JPS62134814A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JPS62134814A
JPS62134814A JP27464985A JP27464985A JPS62134814A JP S62134814 A JPS62134814 A JP S62134814A JP 27464985 A JP27464985 A JP 27464985A JP 27464985 A JP27464985 A JP 27464985A JP S62134814 A JPS62134814 A JP S62134814A
Authority
JP
Japan
Prior art keywords
magnetic
magneto
sensitive part
layer
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27464985A
Other languages
Japanese (ja)
Inventor
Shigemi Imakoshi
今越 茂美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP27464985A priority Critical patent/JPS62134814A/en
Publication of JPS62134814A publication Critical patent/JPS62134814A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To reduce noise and to improve the reproduction efficiency by constructing a magnetic circuit surrounding a bias conductor, of a pair of yokes having magnetic gaps at the side opposite to a recording medium, and of a magneto-sensitive part at the opposite side of the bias conductor with respect to the gap, laminating through a nonmagnetic layer and energizing in the prescribed direction. CONSTITUTION:By the magnetic yokes 18A and 18B on a substrate 11, the magnetic gap (g) is disposed on the opposite side of the MR magneto-sensitive part 12 with respect to the bias conductor 17 to construct a flat head 24. In terms of the magneto-sensitive part 12, soft magnetic layers 14 and 15 are arranged on and below the nonmagnetic layer 13 of 5-10<4>Angstrom in thickness, a saturated flux concentration and thickness are selected so as to agree with the flux amounts of both layers. Then the flux is entirely closed and a magnetic wall is not generated. A signal magnetic field HS which is fed to the magneto-sensitive part 12 from a magnetic recording medium 21 and the sense current (i) of the magneto-sensitive part 12 are selected in the same direction. The magnetic facilitating axis of the magnetic layer is at a right angle or isotropic with respect to a signal magnetic field, and the necessary bias magnetic field is fed to the magneto-sensitive part 12 without a signal magnetic field. With such constitution, a high output voltage and a high SN ratio can be obtained, and the magneto-sensitive part 12 prevents the generation of Barkhansen noise, thereby obtaining a satisfactory linear reproduction output.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気抵抗効果型磁気ヘッド(以下MR型磁気
ヘッドという)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetoresistive magnetic head (hereinafter referred to as an MR magnetic head).

〔発明の概要〕[Summary of the invention]

本発明は、MR型磁気ヘッドにおいて、そのバイアス導
体を囲む磁気回路を、磁気記録媒体に対向する側に磁気
ギャップを有する一対の磁性ヨークと、磁気ギャップに
対してバイアス導体の反対側に設けられ夫々の磁性ヨー
クと磁気的に結合された磁気抵抗効果を有する感磁部(
以下MR感磁部という)より構成してMR型磁気ヘッド
を所謂平型構造となし、かつMR感磁部を非磁性中間層
を介して少くとも一方が磁気抵抗効果を有する磁性N(
以下MR磁性層という)が積層された構成とすると共に
、その感磁部に、これに与えられる信号磁界と同方向に
センス電流を通ずるようになして、パルハウゼンノイズ
の制御と再生効率の向上を図るようにしたものである。
The present invention provides an MR type magnetic head in which a magnetic circuit surrounding the bias conductor is provided with a pair of magnetic yokes having a magnetic gap on the side facing the magnetic recording medium, and a pair of magnetic yokes provided on the opposite side of the bias conductor with respect to the magnetic gap. A magnetic sensing part (with magnetic resistance effect) that is magnetically coupled with each magnetic yoke (
The MR type magnetic head has a so-called flat structure, and the MR magnetic head is composed of a magnetic N (hereinafter referred to as MR magnetic sensing part) with a non-magnetic intermediate layer interposed therebetween, at least one of which has a magnetoresistive effect.
The MR magnetic layer (hereinafter referred to as MR magnetic layer) is laminated, and a sense current is passed through the magnetic sensing part in the same direction as the signal magnetic field applied to it, thereby controlling Palhausen noise and improving reproduction efficiency. It was designed to achieve this.

〔従来の技術〕[Conventional technology]

薄膜磁気ヘッドは大きく分類して次の2種類がある。す
なわち、第11図に示す構造(所謂縦型構造という)の
薄膜磁気ヘッドと、第12図に示す構造(所謂平型構造
という)の薄膜磁気ヘッドとがある。第11図の磁気ヘ
ッドは、基板上の表面が少くとも磁性体(1)である磁
性基板(2)上に、絶縁層(3)を介してコイルとして
の導体層(4)が形成され、さらにその上に絶縁層(3
)を介して一部が磁性基板(2)に磁気的に結合した磁
性ヨーク(5)が形成され、側面に臨む磁性基板(2)
と磁性コーク(5)間で磁気ギャップgが形成されて構
成される。なお、(6)は保護層、(7)は磁気記録媒
体である。又、第12TyJの磁気ヘッドは、同様の磁
性基板(2)上に絶縁層(3)を介してコイルとしての
導体層(4)が形成され、さらにその上に絶縁層(3)
を介して夫々一部が磁性基板(2)に磁気的に結合され
た一対の磁性ヨーク(8A)及び(8B)が形成され、
この一対の磁性ヨーク(8A)及び(8B)によって導
体N(4)に対して磁性基板(2)と反対側の平面に磁
気ギャップgが形成されて構成される。
Thin film magnetic heads can be broadly classified into the following two types. That is, there are a thin film magnetic head having the structure shown in FIG. 11 (so-called vertical structure) and a thin film magnetic head having the structure shown in FIG. 12 (so-called flat structure). In the magnetic head shown in FIG. 11, a conductor layer (4) as a coil is formed on a magnetic substrate (2) whose surface is at least a magnetic material (1) via an insulating layer (3). Furthermore, an insulating layer (3
) A magnetic yoke (5) is formed, a part of which is magnetically coupled to the magnetic substrate (2), and the magnetic substrate (2) faces the side surface.
A magnetic gap g is formed between the magnetic coke (5) and the magnetic coke (5). Note that (6) is a protective layer and (7) is a magnetic recording medium. Further, in the magnetic head of the 12th TyJ, a conductor layer (4) as a coil is formed on a similar magnetic substrate (2) with an insulating layer (3) interposed therebetween, and an insulating layer (3) is further formed on the conductor layer (4) as a coil.
A pair of magnetic yokes (8A) and (8B) each partially magnetically coupled to the magnetic substrate (2) via the magnetic substrate (2) is formed;
A magnetic gap g is formed by the pair of magnetic yokes (8A) and (8B) on the plane opposite to the magnetic substrate (2) with respect to the conductor N (4).

