JPS62131744A - Structure of rotary electric machine - Google Patents

Structure of rotary electric machine

Info

Publication number
JPS62131744A
JPS62131744A JP60268048A JP26804885A JPS62131744A JP S62131744 A JPS62131744 A JP S62131744A JP 60268048 A JP60268048 A JP 60268048A JP 26804885 A JP26804885 A JP 26804885A JP S62131744 A JPS62131744 A JP S62131744A
Authority
JP
Japan
Prior art keywords
winding
excitation
rotor
current
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60268048A
Other languages
Japanese (ja)
Inventor
Fukuo Shibata
柴田 福夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60268048A priority Critical patent/JPS62131744A/en
Publication of JPS62131744A publication Critical patent/JPS62131744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Synchronous Machinery (AREA)

Abstract

PURPOSE:To simplify the structure of a rotary electric machine inexpensively by providing electric conductors separately from a field winding at a pole surface side of the same slot as that of a field winding to be used as a braking winding. CONSTITUTION:Slots 28 are formed on the pole surface 22 of a field pole, field windings 26, 29 are inserted into the slot 28, another electric conductors 27 from the windings 26, 29 is inserted to a portion near the surface 22 from an inserting portion of the winding 29 as viewed from a section of the slot 28, the conductor 27 is used as a braking winding, which the conductors disposed at the distance of pi radian of an electric angle are collected and electrically connected. Since a control winding is provided on the pole surface, a large quantity of current can flow, and the conductor 27 concurrently acts as a wedge action so that a rotor winding does not fly out. Since a slot for the control winding is not necessary to be formed, a structure is simplified.

Description

【発明の詳細な説明】 本発明は同期機のように固定子に電機子巻線を設け、回
転子に界磁巻線を設ける回転電気機械の構造に関するも
のである。それは同期発電機や同期電動機のみならず、
サイリスタモーターのように回転電気機械として同期機
を用いたものにまでおよび、また三相機やニ相機のよう
な多相機だけではなく、単相機にも適用されうる。然し
、説明の簡略化のため、例えば三相同期発電機につき限
定説明をする場合もあるが、上記の種々の回転電気機械
に適応しうるので、注意されたい。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a rotating electric machine, such as a synchronous machine, in which an armature winding is provided on a stator and a field winding is provided on a rotor. It is not only synchronous generators and synchronous motors, but also
It can be applied to rotary electric machines such as thyristor motors that use synchronous machines, and can be applied not only to multi-phase machines such as three-phase machines and two-phase machines, but also to single-phase machines. However, in order to simplify the explanation, the explanation may be limited to, for example, a three-phase synchronous generator, but it should be noted that the explanation can be applied to the various rotating electric machines mentioned above.

本発明は昭和60年特許願第127479号及び昭和6
0年特許願第210596号と関連のある発明である。
The present invention is patent application No. 127479 of 1985 and
This invention is related to Patent Application No. 210596.

さて同期発電機をブラシレス構造にするため、本発明者
自身の発明として昭和57年特許願第49712号や昭
和57年特許願第217625号があり、昭和60年特
許願第15045号及び昭和60年特許願第22300
号がある。一方同期電動機をブラシレス構造にする昭和
60年特許願第105336号もあるが、更に単相同期
発電機や単相同期発動機に関連して昭和59年特許願第
167208号、昭和60年特許願第113000号も
ある。これらの発明では同期機本体を励磁機としても使
うもので、同期機本体の固定子に設けた電機子巻線に流
す負荷電流によって造られる磁極の極数と、電機子巻線
又は励磁巻線に流す励磁電流によって造られる磁極の極
数との関係を1対2又は2対1とし、これに対応して回
転子に励磁巻線部と界磁巻線部を設けて、その磁極数を
それぞれ固定子の巻線の磁極数に対応させる。このよう
にして同一磁極数の固定子巻線と回転子巻線とを電磁的
に結合させ、磁気回路を兼用した回転電気機械を簡略に
ブラシレスに造りあげるのである。
Now, in order to make a synchronous generator a brushless structure, there are patent applications No. 49712 and 217625 of 1988 as inventions of the present inventor, and patent application No. 15045 of 1985 and patent application No. 15045 of 1988. Patent application No. 22300
There is a number. On the other hand, there is Patent Application No. 105336 of 1985, which uses a brushless structure for a synchronous motor, but there is also Patent Application No. 167208 of 1985 and Patent Application No. 167208 of 1985 related to single-phase synchronous generators and single-phase synchronous motors. There is also No. 113000. In these inventions, the main body of the synchronous machine is also used as an exciter, and the number of magnetic poles created by the load current flowing through the armature winding provided on the stator of the main body of the synchronous machine, and the armature winding or excitation winding are The relationship between the number of magnetic poles created by the excitation current applied to the rotor is set to 1:2 or 2:1, and the rotor is provided with an excitation winding section and a field winding section corresponding to this, and the number of magnetic poles is increased. Each corresponds to the number of magnetic poles of the stator winding. In this way, the stator winding and rotor winding having the same number of magnetic poles are electromagnetically coupled, and a brushless rotating electrical machine that also serves as a magnetic circuit is easily constructed.

