 mm is impregnated with a bisphenol A-based epoxy resin/aromatic amine curing agent resin as the laminated material 6. Prepreg 1
Laminated materials with a wall thickness of about 1-1 were laminated with 0 sheets stacked one on top of the other. This was then covered with a 0.1-thick Teflon film as film 8, and the inside was evacuated. At this time film 8
Carefully and gradually so as not to cause local wrinkles or tension.

に減圧を行った。更にこれを鉄製の枠型10の中に納め
、フィルム8内の真空を保ちながら液状ゴム9として常
温硬化形液状シリコンゴムを注入し、常温で12時間放
置しシリコンゴムを硬化させた。
The pressure was reduced. Further, this was placed in an iron frame mold 10, and room temperature curing liquid silicone rubber was injected as liquid rubber 9 while maintaining the vacuum inside the film 8, and the silicone rubber was left to stand at room temperature for 12 hours to harden.

しかる後、加熱プレス定盤12により50 kq/cm
 。
After that, it is heated at 50 kq/cm using a heating press surface plate 12.
.

150℃×4時間加熱・加圧し成形品を得た。、これら
の成形品はいずれも全面的にボイドのない良好なFRP
であった。
A molded product was obtained by heating and pressing at 150°C for 4 hours. , these molded products are all made of good FRP with no voids.
Met.

また、比較例として上記実施例と同一の芯材および積層
材を用いてオートクレーブ成形を行った。
Further, as a comparative example, autoclave molding was performed using the same core material and laminated material as in the above example.

ノ々ッグフィルムは0.1 wmのナイロンフィルムラ
使用し、5 kg/副2副圧加圧50℃×4時間加熱を
行った。その結果はとんどの部分はボイドのない良好な
ものが得られたが、隅角部(凹部)にフづルムの突張り
による加圧不足のため、ボイドおよび樹脂溜シが生じて
いた。
A 0.1 wm nylon film was used as the Nog film, and 5 kg/secondary pressure was applied and heating was performed at 50° C. for 4 hours. As a result, a good product with no voids was obtained in most parts, but voids and resin sump were generated in the corners (recesses) due to insufficient pressure due to the tension of the foam.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、積層材をフィルムで覆
いかつ内部を真空に引いた状態で常温硬化の液状ゴムを
流し込んで硬化させるようにしたので、加圧媒体である
ゴム弾性体の形状を積層材の形状通りに作ることができ
、従って複雑な形状のFRP製品でもボイドや樹脂溜シ
笠の欠陥のない成形物が得られる効果がある。
As described above, according to the present invention, the liquid rubber that cures at room temperature is poured and cured while the laminate is covered with a film and the inside is evacuated, so that the shape of the rubber elastic body that is the pressurizing medium is can be made according to the shape of the laminated material, and therefore, even in complex-shaped FRP products, molded products without defects such as voids and resin caps can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による繊維強化プラスチッ
クの製造方法を説明するための〜「面図、第2図(a)
、(ト))はそれぞれ従来の繊維強化プラスチックの製
造方法における途中工程を示す断面図、第3図は同繊維
強化プラスチックの装造方法を説明するための絢1面図
である。 6・・・積層材、7・・・芯材、8・・・フィルム、9
・・・液状ゴム、10・・・枠型、11・・・加圧板、
12・・・加熱プレス定盤。 なお、図中同一符号は同一または相描部分を示す。 代理人   大  岩  増  雄 第1図 12:加費外アレズ電4毀 第2図 第31
FIG. 1 is a top view for explaining a method for manufacturing fiber-reinforced plastic according to an embodiment of the present invention, and FIG.
, (g)) are sectional views showing intermediate steps in the conventional manufacturing method of fiber-reinforced plastic, and FIG. 3 is a front view of the fiber-reinforced plastic for explaining the method of manufacturing the fiber-reinforced plastic. 6... Laminated material, 7... Core material, 8... Film, 9
...Liquid rubber, 10...Frame type, 11...Pressure plate,
12...Heating press surface plate. Note that the same reference numerals in the figures indicate the same or contrasting parts. Agent Masuo Oiwa Figure 1 Figure 12: Expenses excluded Arezu Den 4 Figure 2 Figure 31

