JPS62132712A - High-purity purification of argon gas - Google Patents

High-purity purification of argon gas

Info

Publication number
JPS62132712A
JPS62132712A JP60272499A JP27249985A JPS62132712A JP S62132712 A JPS62132712 A JP S62132712A JP 60272499 A JP60272499 A JP 60272499A JP 27249985 A JP27249985 A JP 27249985A JP S62132712 A JPS62132712 A JP S62132712A
Authority
JP
Japan
Prior art keywords
adsorption
gas
pressure
raw material
argon gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60272499A
Other languages
Japanese (ja)
Inventor
Keiji Itabashi
慶治 板橋
Taizo Kawamoto
泰三 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP60272499A priority Critical patent/JPS62132712A/en
Publication of JPS62132712A publication Critical patent/JPS62132712A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To efficiently purify argon gas containing impure gases, by repeatedly performing respective steps of adsorption, depressurizing, vacuum regeneration and pressure recovering one after another using an adsorption column filled with zeolite adsorbent. CONSTITUTION:Argon gas 1 containing >=10vol% impure gases is introduced into an adsorption column (4a) and brought into contact with zeolite adsorbent under pressure to adsorb the impurities thereon and introduce purified argon into a product gas tank 8. On the other hand, the inflow of the raw material gas 1 is stopped in an adsorption column (4b) and decompressed to atmospheric pressure in countercurrent to the raw material gas 1. The interior of the adsorption column (4b) is further decompressed and evacuated under <=300Torr pressure in countercurrent to the raw material gas 1 and the adsorbent is regenerated at 0.2-1 ratio of the evacuation time to the adsorption time. Pure argon gas is introduced in countercurrent to the raw material gas 1 to recover the pressure. The raw material gas 1 is subsequently introduced into the adsorption column (4b) to stop the introduction of the raw material gas 1 into the adsorption column (4b) and regenerate the adsorbent.

Description

【発明の詳細な説明】 〈産業上の利用分骨〉 本発明は、アルゴンガスの精製方法に係り、例えば製鉄
所排ガスからのアルゴンガスの回収精製、またはシリコ
ン単結晶製造排ガスの回収精製などの方法に関する。
[Detailed Description of the Invention] <Industrial Applications> The present invention relates to a method for purifying argon gas, and is applicable to, for example, the recovery and purification of argon gas from ironworks exhaust gas or the recovery and purification of silicon single crystal manufacturing exhaust gas. Regarding the method.

〈従来の技術〉 アルゴンガスは、工業的に大量に使用されるガスの中で
も高価なガスであり、アルゴンガスな使用する上で、使
用済アルゴンガスの回収、再利用が経済性の向上の為に
必要である。
<Conventional technology> Argon gas is an expensive gas among the gases used in large quantities industrially, and collecting and reusing used argon gas is an effective way to improve economic efficiency when using argon gas. is necessary.

しかしながら、安価で高濃度多成分ガス含有のアルゴン
ガスな回収精製ができるプロセスは、確立されていない
のが実情である。排ガス組成物中の一酸化炭素を酸化さ
せて生成した二酸化炭素を深冷法によって固化し分離す
ることによってアルゴンガスを回収する方法や、一酸化
炭素を銅、アンモニア錯体により、また二酸化炭素をア
ルカリにより、それぞれ除くことによってアルゴンガス
な回収する化学的な方法などが特公昭52−28750
及び特公昭50−8999に開示されている。これらの
方法は、工程が複雑であり、装置が高価であることなど
から実用性に難点がある。
However, the reality is that no process has been established that allows for the recovery and purification of argon gas containing a high concentration of multi-component gases at low cost. There is a method of recovering argon gas by solidifying and separating carbon dioxide produced by oxidizing carbon monoxide in the exhaust gas composition, and a method of recovering argon gas by solidifying and separating carbon monoxide by oxidizing carbon monoxide in the exhaust gas composition. Accordingly, a chemical method for recovering argon gas by removing each was published in Japanese Patent Publication No. 52-28750.
and Japanese Patent Publication No. 50-8999. These methods have problems in practicality because the steps are complicated and the equipment is expensive.

一方、g&着剤を用いるいくつかの方法が知られている
。例えば、特公昭52−20959及び特公昭52−4
2755に開示されている様に天然モルデナイトあるい
は天然クリノプチロライトなどのゼオライトを用いる方
法がある。これらの方法は、不純物ガス成分の濃度が低
い範囲に限定されている。
On the other hand, several methods using g&adhesive are known. For example, Special Publication No. 52-20959 and Special Publication No. 52-4
There is a method using zeolite such as natural mordenite or natural clinoptilolite as disclosed in No. 2755. These methods are limited to a range where the concentration of impurity gas components is low.