然し、従来考えられてきたこの種回転電気機械の場合、
次のような問題点がある。それは制動巻線についてであ
る。元来制動巻線は発電機の乱調防止、安定度増加、異
常電圧制御などの作用を持つ。一方、電動機の場合、始
動時に界磁巻線に励磁電流を流さずに、電機子巻線に電
圧を加えると回転磁界によって制動巻線に電流が流れ、
誘導電動機と同じ原理により始動トルクを発生する作用
がある。単相同期発電機の場合、ブラシレス励磁機なし
構造のため、昭和57年特許願第49712号や第21
7625号では次のような配列とする。すなわち、第1
図に示すように、固定子電機子巻線の構成1を外部接続
電線2、3と接続する二端子4と5の間で並列のAA′
、BB′巻線系列を接続し、AA′巻線系列の中間端子
CとBB′巻線系列の中間端子Dを設ける。これに別に
設けた変成器の一次巻線及び二次巻線をそれぞれ上記外
部接続端子4、5と中間端子C、Dに電気接続すると単
相同期発電機本体の構造を簡略化し、自励式で励磁機な
しブラシレス構造を得るが、この構造を簡略化するため
に昭和60年特許願第15045号では上記変成器の代
りに、上記電機子巻線AA′及びBB′とは別の独立し
た巻線系列Fを上記固定子内に設け、巻線Fの起電力に
より上記中間端子CD間に電流が流れるように接続し、
上記電機子巻線AA′、BB′に負荷電流だけではなく
、同時に励磁電流も流れるように配列する。
However, in the case of this type of rotating electric machine that has been conventionally considered,
There are the following problems. It's about the brake winding. Originally, the damper winding had functions such as preventing generator disturbances, increasing stability, and controlling abnormal voltage. On the other hand, in the case of an electric motor, when a voltage is applied to the armature winding without passing an excitation current to the field winding at the time of starting, a current flows to the brake winding due to the rotating magnetic field.
It has the effect of generating starting torque based on the same principle as an induction motor. In the case of a single-phase synchronous generator, since it has a structure without a brushless exciter, patent applications No. 49712 and No.
No. 7625 uses the following arrangement. That is, the first
As shown in the figure, a parallel AA'
, BB' winding series are connected, and an intermediate terminal C of the AA' winding series and an intermediate terminal D of the BB' winding series are provided. By electrically connecting the primary and secondary windings of the separately provided transformer to the external connection terminals 4 and 5 and the intermediate terminals C and D, the structure of the single-phase synchronous generator is simplified, and a self-excited type A brushless structure without an exciter is obtained, but in order to simplify this structure, in Patent Application No. 15045 of 1985, an independent winding separate from the armature windings AA' and BB' is used instead of the transformer. A wire series F is provided in the stator and connected so that a current flows between the intermediate terminals CD due to the electromotive force of the winding F,
The armature windings AA' and BB' are arranged so that not only the load current but also the excitation current flows at the same time.