従来の薄膜磁気ヘッドの研究はほとんどが第11図に示
す縦型構造に関するものであった。一方、MR型磁気ヘ
ッドに関しては縦型構造の従来例としてはシールド型、
ノンシールド型及びヨーク型の3種類が考えられている
。縦型構造の薄膜磁気ヘッドの特徴は、長いギャップデ
プス(5μm以上)を形成することができるので、磁気
記録媒体の摺動による摩耗に対して強い。すなわち摩耗
されても長期使用に耐えられる。これに対して平型構造
の薄膜磁気ヘッドの特徴は、優れた磁気効率をもつ反面
、摩耗に弱く、また高いギャップデプス研磨精度が要求
されることである。
Most of the research into conventional thin-film magnetic heads has concerned the vertical structure shown in FIG. On the other hand, regarding MR type magnetic heads, conventional examples of vertical structure are shield type,
Three types are being considered: non-shield type and yoke type. A vertically structured thin film magnetic head is characterized by its ability to form a long gap depth (5 μm or more), which makes it resistant to wear caused by sliding of the magnetic recording medium. In other words, it can withstand long-term use even if it is worn out. On the other hand, a thin film magnetic head with a flat structure has excellent magnetic efficiency, but is susceptible to wear and requires high gap depth polishing accuracy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、例えば応用分野としてハードディスクを考え
ると、磁気ヘッドの摩耗の問題はコンタクトスタート、
ストップ時に限られるので、これに耐え得るものであれ
ば平型構造の薄膜磁気ヘッドでも使用可能となる。さら
に、平型構造では磁気ヘッドを平面的に並べて形成する
ことが可能となるため、その他の応用が種々考えられる
。縦型構造の場合には例えば同一トラックの記録/再生
を行う複合型ヘッドを考えると、その再生ヘッドの構造
は限定される。
By the way, for example, if we consider hard disks as an application field, the problem of magnetic head wear is due to contact start,
Since this is limited to the time of stop, even a thin film magnetic head with a flat structure can be used as long as it can withstand this. Furthermore, since the flat structure allows magnetic heads to be formed side by side in a plane, various other applications are possible. In the case of a vertical structure, for example, considering a composite head that records/reproduces on the same track, the structure of the reproducing head is limited.

本発明は、上述の事情に鑑み、MR感磁部のバルクハウ
ゼンノイズ(すなわち磁壁の移動に基づくノイズ)の発
生を抑制し且つ再生効率を向上することができる平型構
造のMR型磁気ヘッドを提供するものである。
In view of the above-mentioned circumstances, the present invention provides an MR magnetic head with a flat structure that can suppress the occurrence of Barkhausen noise (that is, noise based on movement of domain walls) in the MR magnetic sensing part and improve reproduction efficiency. This is what we provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、基板(11)上に薄膜状のMR感磁部(12
)と、バイアス導体(17)と、MR感磁部(12)の
両端に夫々磁気的に結合し磁気記録媒体(21)に対向
する側に磁気ギャップgを有する一対の磁性ヨーク(1
8A)  (18B)と、一対の磁性ヨーク(18A)
  (18B)の一部と共に磁気記録媒体対向面を構成
する保護1!(22)を形成し、バイアス導体(17)
を囲む磁気回路が上記一対の磁性ヨーク(18A)  
(18B)と、その磁気ギャップgに対してバイアス導
体(17)の反対側に設けられた上記MR感磁部(12
)とより構成されるようにしてMR型磁気ヘッド(24
)を構成する。即ちこのMR型磁気ヘッド(24)では
基板(11)上の一対の磁性ヨーク(18A )及び(
18B)によって磁気ギャップgがバイアス導体(17
)に対してMR感磁部(12)とは反対側の平面上に形
成された所謂平型構造に構成される。
The present invention provides a thin film-like MR magnetic sensing part (12) on a substrate (11).
), a bias conductor (17), and a pair of magnetic yokes (1) that are magnetically coupled to both ends of the MR magnetic sensing section (12) and have a magnetic gap g on the side facing the magnetic recording medium (21).
8A) (18B) and a pair of magnetic yokes (18A)
Protection 1 which constitutes the surface facing the magnetic recording medium together with a part of (18B)! (22) and bias conductor (17)
The magnetic circuit surrounding the pair of magnetic yokes (18A)
(18B) and the MR magnetic sensing part (12) provided on the opposite side of the bias conductor (17) with respect to the magnetic gap g.
) and an MR type magnetic head (24
). That is, in this MR type magnetic head (24), a pair of magnetic yokes (18A) and (
18B), the magnetic gap g is connected to the bias conductor (17B).
), it has a so-called flat structure formed on a plane opposite to the MR magnetic sensing part (12).

そして、本発明においては、MR感磁部(12)を、非
磁性中間Fi(13)を介してその上下に少くとも一方
が、MR磁性層より成り、夫々軟磁性体より成る磁性層
(14)及び(15)の積層構造とする。非磁性中間層
(13)の厚さは、両磁性層(14)及び(15)間に
、交換相互作用に比し静磁的相互作用が支配的に作用す
るような厚さの5人を超え10000人未満の例えば5
〜500人に選定する。また、両磁性層(14)及び(
15)は、その飽和磁束密度、厚さ等の選定によって両
磁性層(14)及び(15)の磁束量が一致するように
して磁束が両磁性層(14)及び(15)に関して全体
的に閉じるように選定される。
In the present invention, at least one of the upper and lower sides of the MR magnetic sensing part (12) is formed of an MR magnetic layer through a non-magnetic intermediate Fi (13), and each magnetic layer (14) is formed of a soft magnetic material. ) and (15). The thickness of the non-magnetic intermediate layer (13) is such that magnetostatic interaction acts more dominantly than exchange interaction between both magnetic layers (14) and (15). More than 10,000 people, for example 5
~500 people will be selected. Moreover, both magnetic layers (14) and (
15), the amount of magnetic flux of both magnetic layers (14) and (15) is matched by selecting the saturation magnetic flux density, thickness, etc. Selected to close.