さらに、ゼオライト吸着剤を用いる特開昭60−122
709号公報に開示された方法においては、不純物ガス
濃度が低いにもかかわらず得られるアルゴンの精製度は
十分であるとは言えない。
Furthermore, JP-A-60-122 using zeolite adsorbent
In the method disclosed in Japanese Patent No. 709, the degree of purification of the obtained argon cannot be said to be sufficient despite the low concentration of impurity gas.

その理由は吸着−再生サイクルプロセスの条件が十分で
はない為と考えられる。
The reason for this is thought to be that the conditions for the adsorption-regeneration cycle process are not sufficient.

く当該発明が解決しようとする問題点〉このような事情
から、多量の不純物成分を含有したアルゴンガスの高純
度精製技術の確立が望まれている。すなわち、多量の不
純物を含有したアルゴンガスな高純度精製するに際し、 (11十分高い精製度、特に原料ガスからq 9.99
9%以上の純度のアルゴンガスな簡単な工程で回収する
<Problems to be Solved by the Invention> Under these circumstances, it is desired to establish a high purity purification technology for argon gas containing a large amount of impurity components. In other words, when purifying argon gas containing a large amount of impurities to a high purity, (11) a sufficiently high degree of purification, especially from the raw material gas to q 9.99
Argon gas with a purity of 9% or higher is recovered through a simple process.

(2) 簡単な装置で高い回収率を有し、工程操作が容
易である。
(2) It has a high recovery rate with a simple device, and the process is easy to operate.

ことなどを満足する精製方法を確立することが課題であ
る。
The challenge is to establish a purification method that satisfies these requirements.

く問題点を解決する為の手段〉 上記の技術的課題を解決する為に、本発明者らは10 
vol%以上もの多量の不純物成分を含有するアルゴン
ガスから高い回収率で、しかも高純度のアルゴンガスな
精製する方法について、種々探索、検討した結果、ゼオ
ライト吸着剤と限定された操作条件を組み合わせること
によって、上記課題を解決しうろことを見い出し、本発
明を完成したO 以下、本発明を図にしたがってさらに詳細に説明する。
Means for Solving the Problems〉 In order to solve the above technical problems, the present inventors have developed 10
As a result of various searches and studies on a method for purifying argon gas containing a large amount of impurity components of vol% or more to high-purity argon gas with a high recovery rate, we found that a combination of zeolite adsorbent and limited operating conditions was found. The present invention will now be described in more detail with reference to the drawings.

第1図は、本発明におけるアルゴンガスの高純度精製方
法の構成系統図の一例である。以下、この2塔式の例に
ならって説明する。吸着塔(4a)及び(4b)にはゼ
オライト吸着剤例えは、A型、X型1モルデナイト型あ
るいはそれらのイオン交換体などが充填され、アルゴン
ガスに比較して不純物成分が選択的に吸着される。その
際の吸着圧力は、吸着剤の性能によって決められるが、
ゲージ圧で2〜10に9/cI/lの範囲で好適に用い
られる。
FIG. 1 is an example of a structural diagram of the method for purifying argon gas to high purity according to the present invention. An example of this two-column type will be explained below. The adsorption towers (4a) and (4b) are filled with zeolite adsorbents such as A type, X type 1 mordenite type, or ion exchangers thereof, and impurity components are selectively adsorbed compared to argon gas. Ru. The adsorption pressure at that time is determined by the performance of the adsorbent, but
It is suitably used in a range of 2 to 10 to 9/cI/l in terms of gauge pressure.

次に精製されたアルゴンガスを連続的に取出す為の吸脱
着サイクルについて説明する。
Next, an adsorption/desorption cycle for continuously extracting purified argon gas will be explained.

吸脱着操作は、吸着。圧抜き、真空再生、復圧の4工程
6操作からなり、各工程は次の動作を行うものである。
Adsorption and desorption operations are adsorption. It consists of 4 steps and 6 operations: depressurization, vacuum regeneration, and pressure restoration, and each step involves the following operations.

第1表に各工程と操作の順序と組み合わせを示す。Table 1 shows the order and combination of each step and operation.

吸着工程:加圧下でアルゴンガスな除く不純物が選択的
に吸着され、それによって精製されたアルゴンガスを塔
底から抜き出す。
Adsorption step: Impurities such as argon gas are selectively adsorbed under pressure, and the purified argon gas is extracted from the bottom of the column.

圧抜き工程:塔内圧力を大気圧まで降下させると同時に
、吸着工程で吸着された不純物成分を原料ガスと向流に
放出する。
Pressure release step: At the same time, the pressure inside the column is lowered to atmospheric pressure, and at the same time, the impurity components adsorbed in the adsorption step are released in a countercurrent flow to the raw material gas.