以上のようにすれば、単相同期機、特に単相同期発電機
や単相同期電動機は簡略化するが、ここに一つの問題が
ある。それは単相発電機に固有な電圧波形ひずみがある
と云うことで、これは単相同期発電機の中に発生する文
番磁界にもとづくものである。その電圧波形ひずみ発生
の詳細な理由については昭和60年特許願第21059
6号に述べたが、結局このような単相同期機における逆
相分回転磁界による電圧波形のひずみを軽減するために
、単相発電機は回転子磁極面に篭形制動巻線を設けるの
が普通である。
Although the above method simplifies a single-phase synchronous machine, especially a single-phase synchronous generator and a single-phase synchronous motor, there is one problem. This is because there is voltage waveform distortion unique to single-phase generators, and this is based on the magnetic field generated in single-phase synchronous generators. For the detailed reason for the occurrence of voltage waveform distortion, please refer to Patent Application No. 21059 filed in 1985.
As mentioned in No. 6, in order to reduce the distortion of the voltage waveform due to the negative phase rotating magnetic field in such a single-phase synchronous machine, single-phase generators are equipped with cage-shaped damping windings on the rotor magnetic pole surface. is normal.

今まで述べてきた本発明の場合、同期機本体を励磁機し
とても使い、同期機本体の電機子巻線に流す負荷電流に
よって造られる磁極の極数と、固定子巻線に流す励磁電
流によって造られる磁極の極数との関係を1対2又は2
対1としてブラシレス励磁機なし構造の同期機をつくる
のであり、このような場合、従来造られてきた通常の同
期機に対する制動巻線を使い得ない。これら通常の同期
機に従来使われてきた制動巻線では磁極片に数個のスロ
ットを設け、これに同棒あるいは黄銅棒を挿入し、その
両端を端絡環にろう付けして、各極を接続し、誘導機の
かご形巻線と同様のものを施している。このような従来
使用の通常の制動巻線をもし上述のようなブラシレス構
造の同期機に適用すると、常に何種類かの電流が制動巻
線中を流れることになり、不必要に損失を大きくし、制
動巻線が不必要に電力を吸収することになり、制動巻線
として成立しないことになる。昭和60年特許願第12
7479号ではこのような固定子に負荷電流を通す電機
子巻線部を、又回転子に界磁巻線部を設け、上記固定子
に装備された巻線の或る端子と上記固定子に設けられた
励磁巻線部とを電気接続することによって励磁巻線部に
励磁電力を供給するように配列し、電機子巻線部の鎖交
する磁気回路と励磁巻線部の鎖交する磁気回路を兼用す
る配列とし、その励磁電流を励磁巻線部に流すことによ
り造られる磁極の極数と、上記電機子巻線部に負荷電流
を流して造られる磁極の極数との関係を、その何れか一
方を1とし、他方をその2倍とする関係となる巻線配列
とし、その励磁巻線部に励磁電流を流して造られる磁極
を、これと同一の極数の回転子励磁巻線部が切って回転
子の励磁巻線部に励磁電圧を誘起させ、その励磁電圧に
より界磁巻線部に電流を流し、界磁極を造る配列におい
て、上記の従来形制動巻線を設ける欠点を除き、制動巻
線に不必要な損失を生ぜしめないで適確な制動巻線動作
をさせるため、上記励磁巻線部に励磁電流を流して造ら
れる磁極の極数を、上記電機子巻線部に負荷電流を流し
て造られる磁極の極数P極の2倍とし、界磁極の極数表
面に設けたスロットに導体を挿入し、その挿入導体数を
少なくとも2個以上とし、それらの複数の挿入導体の両
端を短絡導体で短絡し、その電気接続される導体相互間
距離τが電気角でπ[ラジアン]の距離とするように配
列している。
In the case of the present invention described so far, the main body of the synchronous machine is used as an exciting machine, and the number of magnetic poles created by the load current flowing through the armature winding of the main body of the synchronous machine and the excitation current flowing through the stator winding are determined by The relationship between the number of magnetic poles created is 1:2 or 2.
A synchronous machine with a structure without a brushless exciter is created as a pair 1, and in such a case, the damper winding for a conventional synchronous machine cannot be used. In the brake windings conventionally used in these ordinary synchronous machines, several slots are provided in the magnetic pole piece, the same rod or a brass rod is inserted into these, and both ends are brazed to the end ring. It is connected in a manner similar to the squirrel cage winding of an induction machine. If such a conventional damper winding is applied to a brushless synchronous machine as described above, several types of current will always flow through the damper winding, unnecessarily increasing losses. , the brake winding will absorb power unnecessarily and will not function as a brake winding. Patent Application No. 12, 1985
In No. 7479, an armature winding section for passing a load current through such a stator is provided, and a field winding section is provided for the rotor, and a certain terminal of the winding installed on the stator is connected to the stator. The arrangement is such that excitation power is supplied to the excitation winding section by electrically connecting the provided excitation winding section, and the interlinking magnetic circuit of the armature winding section and the interlinking magnetic circuit of the excitation winding section. The relationship between the number of magnetic poles created by making an arrangement that also serves as a circuit, and flowing the excitation current through the excitation winding, and the number of magnetic poles created by flowing the load current through the armature winding, is as follows: The windings are arranged so that one of them is 1 and the other is twice that number, and the magnetic poles created by passing an excitation current through the excitation winding are the rotor excitation windings with the same number of poles. Disadvantages of using the above-mentioned conventional brake winding in an arrangement in which the wire section is cut to induce an excitation voltage in the excitation winding of the rotor, and the excitation voltage causes current to flow through the field winding to create field poles. In order to operate the brake winding properly without causing unnecessary loss in the brake winding, the number of magnetic poles created by passing an excitation current through the excitation winding section is set to The number of poles of the magnetic pole made by passing a load current through the wire part is twice the P pole, the conductor is inserted into the slot provided on the surface of the field pole, the number of inserted conductors is at least two, and the number of inserted conductors is at least two. Both ends of the plurality of inserted conductors are short-circuited by short-circuiting conductors, and the conductors are arranged so that the distance τ between the electrically connected conductors is π [radian] in electrical angle.