MR感磁部(12)の両磁性層(14)及び(15)を
MR磁性層とするときは、両磁性1i(14)及び(1
5)は同一材料1寸法形状とすることが望ましいが、一
方をMR効果がないか殆んどない材料によって構成する
ときは、この磁性層は、MR効果のある磁性層に比し充
分大なる抵抗となるようにその材料及び厚さ等の選定を
行う。しかしながらこの場合において上述した両磁性層
の磁束量が一致するような条件を満たす必要がある。
When both magnetic layers (14) and (15) of the MR magnetic sensing part (12) are used as MR magnetic layers, both magnetic layers 1i (14) and (1
5) is preferably made of the same material with one dimension and shape, but when one is made of a material that has no or almost no MR effect, this magnetic layer must be sufficiently larger than the magnetic layer that has an MR effect. The material, thickness, etc. are selected to provide resistance. However, in this case, it is necessary to satisfy the above-mentioned condition that the magnetic flux amounts of both magnetic layers match.

そして本発明においては、磁気記録媒体からMR感磁部
(12)に与えられる信号磁界H3と、MR感磁部(1
2)に通ずるセンス電流iを同方向に選定する。またM
R感磁部(12)を構成する磁性層は信号磁界とほぼ直
交する方向に磁化容易軸を有するか、あるいは磁性層の
主面内に異方性を有しない等方的な磁性層により構成す
る。また、MR感値部(12)には、信号磁界が与えら
れない状態でセンス電流iの方向に対し所要の角度、例
えばほぼ45°に磁化が生じるように例えば外部から所
要のバイアス磁界を与えるなどの方法がとられる。
In the present invention, the signal magnetic field H3 applied from the magnetic recording medium to the MR magnetically sensitive section (12) and the MR magnetically sensitive section (12)
2) Select the sense currents i that lead to the same direction. Also M
The magnetic layer constituting the R magnetic sensing part (12) has an axis of easy magnetization in a direction substantially perpendicular to the signal magnetic field, or is composed of an isotropic magnetic layer having no anisotropy within the main plane of the magnetic layer. do. In addition, a required bias magnetic field is applied to the MR sensing section (12) from the outside so that magnetization occurs at a required angle, for example approximately 45°, with respect to the direction of the sense current i in a state where no signal magnetic field is applied. The following methods are used.

〔作用〕[Effect]

上述の本発明構成によれば、平型構造のために高い出力
電圧が得られ、且つ優れたS/Nが得られる。また、2
N構造のMR感磁部(12)により、バルクハウゼンノ
イズが効果的に除去され、しかも良好な再生出力の直線
性が得られる。
According to the configuration of the present invention described above, a high output voltage can be obtained due to the flat structure, and an excellent S/N ratio can be obtained. Also, 2
The N-structure MR magnetic sensing section (12) effectively removes Barkhausen noise and provides good linearity of reproduction output.

このバルクハウゼンノイズが除去されることについて説
明する。
The removal of this Barkhausen noise will be explained.

まず、バルクハウゼンノイズの発生原因について説明す
ると、従来一般のMR型磁気ヘッドのように、その感磁
部が単層のMR磁性層によって構成されている場合、こ
のMR磁性層は、磁気異方性エネルギー、形状異方性等
に起因する静磁エネルギー等の和が層全体として最小と
なるような状態を保持すべく第9図に示すような磁区構
成をとる。すなわち、この単層磁性層が、長方形の薄膜
磁性1(51)であり短辺方向に磁気異方性を有する場
合、その内面において、短辺方向に沿って磁化方向が交
互に逆向きの磁区(52)が生じると共に、これら隣り
合う磁区(52)に関して閉ループを形成するようにそ
の両端間に、磁性層の長辺方向に沿って順次逆向きの磁
区(53)が生じている。
First, to explain the cause of Barkhausen noise, when the magnetic sensing part is composed of a single MR magnetic layer as in conventional general MR magnetic heads, this MR magnetic layer has magnetic anisotropy. In order to maintain a state in which the sum of magnetostatic energy caused by magnetic energy, shape anisotropy, etc. is minimized for the entire layer, a magnetic domain configuration as shown in FIG. 9 is adopted. In other words, if this single magnetic layer is a rectangular thin film magnetic 1 (51) and has magnetic anisotropy in the short side direction, on its inner surface, magnetic domains with opposite magnetization directions alternate along the short side direction. (52) is generated, and magnetic domains (53) in opposite directions are generated sequentially along the long side direction of the magnetic layer between both ends of the adjacent magnetic domains (52) so as to form a closed loop.

したがって、このような磁性層に外部磁界が与えられる
と磁壁が移動し、これによりバルクハウゼンノイズが発
生する。
Therefore, when an external magnetic field is applied to such a magnetic layer, the domain walls move, thereby generating Barkhausen noise.

これに比し、本発明構成においては、その感磁部(12
)が、非磁性中間層(13)を介して磁性層(14)及
び(15)が積層された構造とされていることによって
外部磁界が与えられていない状態では、第3図に示すよ
うに、磁性1f(14)及び(15)は、矢印M1及び
M2で示すように夫々磁化容易軸方向に互いに反平行の
磁化状態にあり、磁壁が生じていない。尚、このように
磁壁が存在しないことについては磁性流体を用いたビッ
ク−(Bitter)法による磁区観察によって確認し
たところである。
In contrast, in the configuration of the present invention, the magnetically sensitive portion (12
), but due to the structure in which the magnetic layers (14) and (15) are laminated via the non-magnetic intermediate layer (13), when no external magnetic field is applied, as shown in Fig. 3, , magnetic 1f (14) and (15) are in a magnetized state antiparallel to each other in the direction of the easy axis of magnetization, as shown by arrows M1 and M2, respectively, and no domain wall is generated. The absence of domain walls was confirmed by magnetic domain observation using the Bic-(Bitter) method using magnetic fluid.