真空再生工程−大気圧下にある塔内な、原料ガスと向流
に真空排気して吸着剤な再生する。
Vacuum regeneration process - The adsorbent is regenerated by evacuating the tower under atmospheric pressure in a countercurrent flow to the raw material gas.

復圧工程:吸着剤が再生された塔内に、吸着工程で精製
されたアルゴンガスの一部を原料ガスと向流忙吸着圧力
と等しくなるまで導入する。
Repressurization step: A part of the argon gas purified in the adsorption step is introduced into the tower where the adsorbent has been regenerated until it becomes equal to the countercurrent adsorption pressure with the raw material gas.

以上の操作を順次繰返す事により高純度に精製されたア
ルゴンガスな連続的に取出すことが出来る。
By sequentially repeating the above operations, highly purified argon gas can be extracted continuously.

第1表 次に第1図に基づいて、第1表に示した吸脱着操作手順
を具体的に説明する。
Table 1 Next, based on FIG. 1, the adsorption/desorption operation procedure shown in Table 1 will be specifically explained.

第1操作では、吸着塔(4a)で吸着工程、吸着塔(4
b)で圧抜き工程が操作される。吸着工程では、アルゴ
ンガスを主成分とし窒素、二酸化炭素、一酸化炭素、炭
化水素ガス、水分などの不純物成分を10 vol%以
上含有する原料ガス例えばアルゴン84.5 vol%
、窒素15.0vol%、二酸化炭素α5 vol%、
水分飽和のガスは管(1)より電磁弁(2)を経て吸着
塔(4a)に導入され、ゼオライトと接触し不純物成分
が選択的に吸着される。
In the first operation, an adsorption process is performed in the adsorption tower (4a), and an adsorption process is performed in the adsorption tower (4a).
In b) a depressurization step is operated. In the adsorption step, a raw material gas containing argon gas as a main component and 10 vol% or more of impurity components such as nitrogen, carbon dioxide, carbon monoxide, hydrocarbon gas, and moisture is used, for example, argon 84.5 vol%.
, nitrogen 15.0 vol%, carbon dioxide α5 vol%,
The water-saturated gas is introduced into the adsorption tower (4a) from the pipe (1) via the electromagnetic valve (2), where it comes into contact with the zeolite and impurity components are selectively adsorbed.

この際、吸着圧力は2〜10kg/cIjtaの範囲で
用いられ、また吸着温度に関しては一10〜45℃の範
囲で高い吸着特性を得ることができる。しかしながら、
本発明の吸脱着操作において吸着、圧抜き、真空再生、
復圧の操作を繰返すことから、回収率を高く保つ為にも
吸着圧力は低い方が有利である。また吸着温度について
は、低温で操作する程低分圧領域における吸着特性は向
上するが、装置上の同類例えば、冷凍機設置における設
備費増大等から常温付近が経済的である。すなわち、本
発明忙おいてg&着圧力は4〜6に9/cr/lG1温
度は例えば15〜50℃の室温下で操作することが好ま
しい条件である。
At this time, the adsorption pressure used is in the range of 2 to 10 kg/cIjta, and high adsorption characteristics can be obtained at the adsorption temperature in the range of -10 to 45°C. however,
In the adsorption/desorption operation of the present invention, adsorption, pressure relief, vacuum regeneration,
Since the pressure recovery operation is repeated, it is advantageous to lower the adsorption pressure in order to maintain a high recovery rate. Regarding the adsorption temperature, although the adsorption characteristics in the low partial pressure region improve as the operation is performed at a lower temperature, it is economical to set it around room temperature due to equipment costs such as increased equipment costs for installing a refrigerator. That is, in the present invention, it is preferable to operate at a room temperature where g & bonding pressure is 4 to 6 and 9/cr/lG1 temperature is 15 to 50°C.

精製されたアルゴンは電磁弁(5)、管(7)を通り製
品ガスタンク(8)に入る。また圧抜き工程、すなわち
吸着塔(4b)では吸着された不純物が電磁弁aO0管
(IL電磁弁四及び管(2)を介して排出され、それに
伴い吸着塔内の圧力は大気圧まで降下する。
The purified argon passes through the solenoid valve (5) and the pipe (7) and enters the product gas tank (8). In the depressurization step, that is, in the adsorption tower (4b), the adsorbed impurities are discharged via the solenoid valve aO0 pipe (IL solenoid valve 4 and pipe (2), and the pressure inside the adsorption tower drops to atmospheric pressure. .

この第1操作において電磁弁+21 、 +51 、 
+II 、(2)が開放され、それ以外の電磁弁は閉じ
られている。この際吸着塔(4a)から得られるアルゴ
ンの純度は99.999%以上である。
In this first operation, the solenoid valves +21, +51,
+II, (2) is open, and the other solenoid valves are closed. At this time, the purity of argon obtained from the adsorption tower (4a) is 99.999% or more.