Claims (1)

【特許請求の範囲】[Claims] 補強繊維に樹脂を含浸させた積層材を芯材または成形型
に積層する工程と、この積層材全体をフィルムで被包し
かつその内部を真空にしてフィルムを積層材に密着させ
る工程と、前記フィルムで被包された積層材を所定の枠
型内に位置させた後、この枠型内に常温硬化形の液状ゴ
ムを注入し常温でゴムを硬化させる工程と、これら全体
をプレス成形法により加熱および加圧を行う工程とから
なる繊維強化プラスチックの製造方法。
a step of laminating a laminated material in which reinforcing fibers are impregnated with resin on a core material or a mold; a step of encasing the entire laminated material with a film and evacuating the inside thereof to bring the film into close contact with the laminated material; After positioning the laminated material covered with a film in a predetermined frame mold, there is a step of injecting liquid rubber that cures at room temperature into the frame mold and curing the rubber at room temperature, and the entire process is performed using a press molding method. A method for producing fiber-reinforced plastic, which comprises the steps of heating and pressurizing.
JP60276212A 1985-12-09 1985-12-09 Manufacture of fiber reinforced plastic Pending JPS62135348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60276212A JPS62135348A (en) 1985-12-09 1985-12-09 Manufacture of fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60276212A JPS62135348A (en) 1985-12-09 1985-12-09 Manufacture of fiber reinforced plastic

Publications (1)

Publication Number Publication Date
JPS62135348A true JPS62135348A (en) 1987-06-18

Family

ID=17566241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276212A Pending JPS62135348A (en) 1985-12-09 1985-12-09 Manufacture of fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JPS62135348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197532A (en) * 1988-01-29 1989-08-09 Toa Nenryo Kogyo Kk In-situ curing carbon fiber-reinforced soft prepreg and reinforcement of construction with carbon fiber-reinforced plastic sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197532A (en) * 1988-01-29 1989-08-09 Toa Nenryo Kogyo Kk In-situ curing carbon fiber-reinforced soft prepreg and reinforcement of construction with carbon fiber-reinforced plastic sheet

Similar Documents

Publication Publication Date Title
US5897739A (en) Method for making honeycomb core composite articles
US4842670A (en) Molded vacuum bag for debulking and autoclaving laminates of complex shapes
US10999052B1 (en) Cauls and methods of using cauls to produce composite articles
US3962393A (en) Method for making a hollow laminated article
EP0904929B1 (en) Method for forming a caul plate during moulding of a part
US4963215A (en) Method for debulking precured thermoplastic composite laminae
JP5044220B2 (en) Carbon foam composite tool and method for using the carbon foam composite tool
US9623620B2 (en) Three-dimensional reuseable curing caul for use in curing integrated composite components and methods of making the same
JPH04301410A (en) Manufacture of composite material product having complicate form
US20050126699A1 (en) Process for the manufacture of composite structures
US20080210372A1 (en) Composite article debulking process
JPH04270610A (en) Crossover formation device for consolidating composite material
JP2014504218A5 (en)
US5152856A (en) Cure/bonding method for sandwiched plastic structure
EP3517281A1 (en) Assisted semi-automatic film compression forming process
TW201304940A (en) Composite material of fiber-reinforced resin and weight-saving core, and method and apparatus for producing same
US20050003195A1 (en) Carbon foam composite tooling and methods for using the same
US5851619A (en) Laminated molded article and its production method
CA2813893C (en) Contour caul with expansion region
JPS62135347A (en) Manufacture of fiber reinforced plastic
JPS58205730A (en) Forming method of composite product
JPH06190847A (en) Production of carbon fiber-reinforced plastic molded body
JPS62135348A (en) Manufacture of fiber reinforced plastic
JP2012066397A (en) Method for manufacturing fiber-reinforced plastic
JPS62135349A (en) Manufacture of fiber reinforced plastic