そして、このような感磁部(12)に対し、その磁化困
難軸方向に外部磁界Hを強めていくと、第4図A−Cに
その磁化状態を、磁性!(15)に関しでは実線矢印で
、磁性層(14)に関しては破線矢印で模式的に示すよ
うに、第4図Aに示す第3図で説明した反平行の磁化状
態から外部磁界Hにより第4図Bに示すように回転磁化
過程により磁化が回転し、更に強い外部磁化により、第
4図Cに示すように、両磁性層(14)及び(15)が
同方向に磁化される。この場合両磁性層(14)及び(
15)においてその面内で磁化回転が生じるので、磁壁
は生ずることがなく、バルクハウゼンノイズの発生が回
避される。つまり、陶磁性Fii(14)及び(15)
の磁化困難軸方向を磁束の伝搬方向とすることによって
磁壁移動に起因するバルクハウゼンノイズが回避される
Then, when the external magnetic field H is strengthened in the direction of the hard magnetization axis to such a magnetically sensitive part (12), the magnetization state is changed to magnetic! (15) is schematically shown by the solid line arrow, and the magnetic layer (14) is schematically shown by the broken line arrow, from the antiparallel magnetization state shown in FIG. As shown in Figure B, the magnetization is rotated by the rotary magnetization process, and due to stronger external magnetization, both magnetic layers (14) and (15) are magnetized in the same direction as shown in Figure 4C. In this case, both magnetic layers (14) and (
15), magnetization rotation occurs within that plane, so no domain wall is generated, and Barkhausen noise is avoided. That is, ceramic Fii (14) and (15)
Barkhausen noise caused by domain wall movement can be avoided by setting the direction of the hard magnetization axis of the magnetic flux as the propagation direction of the magnetic flux.

更に本発明による磁気ヘッドの動作を第5図〜第8図を
参照して説明する。第5図は本MR型磁気ヘッドの模式
的斜視図、第6図〜第8図は、感磁部(12)の陶磁性
N(14)及び(15)のみを模式的に示したもので、
これら磁性層(14)及び(15)は第6図中にe、a
で示す方向に初期状態で磁化容易軸を有する。そしてこ
れら磁性層(14)および(15)にセンス電流iを通
ずる。この通電によって非磁性中間N(図示せず)を挾
んで対向する両磁性層(14)及び(15)には電流i
と直交する互いに逆向きの磁界が発生し、これによって
磁性N(14)及び(15)は同図に実線及び破線矢印
M1及びM2で示すように磁化される。一方、この感磁
部(12)には電流iに沿う方向に外部からバイアス磁
界T(Bが与えられると、このバイアス磁界HBによっ
て、磁性Jti(14)及び(15)の磁化の向きは、
第7図に矢印MB1及びMB2で示すように所要の角度
だけ回転される。このバイアス磁界HBによって与えら
れる磁化の方向は、電流iの方向に対して概略45°と
なるように、そのバイアス磁界HBの大きさが選ばれる
ものである。
Further, the operation of the magnetic head according to the present invention will be explained with reference to FIGS. 5 to 8. Fig. 5 is a schematic perspective view of the present MR type magnetic head, and Figs. 6 to 8 schematically show only the ceramic N (14) and (15) of the magnetically sensitive part (12). ,
These magnetic layers (14) and (15) are e and a in FIG.
It has an axis of easy magnetization in the initial state in the direction shown by . A sense current i is passed through these magnetic layers (14) and (15). Due to this energization, a current i is applied to both magnetic layers (14) and (15) facing each other with a non-magnetic intermediate N (not shown) in between.
Magnetic fields perpendicular to each other and in opposite directions are generated, whereby the magnetic fields N (14) and (15) are magnetized as shown by solid line and broken line arrows M1 and M2 in the figure. On the other hand, when a bias magnetic field T (B) is externally applied to this magnetic sensing part (12) in the direction along the current i, the direction of magnetization of the magnetic Jti (14) and (15) is changed by this bias magnetic field HB.
It is rotated by a required angle as shown by arrows MB1 and MB2 in FIG. The magnitude of the bias magnetic field HB is selected so that the direction of magnetization given by the bias magnetic field HB is approximately 45° with respect to the direction of the current i.

尚、このようにバイアス磁界I(Hによってセンス電流
iに対して概略45°の磁化を与えることによって高い
感度と直線性を得ることができることについては、通常
のMR型磁気ヘッドにおいて行われていると同様である
。そして、この状態で第8図に示すように、信号磁界T
(sがセンス電流iに沿う方向、すなわち磁化困難軸方
向に与えられると磁化回転が生じ、夫々その磁化の方向
が矢印Msi及びMS2に示すように反時計及び時計方
向に角度θ1及び02回転する。これによって各磁性層
(14)及び(15)がMR磁性層である場合は、夫々
抵抗変化が生じることになるが、このMRVi!を性層
の抵抗の変化は角度の変化をθとするときCO32θに
比例するので、今、第7図における両磁性層(14)及
び(15)の磁化MB1及びMP+2が互いに90゛ず
れているとすると、θ1及びθ2の変化で、両磁性屓(
4)及び(5)に関して抵抗の変化の増減が一致する。
Note that high sensitivity and linearity can be obtained by imparting magnetization of approximately 45° to the sense current i using the bias magnetic field I (H), as is done in normal MR magnetic heads. In this state, as shown in Fig. 8, the signal magnetic field T
(When s is applied in the direction along the sense current i, that is, in the direction of the hard magnetization axis, magnetization rotation occurs, and the direction of magnetization rotates counterclockwise and clockwise by angles θ1 and 02, respectively, as shown by arrows Msi and MS2.) As a result, if each of the magnetic layers (14) and (15) is an MR magnetic layer, a change in resistance will occur, but this MRVi! is expressed as θ, which is the change in angle of the resistance of the magnetic layer. Therefore, if we assume that the magnetizations MB1 and MP+2 of both magnetic layers (14) and (15) in FIG.
Regarding 4) and (5), the increases and decreases in resistance change are the same.

つまり、一方の磁性1’!(14)の抵抗が増加すれば
、他方の磁性!(15)もその抵抗は増加する方向に変
化する。そして、これら磁性層(14)及び(15)の
抵抗変化、すなわち感磁部(12)の両端の端子t1及
びt2間に抵抗変化を生じ、この抵抗変化を端子t1及
びt2間の電圧変化として検出することができることに
なる。
In other words, one magnetic field is 1'! If the resistance of (14) increases, the magnetism of the other! (15) also changes in the direction of increasing resistance. Then, a resistance change occurs in these magnetic layers (14) and (15), that is, a resistance change occurs between the terminals t1 and t2 at both ends of the magnetically sensitive part (12), and this resistance change is treated as a voltage change between the terminals t1 and t2. This means that it can be detected.