第2操作では、吸着塔(4&)は吸着工程が継続され、
吸着塔(4b)は真空再生工程にある。
In the second operation, the adsorption tower (4 &) continues the adsorption process;
The adsorption tower (4b) is in a vacuum regeneration process.

大気圧まで降下した吸着塔(4b)を電磁弁+1(1゜
管6帖電磁弁α◆より真空ポンプ(ロ)によって、30
0Torr以下まで減圧し、吸着された不純物成分を管
(ロ)より排出し、吸着された不純物成分を脱着させる
とともに吸着剤を再生する。この操作における再生圧力
は低い方がアルゴンガス精製容量が増加する。100 
Torrで再生するのに比して200Torrではほぼ
5%程度精製容量が低下し、300TOrrでは20%
程度精製容量が低下する。このことから本発明の真空再
生工程における再生圧力は、200Torr以下が好適
である。また、この真空再生工程の排気時間と吸着時間
との比を12〜1の範囲で操作することが必須条件であ
る。
The adsorption tower (4b), which has fallen to atmospheric pressure, is moved to
The pressure is reduced to 0 Torr or less, and the adsorbed impurity components are discharged from the pipe (b), and the adsorbed impurity components are desorbed and the adsorbent is regenerated. The lower the regeneration pressure in this operation, the greater the argon gas purification capacity. 100
Compared to regeneration at 200 Torr, the purification capacity decreases by about 5%, and at 300 Torr, it decreases by 20%.
The degree of purification capacity decreases. For this reason, the regeneration pressure in the vacuum regeneration step of the present invention is preferably 200 Torr or less. Furthermore, it is essential that the ratio between the evacuation time and the adsorption time in this vacuum regeneration step be controlled within the range of 12 to 1.

真空排気時間と吸着時間の比を12以下とすると、吸着
させる時間と真空ポンプの能力によって多少の違いはあ
るが、100〜200 Torr K到達せず再生が不
十分となる為、精製容量が大きく低下する。また、その
比を1以上とすると、その理由は十分明らかでないが、
アルゴンガスの精製度が大幅に低下する。以上の第2操
作において電磁弁+21 、 (51、(11、α◆が
開放され、それ以外の電磁弁は閉じられている。
If the ratio of evacuation time to adsorption time is 12 or less, the purification capacity will be large because the regeneration will not reach 100 to 200 Torr K, although there will be some differences depending on the adsorption time and the capacity of the vacuum pump. descend. Also, if the ratio is 1 or more, the reason is not clear enough, but
The degree of purification of argon gas decreases significantly. In the above second operation, the solenoid valves +21, (51, (11, α◆) are opened, and the other solenoid valves are closed.

一方、吸着剤再生方法には吸着された不純物成分をパー
ジガスを流通して脱着させるパージ再生ルゴンガスで吸
着した不純物成分をパージするが、純度の高いアルゴン
ガスを得るには多量のアルゴンガスをパージガスとして
用いなければならない。
On the other hand, in the adsorbent regeneration method, the adsorbed impurities are purged with purge regenerated argon gas, which is desorbed by flowing purge gas, but in order to obtain highly pure argon gas, a large amount of argon gas is used as the purge gas. must be used.

このことから本発明の目的とする高い回収率で高純度精
製アルゴンガスを得るプロセスには使用できない。
For this reason, it cannot be used in the process of obtaining highly purified argon gas with a high recovery rate, which is the objective of the present invention.

第3操作では、吸着塔(4a)はさらに吸着工程が継続
され、吸着塔(4b)は復圧工程に入る。
In the third operation, the adsorption tower (4a) further continues the adsorption process, and the adsorption tower (4b) enters the depressurization process.

その際電磁弁+21 、 (51、Q嘩が開放され、そ
れ以外の電磁弁は閉じられている。十分真空再生された
吸着塔+4b)K製品ガスタンク(8)より管(ロ)、
電磁弁(至)を介し精製アルゴンガスの一部が導入され
、吸着圧力とほぼ等しい圧力になるまで供給される。
At this time, the solenoid valve +21, (51, Q valve is opened, and the other solenoid valves are closed. Sufficiently vacuum-regenerated adsorption tower +4b) from the K product gas tank (8) to the pipe (b),
A portion of the purified argon gas is introduced through a solenoid valve and supplied until the pressure becomes approximately equal to the adsorption pressure.