このように、本発明においては、所定の磁気異方性を有
する磁性膜に対してセンス電流iの方向を信号磁界HS
の与えられる方向と同方向に選定するものであるが、こ
のような構成とすることによる作用上の特徴は、上述し
たような本発明におけると同様に感磁部(I2)を、非
磁性中間層(13)を介して磁性層(14)及び(15
)を積層した構造とするものの、センス電流iの方向を
信号磁界Hsの方向と直交する方向に選定する場合と比
較することによって、より明確となる。すなわち、今、
第10図に示すように、第6図で説明したと同様に両磁
性75(14)及び(15)に磁性層の異方性磁界HK
を考慮した上での大電流iを通じた状態では、これによ
って発生する磁界によって、両磁性層(14)及び(1
5)は電流iと直交する方向に夫々実線及び破線矢印で
示す様に磁化される。この状態で、電流iと直交する方
向に信号磁界H8が与えられると、これは磁性層(14
)及び(15)の電流iによる磁化に沿う方向となり、
この磁界Hsが磁化容易軸方向に与えられたと同様の挙
動を示す。つまり、磁壁の発生と、移動が生じバルクハ
ウゼンノイズが発生する。ここで磁性層の磁化容易軸方
向にセンス電流iが流され、センス電流と同方向に信号
磁界Hsが与えられる構成を考えた場合、センス電流i
が比較的小さい場合には、磁性屡の磁化容易軸向きに磁
化は向くことになり信号磁界H8は第10図に示すと同
様に磁化容易軸方向に与えられる結果となりバルクハウ
ゼンノイズが発生し好ましくない。第6図から第8図の
例では信号磁界H8に対して略々直交する方向に磁化容
易軸を有する磁性層について述べたが、磁性層主面内に
磁気異方性を有しない等法的磁性層を用いても同様であ
る。この場合には、比較的小さなセンス電流を流せば、
磁化方向がセンス電流と直交し、つまり信号磁界の方向
と直交するため、バルクハウゼンノイズは発生しない。
In this way, in the present invention, the direction of the sense current i is controlled by the signal magnetic field HS with respect to the magnetic film having a predetermined magnetic anisotropy.
However, the operational feature of such a configuration is that the magnetic sensing part (I2) is set in the same direction as the non-magnetic intermediate direction as in the present invention as described above. Magnetic layers (14) and (15) via layer (13)
), the structure becomes clearer by comparing with the case where the direction of the sense current i is selected to be orthogonal to the direction of the signal magnetic field Hs. That is, now,
As shown in FIG. 10, the anisotropic magnetic field HK of the magnetic layer is applied to both magnetic layers 75 (14) and (15) in the same way as explained in FIG.
When a large current i is passed in consideration of
5) is magnetized in the direction orthogonal to the current i, as shown by solid and broken arrows, respectively. In this state, when a signal magnetic field H8 is applied in a direction perpendicular to the current i, this will cause the magnetic layer (14
) and (15) along the magnetization due to the current i,
The behavior is similar to that when this magnetic field Hs is applied in the direction of the easy axis of magnetization. In other words, domain walls are generated and moved, resulting in Barkhausen noise. Here, if we consider a configuration in which a sense current i is passed in the direction of the easy axis of magnetization of the magnetic layer and a signal magnetic field Hs is applied in the same direction as the sense current, the sense current i
When is relatively small, the magnetization is often directed in the direction of the easy axis of magnetization, and the signal magnetic field H8 is applied in the direction of the easy axis of magnetization, as shown in FIG. 10, resulting in Barkhausen noise, which is preferable. do not have. In the examples shown in FIGS. 6 to 8, a magnetic layer having an axis of easy magnetization in a direction substantially orthogonal to the signal magnetic field H8 has been described, but an isotropic magnetic layer having no magnetic anisotropy within the main surface of the magnetic layer is described. The same applies when a magnetic layer is used. In this case, if a relatively small sense current flows,
Barkhausen noise does not occur because the magnetization direction is perpendicular to the sense current, that is, perpendicular to the direction of the signal magnetic field.

上述したように、本発明構成においては、MR感磁部(
12)を、磁性層(14)及び(15)が非磁性中間層
(13)の介在によって、静磁的結合状態にあるように
、つまり、交換相互作用は無視することができ、クーロ
ンの法則に従う相互作用による結合が充分強い状態にあ
る積層構造とされ、しかも信号磁界H8とセンス電流i
の方向を同方向としたことによってバルクハウゼンノイ
ズが確実に排除される。
As mentioned above, in the configuration of the present invention, the MR magnetic sensing section (
12), so that the magnetic layers (14) and (15) are in a magnetostatically coupled state due to the interposition of the non-magnetic intermediate layer (13), that is, the exchange interaction can be ignored, and Coulomb's law It has a laminated structure in which the coupling due to the interaction is sufficiently strong, and the signal magnetic field H8 and sense current i
Barkhausen noise is reliably eliminated by making the directions of the two directions the same.

〔実施例〕〔Example〕

以下に、第1図及び第2図を参照して、本発明の一実施
例を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

本例においては、非磁性基板(11)上に磁性層(14
) 、非磁性中間1f(13)及び磁性層(15)を順
次積層してなるMR感磁部(12)が形成され、この上
に絶縁層(16)を介してバイアス磁界を発生するバイ
アス導体(17)が形成される。このバイアス導体(1
7)上に絶縁N(16)が形成され、さらにこの上にM
R感磁部(12)の各端部に磁気的に結合し、MR感磁
部(12)とともにバイアス導体(17)を囲む一対の
磁性ヨーク(18A)及び(18B)が形成される。こ
の磁性ヨーク(18M)−MR感磁部(12)−磁性ヨ
ーク(18B)にて磁気回路が構成され、バイアス導体
(17)に対して非磁性基板(11)を反対側の平面上
に延長された一対の磁性ヨーク(18A)及び(18B
)間において例えば非磁性ギャップ層(19)によって
ギャップ長が規定された磁気ギャップgが形成される。
In this example, a magnetic layer (14) is placed on a non-magnetic substrate (11).
), a non-magnetic intermediate 1f (13) and a magnetic layer (15) are successively laminated to form an MR magnetic sensing part (12), and a bias conductor for generating a bias magnetic field is formed on this through an insulating layer (16). (17) is formed. This bias conductor (1
7) Insulation N (16) is formed on top, and M
A pair of magnetic yokes (18A) and (18B) are formed which are magnetically coupled to each end of the R magnetically sensitive section (12) and surround the bias conductor (17) together with the MR magnetically sensitive section (12). A magnetic circuit is constituted by this magnetic yoke (18M) - MR magnetic sensing part (12) - magnetic yoke (18B), and the non-magnetic substrate (11) is extended on the plane opposite to the bias conductor (17). A pair of magnetic yokes (18A) and (18B)
), a magnetic gap g whose gap length is defined by, for example, a nonmagnetic gap layer (19) is formed.