第4操作、第5操作及び第6操作において、吸着塔(4
a)はそれぞれ圧抜き工程、真空再生工程、復圧工程が
操作される。これらの操作は、前記の吸着塔(4b )
Kおける第1操作、第2操作及び第へ操作と同様である
。また、吸着塔(4b)では、第4操作から第6操作ま
で吸着工程が継続される。この吸着工程&ま、iWI紀
の吸着塔(4a)における第1操作から第3操作までと
同様である。
In the fourth operation, the fifth operation and the sixth operation, the adsorption tower (4
In a), a depressurization process, a vacuum regeneration process, and a pressure recovery process are operated, respectively. These operations are performed using the adsorption tower (4b) described above.
This is similar to the first operation, second operation, and second operation in K. Moreover, in the adsorption tower (4b), the adsorption step is continued from the fourth operation to the sixth operation. This adsorption process is similar to the first to third operations in the adsorption tower (4a) in the IWI period.

第4操作、第5操作及び第6操作における電磁弁の作動
状態は第4操作では+3) 、 +6+ 、 (91、
(11が開放され、それ以外の電磁弁は閉じられている
。また第5操作では+3) 、 +61 、 (91、
(1◆が開放され、それ以外の電磁弁は閉じられている
。さらに第6操作において+3) 、 +6) 、 H
が開放され、それ以外の電磁弁は閉じられている。
The operating states of the solenoid valves in the fourth, fifth, and sixth operations are +3), +6+, (91,
(11 is open, and the other solenoid valves are closed. Also, in the 5th operation, +3), +61, (91,
(1◆ is opened, and the other solenoid valves are closed. Furthermore, in the 6th operation, +3), +6), H
is open, and the other solenoid valves are closed.

以上の4工程6操作を順次繰返すことKより多量の不純
物成分を含有した排ガスから高純度の精製アルゴンガス
を高い収率で得ることができる。
By sequentially repeating the above four steps and six operations, highly purified purified argon gas can be obtained at a high yield from the exhaust gas containing a larger amount of impurity components than K.

また、本明細書においては2塔式吸脱着サイクルにおけ
る高純度精製の実施形態の例を示したが、本発明による
吸着塔の数は限定されるものではない。
Further, although an example of an embodiment of high purity purification in a two-column adsorption/desorption cycle has been shown in this specification, the number of adsorption columns according to the present invention is not limited.

く作用と効果〉 上記の方法の吸脱着操作により吸着塔を50℃前後の温
度とし、不純物成分含有アルゴンガスな流通させること
によって高純度アルゴンガスな精製することができる。
Functions and Effects> High purity argon gas can be purified by bringing the temperature of the adsorption column to around 50° C. through the adsorption/desorption operation of the above method and passing argon gas containing impurity components through it.

以上の説明から明らかなように本発明による高純度アル
ゴンガス精製方法によれば (1)簡単な吸着操作を順次繰返すことにより(2)精
製度が十分高い、純度99.999%以上の高純度アル
ゴンガスな (3)高い回収率宅得ることができる。
As is clear from the above explanation, according to the method for purifying high-purity argon gas according to the present invention, (1) by sequentially repeating a simple adsorption operation, (2) a sufficiently high degree of purification, with a purity of 99.999% or higher; (3) A high recovery rate can be obtained using argon gas.

以下本発明の実施例について詳細に説明する。Examples of the present invention will be described in detail below.

実施例1 原料ガス成分が、アルゴン、窒素の2成分で、それぞれ
のガス濃度が81 vol%、19vol%の混合ガス
を用い、吸着塔容積:5t、吸着圧カニ 2〜bkg/
cdla、真空再生圧カニ 100 Torr。
Example 1 A mixed gas containing two raw material gas components, argon and nitrogen, with respective gas concentrations of 81 vol% and 19 vol%, adsorption column volume: 5 t, and adsorption pressure 2 to 2 bkg/
cdla, vacuum regeneration pressure crab 100 Torr.

サイクル時間=570秒(うち吸着時間は、その半分で
ある。以下、同じ。真空再生時間/吸着時間=184 
)、i着剤:セオラAA−5(東洋曹達■製Oa交換A
型ゼオライト。以下、同じ。)及び′L1交換モルデナ
イトを用いた場合の操作条件と精製容量との関係を第2
表に示す。
Cycle time = 570 seconds (of which the adsorption time is half of that. The same applies hereinafter. Vacuum regeneration time / adsorption time = 184
), i Adhesive: Ceola AA-5 (Oa exchange A manufactured by Toyo Soda ■)
type zeolite. same as below. ) and 'L1-exchanged mordenite, the relationship between operating conditions and refining capacity is shown in the second section.
Shown in the table.

いずれの場合も吸着塔出口からの精製アルゴンガス濃度
は99.999%以上であり、アルゴンガス回収率はい
ずれの場合においても70%以上であっk。
In either case, the concentration of purified argon gas from the outlet of the adsorption tower was 99.999% or more, and the argon gas recovery rate was 70% or more in any case.