一対の磁性ヨーク(18A)  (18B)は例えば電
気らに夫々端子導電層(204)及び(20B)が電気
的に連結されて端子t1及びt2の導出がなされる。さ
らに上面には一対の磁性ヨーク (18A )及び(1
8B )の磁気ギャップgを含む所定部分とともに磁気
記録媒体(21)の対向面を構成する保護層(22)が
形成される。MR感磁部(12)の磁性層(14)及び
(15)は図示の例ではe、aで示される方向に磁化容
易軸を有し、h、aで示される方向に磁化困難軸を有し
ている。前述の如(これら磁性層(14)  (15)
はその主面内に異方性を有しない等法的磁性膜によって
構成してもかまわない。
The pair of magnetic yokes (18A) and (18B) are electrically connected to terminal conductive layers (204) and (20B), respectively, for example, to lead out terminals t1 and t2. Furthermore, a pair of magnetic yokes (18A) and (1
A protective layer (22) which constitutes the facing surface of the magnetic recording medium (21) together with a predetermined portion including the magnetic gap g of 8B) is formed. In the illustrated example, the magnetic layers (14) and (15) of the MR magnetic sensing part (12) have easy axes of magnetization in the directions indicated by e and a, and hard axes of magnetization in the directions indicated by h and a. are doing. As mentioned above (these magnetic layers (14) (15)
may be constituted by an isotropic magnetic film having no anisotropy within its principal plane.

非磁性中間75(13)は絶縁性或は導電性の非磁性材
によって構成し、その厚さは陶磁性層(14)及び(1
5)間に実質的に交換相互作用が殆ど働くことがなく、
クーロンの法則に従う相互作用による結合、つまり静磁
的結合が生じる厚さの例えば30人に選定する。尚、こ
の非磁性中間層(13)は両値性J’1i(14)及び
(15)間に静磁的結合を生じることができる厚さとす
るものの、実際上、電気的絶縁性を得るための厚さは、
磁気的な交換相互作用を遮断する厚さに比し、1桁厚い
厚さを要することから、この中間層(13)を薄くする
ときは、実質的に陶磁性層(14)及び(15)の電気
的結合がなされる場合があるが、このような電気的結合
がなされない場合においては、陶磁性層(14)及び(
I5)の双方に関して端子導電層(204)及び(20
B )が夫々電気的に連結すること、すなわち、上述し
た例では陶磁性ヨーク(18A )及び(18B )が
感磁部(12)を構成する磁性層(14)及び(15)
と夫々電気的に接続することが必要となる。MR感磁部
(12)の磁性層(14)及び(15)は、例えば双方
共に一軸異方性を有するか、ともに主面内に異方性を有
しない、同一組成、同一寸法形状のMR磁性層によって
形成することができる。このMR磁性層としては、Fe
、 Ni、 Coの単体、若しくはこれら2種以上の合
金によって構成し得る。
The non-magnetic intermediate 75 (13) is made of an insulating or conductive non-magnetic material, and its thickness is equal to that of the ceramic layers (14) and (1).
5) There is virtually no exchange interaction between
The thickness is selected to be 30, for example, so that coupling due to interaction according to Coulomb's law, that is, magnetostatic coupling occurs. Although this non-magnetic intermediate layer (13) has a thickness that can generate magnetostatic coupling between the bivalent J'1i (14) and (15), it is actually thick enough to obtain electrical insulation. The thickness of
Since the intermediate layer (13) needs to be one order of magnitude thicker than the thickness that blocks magnetic exchange interaction, when making the intermediate layer (13) thinner, the ceramic layers (14) and (15) must be made thinner. However, in cases where such electrical coupling is not made, the ceramic layer (14) and (
Terminal conductive layers (204) and (20
B) are electrically connected to each other, that is, in the above example, the ceramic yokes (18A) and (18B) are the magnetic layers (14) and (15) that constitute the magnetically sensitive part (12).
It is necessary to electrically connect them to each other. The magnetic layers (14) and (15) of the MR magnetic sensing part (12) are MR layers having the same composition and the same size and shape, for example, both having uniaxial anisotropy or both having no anisotropy in the main plane. It can be formed by a magnetic layer. This MR magnetic layer is made of Fe.
, Ni, and Co, or an alloy of two or more of these.

上剥のMR型磁気ヘッド(24)の作り方は次の通りで
ある。例えばSt、  5t02.  Al1203等
の単結晶基板、又は各種絶縁性非磁性セラミックス基板
、又はアルミナチタンカーバイトや炭化珪素などにアル
ミナをコーティングした基板等、の研磨された非磁性基
板(11)上に、MR感磁部(12)を形成する。この
MR感磁部(12)は例えば厚さ30人のSiO2より
なる非磁性中間層(13)の上下に81Ni−19Fe
よりなる磁性層(14)及び(15)が配されたもので
ある。次にMR感磁部(12)とバイアス基体(17)
間を絶縁するために例えば5to2゜^1203等によ
る絶縁N(16)を形成して後、この絶縁層(16)上
に例えばMo−Au−Mo、 Cr−Au−Cr+AN
、Cu等バイアス導体(17)を形成する。次にバイア
ス導体(17)を覆うように例えば5i02+111!
203等による絶縁層(16)を形成して後、この絶縁
ii<16)上に磁気ギャップを形成すべき中央部分に
例えば5i02等による非磁性ギャップ層(19)を形
成する。次に非磁性ギャップJEf(19)を含んで且
つ一部MR感磁部(12)の両端に直接連結するように
、例えば81Ni−19Fe 、 Moパーマロイ+ 
Coメタル系アモルファス等による一対の磁性ヨークと
なる磁性層を形成する。次に端子導電層(2OA ) 
 (20B )を形成し、さらに例えば八j!203+
5102 + C(ダイヤモンドライク)等による保護
層(22)を全面に被着形成する。以上の各層を形成後
、非磁性ギャップjif(19)を挾んで一対の磁性ヨ
ーク(14)及び(15)が形成されるまで研磨して平
坦化することによって第2図に示す目的のMR型磁気ヘ
ッド(24)が得られる。
The MR type magnetic head (24) with a peeled surface is made as follows. For example, St, 5t02. The MR magnetic sensing part is placed on a polished non-magnetic substrate (11) such as a single crystal substrate such as Al1203, various insulating non-magnetic ceramic substrates, or alumina-coated substrates such as alumina titanium carbide or silicon carbide. (12) is formed. This MR magnetic sensing part (12) is made of 81Ni-19Fe on the top and bottom of a non-magnetic intermediate layer (13) made of SiO2 with a thickness of 30 mm, for example.
Magnetic layers (14) and (15) are arranged. Next, the MR magnetic sensing part (12) and the bias base (17)
After forming an insulating layer (16) of, for example, 5to2゜^1203, etc., for example, Mo-Au-Mo, Cr-Au-Cr+AN on this insulating layer (16) to insulate between
, Cu, etc. to form a bias conductor (17). Next, for example, 5i02+111! to cover the bias conductor (17)!
After forming an insulating layer (16) of 203 or the like, a non-magnetic gap layer (19) of 5i02 or the like is formed on the insulation ii<16) at the central portion where a magnetic gap is to be formed. Next, a layer of, for example, 81Ni-19Fe, Mo permalloy +
A magnetic layer that becomes a pair of magnetic yokes is formed of Co metal-based amorphous or the like. Next, the terminal conductive layer (2OA)
(20B) and further, for example, 8j! 203+
A protective layer (22) made of 5102+C (diamond-like) or the like is deposited over the entire surface. After forming each of the above layers, the desired MR type as shown in FIG. A magnetic head (24) is obtained.