実施例2 吸着剤:ゼオラムA−5を用い真空再生圧力を200 
Torr 、吸着温度:50℃、吸着圧力=4に9/c
r/lGとした以外は実施例1と全く同様な操作を行っ
た結果、アルゴンガスの精製容量は80ONL/Hr、
濃度は99.999%以上であり、回収率は70%以上
であった。
Example 2 Adsorbent: Using Zeorum A-5, vacuum regeneration pressure was 200
Torr, adsorption temperature: 50℃, adsorption pressure = 4 to 9/c
As a result of performing exactly the same operation as in Example 1 except that r/lG was used, the purification capacity of argon gas was 80ONL/Hr,
The concentration was 99.999% or higher, and the recovery rate was 70% or higher.

実施例5 原料ガス成分が、アルゴン、窒素、水分の3成分で、そ
れぞれのガス濃度が81 vol%、19vol%、飽
和(吸着工程の操作温度・圧力で。以下、同じ。)の混
合ガスを用い、吸着塔容積:5t、吸着圧カニ 2 、
4 、6 JC9/7G 、真空再生圧カニ 100 
Torr *サイクル時間:570Ty6(真空再生時
間/吸着時間=α84)、吸着剤:ゼオラムA−5,操
作温度:30℃で操作した場合、アルゴンガス精製容量
は、吸着圧力21a)/a/laで600 Nt/mr
、 4 kq/cvlaで850 Nz/Hr、 6 
k)/cr/l aで11001t/Hrであった。ま
た、アルゴンガスの濃度は99.9 ? 9%以上であ
り、回収率は、いずれの圧力においても70%以上であ
った。
Example 5 A mixed gas was prepared in which the raw material gas components were argon, nitrogen, and water, and the respective gas concentrations were 81 vol% and 19 vol%, saturated (at the operating temperature and pressure of the adsorption process; the same applies hereinafter). used, adsorption tower volume: 5t, adsorption pressure crab 2,
4, 6 JC9/7G, vacuum regeneration pressure crab 100
Torr *Cycle time: 570Ty6 (vacuum regeneration time/adsorption time = α84), adsorbent: Zeoram A-5, operating temperature: When operating at 30°C, the argon gas purification capacity is at the adsorption pressure of 21a)/a/la. 600 Nt/mr
, 4 kq/cvla at 850 Nz/Hr, 6
k)/cr/la was 11001t/Hr. Also, the concentration of argon gas is 99.9? It was 9% or more, and the recovery rate was 70% or more at any pressure.

実施例4 原料ガス成分が、アルゴン、窒素、二酸化炭素。Example 4 Raw material gas components are argon, nitrogen, and carbon dioxide.

水分の4成分ガスでそれぞれの濃度が80 vol%。The four component gases are water, each with a concentration of 80 vol%.

19、9 vol%、αヤT、飽和の混合ガスを用い吸
着塔容積:5t、吸着圧カニ4ki/ada、真空再生
圧カニ 100 Torr 、サイクル時間:570秒
(真空再生時間/吸着時間=α84)、吸着剤:ゼオラ
ムA−5,操作温度=50℃で操作した場合アルゴンガ
スの精製容量は850 Nt/Hr、濃度は99.99
9%以上であり、回収率は70%以上であった。また、
上記操作条件で真空再生時間と吸着時間の比をα65.
(L55.(L42.Q、32゜α21として吸着操作
を繰返した結果、アルゴンガスの精製容量は80ONv
′Hr〜85ONt/Hrであり、いずれの条件におい
ても濃度は99.999%以上、さらに回収率は70%
以上であった。
Adsorption tower volume: 5 t, adsorption pressure 4 ki/ada, vacuum regeneration pressure 100 Torr, cycle time: 570 seconds (vacuum regeneration time/adsorption time = α84). ), adsorbent: Zeorum A-5, operating temperature = 50°C, argon gas purification capacity is 850 Nt/Hr, concentration is 99.99
The recovery rate was 9% or more, and the recovery rate was 70% or more. Also,
Under the above operating conditions, the ratio of vacuum regeneration time to adsorption time was α65.
(L55.(L42.Q, As a result of repeating the adsorption operation at 32° α21, the purification capacity of argon gas was 80ONv.
'Hr ~ 85ONt/Hr, the concentration was 99.999% or more under all conditions, and the recovery rate was 70%.
That was it.

実施例5 原料ガス成分が、アルゴン、窒素、二酸化炭素。Example 5 Raw material gas components are argon, nitrogen, and carbon dioxide.

水分の4成分ガスでそれぞれの濃度が84.5 vol
%、15..0vol%、(L5vol%、飽和の混合
ガスを用い、吸着塔容積:5t、g&着圧カニ4に9/
mG、真空再生圧カニ 100 Torr 、サイクル
時間:570秒(真空再生時間/吸着時間==0.84
)。
Each of the four component gases of water has a concentration of 84.5 vol.
%, 15. .. 0vol%, (L5vol%, using saturated mixed gas, adsorption tower volume: 5t, g & pressure crab 4 to 9/
mG, vacuum regeneration pressure 100 Torr, cycle time: 570 seconds (vacuum regeneration time/adsorption time ==0.84
).