上述の構成において、第5図に示すように、MR感磁部
(12)には直流のセンス電流iが与えられ、このセン
ス電流iによって生ずる磁界によって陶磁性層(14)
及び(15)が互いに逆向きに磁化されると共に、バイ
アス導体(17)に所要の電流iBが通電されてMR感
磁部(12)に所要のバイアス磁界HBが与えられるよ
うになされる。この状態では、MR感磁部(12)の抵
抗値は電流方向の磁界に対してバルクハウゼンノイズの
ない理想的なMR動作特性に従って変化する。そして、
磁気記録媒体(21)との対向面(25)に、磁気記録
媒体(21)が対向して移行することによって、磁気記
録媒体上の記録磁化に応じた信号磁束(26)が磁気ギ
ャップgに拾われてMR感磁部(12)に導かれ、即ち
MR感磁部(12)にはそのセンス電流iと同方向に信
号磁界Hsが与えられる。第5図ではバイアス導体(1
7)により発生されるバイアス磁界HBと、MR感磁部
(12)に作用する信号磁界H8が共にセンス電流iと
同方向なので、MR感磁部(12)の動作はMR特性上
の変化となる。
In the above configuration, as shown in FIG. 5, a DC sense current i is applied to the MR magnetic sensing part (12), and the magnetic field generated by this sense current i causes the magnetic layer (14) to
and (15) are magnetized in opposite directions, and a required current iB is applied to the bias conductor (17) to apply a required bias magnetic field HB to the MR magnetosensitive section (12). In this state, the resistance value of the MR magnetic sensing section (12) changes in accordance with ideal MR operating characteristics free of Barkhausen noise with respect to the magnetic field in the current direction. and,
By moving the magnetic recording medium (21) to the surface (25) facing the magnetic recording medium (21), the signal magnetic flux (26) corresponding to the recorded magnetization on the magnetic recording medium is transferred to the magnetic gap g. It is picked up and guided to the MR magnetic sensing section (12), that is, the MR magnetic sensing section (12) is given a signal magnetic field Hs in the same direction as the sense current i. In Figure 5, the bias conductor (1
Since the bias magnetic field HB generated by 7) and the signal magnetic field H8 acting on the MR magnetic sensing section (12) are both in the same direction as the sense current i, the operation of the MR magnetic sensing section (12) is caused by changes in the MR characteristics. Become.

これがためにバルクハウゼンノイズの発生が回避されて
磁気記録媒体(21)上の記録の読み出しが行われる。
As a result, the recording on the magnetic recording medium (21) can be read while avoiding the occurrence of Barkhausen noise.

〔発明の効果〕〔Effect of the invention〕

本発明によるMR型磁気ヘッドによれば、高い出力電圧
及び優れたS/Nが得られ、またバルクハウゼンノイズ
の発生がなく、且つ良好な再生出力の直線性が得られる
等、優れた特性を兼ね備えるものである。従って、例え
ばハードディスク用の再生ヘッドに通用して好適ならし
めるものである。なお、分解能に関しては磁束応答型と
なることを除いて、基本的にリングヘッドとかわらない
The MR type magnetic head according to the present invention has excellent characteristics such as high output voltage and excellent S/N, no Barkhausen noise, and good linearity of reproduction output. It is something that has both. Therefore, it is suitable for use in, for example, a reproducing head for a hard disk. In terms of resolution, it is basically the same as a ring head, except that it is magnetic flux responsive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるMR型磁気ヘッドの一例の路線的
拡大平面図、第2図はそのA−A線上の断面図、第3図
はそのMR感磁部の磁化状態を示す図、第4図A−Cは
同様の感磁部に外部磁界を与えた場合の磁化状態の説明
図、第5図〜第8図は本発明による磁気ヘッドの動作説
明に供する図、第9図は従来のMR感磁部の磁区の説明
図、第10図はMR感磁部の動作の説明図、第11図及
び第12図は夫々従来の薄膜磁気ヘッドの路線的断面図
である。 (11)は非磁性基体、(12)はMR感磁部、(16
)はバイアス導体、(18A )(18B )は磁性ヨ
ーク、gは磁気ギャップ、(21)は磁気記録媒体であ
る。
FIG. 1 is a linear enlarged plan view of an example of an MR magnetic head according to the present invention, FIG. 2 is a sectional view taken along the line A-A, FIG. 3 is a diagram showing the magnetization state of the MR magnetic sensing part, 4A to 4C are explanatory diagrams of the magnetization state when an external magnetic field is applied to a similar magnetic sensing part, FIGS. 5 to 8 are diagrams for explaining the operation of the magnetic head according to the present invention, and FIG. 9 is a diagram of the conventional magnetic head. FIG. 10 is an explanatory diagram of the operation of the MR magnetic sensing section, and FIGS. 11 and 12 are sectional views of a conventional thin film magnetic head, respectively. (11) is a non-magnetic substrate, (12) is an MR magnetic sensing part, (16)
) is a bias conductor, (18A) and (18B) are magnetic yokes, g is a magnetic gap, and (21) is a magnetic recording medium.