吸着剤:ゼオラムA−5.操作温度=30℃で操作した
場合、アルゴンガスの精製容−1は750 N1以上 /Hr)濃度は99.999%であり、回収率は65%
以上であった。また、上記操作条件で真空再生時間と吸
着時間との比をα65.(L42.α21として吸着操
作を繰返した結果、いずれの条件においてもアルゴンガ
スの精製容量は700 N4/Hrであり、濃度は99
.999%以上、さらに回収率は65%以上であった。
Adsorbent: Zeorum A-5. When operating at an operating temperature of 30°C, the purification volume of argon gas -1 is 750 N1 or more/Hr), and the concentration is 99.999%, and the recovery rate is 65%.
That was it. Also, under the above operating conditions, the ratio of vacuum regeneration time to adsorption time was set to α65. (As a result of repeating the adsorption operation as L42.α21, the purification capacity of argon gas was 700 N4/Hr under all conditions, and the concentration was 99
.. The recovery rate was 999% or more, and the recovery rate was 65% or more.

比較例1 原料ガス成分がアルゴン、窒素、二酸化炭素。Comparative example 1 Raw material gas components are argon, nitrogen, and carbon dioxide.

水分の4成分ガスでそれぞれの濃度が84.5 vol
%、15.0vol%、α5 vol%、飽和の混合ガ
スを用い、吸着塔容積:5t、吸着圧カニ4It9/d
G、真空再生圧カニ 350 Torr 、サイクル時
間:570秒(真空再生時間/吸着時間=(184)及
び510秒(真空再生時間/吸着時間=α63)吸着剤
:ゼオラムA−5.操作温度=30℃で操作した場合、
精製アルゴンガスの濃度は99.999%以上であるが
、精製容量は250 Nt/Hrとなり、また回収率は
55%と低下した。
Each of the four component gases of water has a concentration of 84.5 vol.
%, 15.0 vol%, α5 vol%, saturated mixed gas, adsorption tower volume: 5t, adsorption pressure 4It9/d
G, Vacuum regeneration pressure Crab 350 Torr, Cycle time: 570 seconds (Vacuum regeneration time/Adsorption time = (184) and 510 seconds (Vacuum regeneration time/Adsorption time = α63) Adsorbent: Zeoram A-5. Operating temperature = 30 When operated at °C,
Although the concentration of purified argon gas was 99.999% or more, the purification capacity was 250 Nt/Hr, and the recovery rate was reduced to 55%.

比較例2 吸着剤:ゼオラムA−5を用い、サイクル時間を760
秒(うち吸着時間:285秒。真空再生時間/吸着時間
=1.5)とした以外は実施例4と全く同様な操作をし
た結果、アルゴンガス精製容量は800 Nt/Hrで
あるが、精製アルゴンガス濃度は99.0%に低下した
Comparative Example 2 Adsorbent: Using Zeorum A-5, cycle time was 760
The same operation as in Example 4 was performed except that the adsorption time was 285 seconds (adsorption time: 285 seconds; vacuum regeneration time/adsorption time = 1.5). As a result, the argon gas purification capacity was 800 Nt/Hr. The argon gas concentration decreased to 99.0%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置の一例を示すもので2.
5,5,6,9,10,12,14゜18及び19は操
作切替の為の電磁弁、4a。 4bは吸着塔、15は真空ポンプ、8は製品ガスタンク
を示す。
FIG. 1 shows an example of an apparatus for carrying out the present invention.2.
5, 5, 6, 9, 10, 12, 14° 18 and 19 are electromagnetic valves 4a for operation switching. 4b is an adsorption tower, 15 is a vacuum pump, and 8 is a product gas tank.

Claims (3)