Claims (1)

【特許請求の範囲】 (a)バイアス導体を囲む磁気回路が、磁気記録媒体に
対向する側に磁気ギャップを有する一対の磁性ヨークと
、該磁気ギャップに対して上記バイアス導体の反対側に
設けられ夫々の上記磁性ヨークと磁気的に結合された磁
気抵抗効果を有する感磁部とより構成され、 (b)上記一対の磁性ヨークの一部分とともに磁気記録
媒体対向面を構成する保護層を有し、 (c)上記感磁部は非磁性中間層を介して少くとも一方
が磁気抵抗効果を有する磁性層が積層されてなり、該感
磁部にこれに与えられる信号磁界と同方向にセンス電流
を流すようにして成る磁気抵抗効果型磁気ヘッド。
[Claims] (a) A magnetic circuit surrounding the bias conductor includes a pair of magnetic yokes having a magnetic gap on the side facing the magnetic recording medium, and a pair of magnetic yokes provided on the opposite side of the bias conductor with respect to the magnetic gap. a magnetic sensing part having a magnetoresistive effect that is magnetically coupled to each of the magnetic yokes; (b) a protective layer that constitutes a surface facing the magnetic recording medium together with a portion of the pair of magnetic yokes; (c) The magnetically sensitive part is made up of a stack of magnetic layers, at least one of which has a magnetoresistive effect, with a nonmagnetic intermediate layer interposed therebetween, and a sense current is applied to the magnetically sensitive part in the same direction as the signal magnetic field applied thereto. A magnetoresistive magnetic head that allows the flow to flow.
JP27464985A 1985-12-06 1985-12-06 Magneto-resistance effect type magnetic head Pending JPS62134814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27464985A JPS62134814A (en) 1985-12-06 1985-12-06 Magneto-resistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27464985A JPS62134814A (en) 1985-12-06 1985-12-06 Magneto-resistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JPS62134814A true JPS62134814A (en) 1987-06-17

Family

ID=17544640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27464985A Pending JPS62134814A (en) 1985-12-06 1985-12-06 Magneto-resistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JPS62134814A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665011A1 (en) * 1990-07-20 1992-01-24 Thomson Csf MAGNETIC READING HEAD WITH MAGNETO-RESISTIVE EFFECT.
EP0651374A2 (en) * 1993-11-01 1995-05-03 Hewlett-Packard Company A planar magnetoresistive head
EP0652550A1 (en) * 1993-11-08 1995-05-10 Commissariat A L'energie Atomique Read-out magnetic head with multilayer magnetoresistant element and concentrator and manufacturing method
EP0669608A1 (en) * 1994-02-18 1995-08-30 Hewlett-Packard Company Planar head having separate read and write gaps
FR2772965A1 (en) * 1997-12-22 1999-06-25 Silmag Sa Magnetic sensor for use in magnetic read head
FR2772966A1 (en) * 1997-12-22 1999-06-25 Silmag Sa High sensitivity magneto-resistant read head

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665011A1 (en) * 1990-07-20 1992-01-24 Thomson Csf MAGNETIC READING HEAD WITH MAGNETO-RESISTIVE EFFECT.
US5251088A (en) * 1990-07-20 1993-10-05 Thomson-Csf Magnetic read head with magneto-resistance effect
EP0651374A2 (en) * 1993-11-01 1995-05-03 Hewlett-Packard Company A planar magnetoresistive head
EP0651374A3 (en) * 1993-11-01 1995-09-06 Hewlett Packard Co A planar magnetoresistive head.
US5491606A (en) * 1993-11-01 1996-02-13 Hesterman; Victor W. Planar magnetoresistive head with an improved gap structure
EP0652550A1 (en) * 1993-11-08 1995-05-10 Commissariat A L'energie Atomique Read-out magnetic head with multilayer magnetoresistant element and concentrator and manufacturing method
FR2712420A1 (en) * 1993-11-08 1995-05-19 Commissariat Energie Atomique Multilayer magneto-resistive magnetic element readout head and concentrator and method for producing the same.
US5764448A (en) * 1993-11-08 1998-06-09 Commissariat A L'energie Atomique Magnetic read head having a multilayer magnetoresistant element and a concentrator, as well as its production process
EP0669608A1 (en) * 1994-02-18 1995-08-30 Hewlett-Packard Company Planar head having separate read and write gaps
FR2772965A1 (en) * 1997-12-22 1999-06-25 Silmag Sa Magnetic sensor for use in magnetic read head
FR2772966A1 (en) * 1997-12-22 1999-06-25 Silmag Sa High sensitivity magneto-resistant read head

Similar Documents

Publication Publication Date Title
JP3022023B2 (en) Magnetic recording / reproducing device
JPS62234218A (en) Magnetoresistance effect type magnetic head
US6985338B2 (en) Insulative in-stack hard bias for GMR sensor stabilization
JP3760095B2 (en) Two-element reproducing sensor, thin film magnetic head for perpendicular magnetic recording / reproducing, and perpendicular magnetic recording / reproducing apparatus
US6903906B2 (en) Magnetic head with a lamination stack to control the magnetic domain
JPS59210630A (en) Method of producing magnetic thin film structure
JP2005135462A (en) Magnetic head and magnetic recording and reproducing device
JP2009026400A (en) Differential magnetoresistive magnetic head
JPH09185809A (en) Magnetic head
KR0145034B1 (en) Peak enhanced magnetoresistive read transducer
JP2000215421A (en) Spin valve thin film magnetic element, thin film magnetic head, and production of spin valve thin film magnetic element
JPS62134814A (en) Magneto-resistance effect type magnetic head
JPH07192227A (en) Magneto-resistance effect type magnetic head
JP5701924B2 (en) Magnetoresistive effect element, magnetic head, magnetic head assembly, and magnetic recording / reproducing apparatus
JPH10334418A (en) Magnetic head and its manufacture and magnetic recorder using this magnetic head
JPH0944819A (en) Magnetic conversion element and thin-film magnetic head
JP2000011331A (en) Magnetoresistive element and thin film magnetic head
JPH09283816A (en) Magnetoresistive sensor for sensing magnetic field
JPH11175925A (en) Magnetic reluctance effect type element and magnetic recording and reproducing device
JPH0473210B2 (en)
JP2000200405A (en) Magneto-resistive element and magnetic head
JP2001067626A (en) Spin valve element and magnetic head using the same
JPS62159318A (en) Magneto-resistance effect type magnetic sensor
JP2000156317A (en) Magnetic recording and reproducing device
JPH08153313A (en) Magneto-resistance effect type head and magnetic disk device