【特許請求の範囲】[Claims] (1)一成分以上の不純物ガスを10vol%以上含有
するアルゴンガス(以下「原料ガス」という)を精製す
るに際し、 (a)原料ガスを加圧下でゼオライト吸着剤と接触させ
て不純物を吸着させる吸着工程。 (b)原料ガス流入を停止した後、原料ガスと向流に大
気圧まで減圧する圧抜き工程。 (c)原料ガスと向流に300Torr以下の圧力で吸
着塔内を真空排気し、かつ排気時間 と吸着時間との比が0.2〜1である真空再生工程。 (d)排気後、原料ガスと向流に純アルゴンガスを吸着
圧力まで張り込む復圧工程。 をこの順序で、順次繰返すことから成るアルゴンガスの
高純度精製方法。
(1) When refining argon gas containing 10 vol% or more of one or more impurity gases (hereinafter referred to as "raw material gas"), (a) Bringing the material gas into contact with a zeolite adsorbent under pressure to adsorb impurities. Adsorption process. (b) A depressurization step in which after stopping the inflow of the raw material gas, the pressure is reduced to atmospheric pressure in a countercurrent direction to the raw material gas. (c) A vacuum regeneration step in which the interior of the adsorption tower is evacuated at a pressure of 300 Torr or less in countercurrent to the raw material gas, and the ratio of the evacuation time to the adsorption time is 0.2 to 1. (d) After evacuation, a pressure recovery step in which pure argon gas is pumped in countercurrent to the source gas up to adsorption pressure. A method for purifying argon gas to high purity, which consists of repeating the steps in this order.
(2)不純物ガス成分が窒素、炭酸ガス、一酸化炭素、
炭化水素ガス、水分の中の1つ以上である特許請求の範
囲第一項記載の方法。
(2) Impurity gas components include nitrogen, carbon dioxide, carbon monoxide,
The method according to claim 1, wherein the gas is one or more of hydrocarbon gas and water.
(3)ゼオライト吸着剤がA型、X型、モルデナイト型
ゼオライトのいずれかである特許請求の範囲第一項また
は第二項記載の方法。
(3) The method according to claim 1 or 2, wherein the zeolite adsorbent is any one of A type, X type, and mordenite type zeolite.
JP60272499A 1985-12-05 1985-12-05 High-purity purification of argon gas Pending JPS62132712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60272499A JPS62132712A (en) 1985-12-05 1985-12-05 High-purity purification of argon gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272499A JPS62132712A (en) 1985-12-05 1985-12-05 High-purity purification of argon gas

Publications (1)

Publication Number Publication Date
JPS62132712A true JPS62132712A (en) 1987-06-16

Family

ID=17514760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272499A Pending JPS62132712A (en) 1985-12-05 1985-12-05 High-purity purification of argon gas

Country Status (1)

Country Link
JP (1) JPS62132712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547492A (en) * 1994-04-12 1996-08-20 Korea Institute Of Energy Research Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179696A (en) * 1974-12-06 1976-07-12 Le Tekunorojichesukii I Korode Sansoo jokyoarugono seiseisuruhoho
JPS52122273A (en) * 1976-02-27 1977-10-14 Boc Ltd Method and apparatus for increasing ratio of ingredient gas
JPS5384891A (en) * 1976-12-30 1978-07-26 Nippon Oxygen Co Ltd Method of recovering argon
JPS60239309A (en) * 1984-05-11 1985-11-28 Seitetsu Kagaku Co Ltd Process for recovering argon
JPS6144702A (en) * 1984-08-08 1986-03-04 Hitachi Ltd Production of argon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179696A (en) * 1974-12-06 1976-07-12 Le Tekunorojichesukii I Korode Sansoo jokyoarugono seiseisuruhoho
JPS52122273A (en) * 1976-02-27 1977-10-14 Boc Ltd Method and apparatus for increasing ratio of ingredient gas
JPS5384891A (en) * 1976-12-30 1978-07-26 Nippon Oxygen Co Ltd Method of recovering argon
JPS60239309A (en) * 1984-05-11 1985-11-28 Seitetsu Kagaku Co Ltd Process for recovering argon
JPS6144702A (en) * 1984-08-08 1986-03-04 Hitachi Ltd Production of argon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547492A (en) * 1994-04-12 1996-08-20 Korea Institute Of Energy Research Method for adsorbing and separating argon and hydrogen gases in high concentration from waste ammonia purge gas, and apparatus therefor
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas

Similar Documents

Publication Publication Date Title
US6544318B2 (en) High purity oxygen production by pressure swing adsorption
JPS61222905A (en) Manufacture of oxygen-rich air
JPH0429601B2 (en)
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
JPS6137968B2 (en)
WO2010021127A1 (en) Xenon adsorbent, xenon enrichment method, xenon enrichment device, and air liquefaction and separation device
KR900001537B1 (en) Method for obtaining high purity carbon manoxice
JPH0459926B2 (en)
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
GB2109266A (en) Pressure swing process for the separation of gas mixtures by adsorption
JPS6137970B2 (en)
JPH02275707A (en) Method for recovering argon by pressure swing method
JPS62132712A (en) High-purity purification of argon gas
JP3219612B2 (en) Method for co-producing carbon monoxide and hydrogen from mixed gas
JPH02283608A (en) Method for separating and recovering carbon monoxide
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPH0312307A (en) Method for enriching oxygen
JPH0768042B2 (en) High-purity oxygen production method
JPH0112529B2 (en)
JPS634824A (en) Impure gas adsorption bed
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS63232819A (en) Multilayer adsorptive separation
JPS6139090B2 (en)
JPH0429408B2 (en)
JPS6078611A (en) Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method