然し、単に界磁極の磁極表面にスロットを設けて、それ
に導体を挿入するのでは、かなり複雑となるし、高価に
もなる。本発明は上に述べたような回転電気機械におい
て、従来形制動巻線の装備による欠点を除き、不必要な
制動巻線損失を生ぜしめる欠点をなくし、適確な制動巻
線動作をさせるだけではなく、上に述べた欠点を除き、
制動巻線を簡単に配列し、回転電気機械の構造を単純安
価な構造にすることを目的とする。
However, simply providing a slot on the surface of the field pole and inserting a conductor into the slot becomes quite complicated and expensive. The present invention eliminates the disadvantages of installing a conventional brake winding in a rotating electric machine as described above, eliminates the disadvantage of causing unnecessary brake winding loss, and only enables proper brake winding operation. But, except for the drawbacks mentioned above,
The purpose is to simply arrange brake windings and make the structure of a rotating electric machine simple and inexpensive.

上記の目的を達成せしめるため、本発明では具体的な電
気接続図例の第4図に示すように、固定子に負荷電流を
流す電機子巻線部1を設け、又回転子に界磁巻線部を設
け、上記固定子に装備された巻線12、13、14の或
る端子23、24、25と上記固定子に設けられた励磁
巻線部16とを電気接続することによって励磁巻線部1
6に励磁電力を供給するように配列し、電機子巻線部の
1の鎖交する磁気回路と励磁巻線部16の鎖交する磁気
回路を兼用する配列とし、その励磁電流を励磁巻線部1
6に流すことにより造られる磁極の極数と、上記電機子
巻線部1に負荷電流を流して造られる磁極の極数との関
係を、その何れか一方を1とし、他方をその2倍とする
関係となる巻線配列とし、その励磁巻線部16に励磁電
流を流して造られる磁極を、これと同一の極数の回転子
励磁巻線部が切って回転子の励磁巻線部に励磁電圧を誘
起させ、その励磁電圧により界磁巻線部に電流を流し、
界磁極を造る配列において、上記励磁巻線部16に励磁
電流を流して造られる磁極の極数を、上記電機子巻線部
1に負荷電流を流して造られる磁極の極数、P極の2倍
とし、界磁極の磁極表面22に第6図に示すようにスロ
ット28を設け、このスロット28に界磁巻線26、2
9を挿入し、そのスロット28の断面から見た時、界磁
巻線29の挿入部より磁極表面22に近い部分に界磁巻
線26、29とは別の電気導体27を挿入し、この挿入
電気導体27の複数個の両端部でそれぞれ電気接続して
電気導体27を短絡し、この挿入電気導体相互間距離τ
が第8図の27と30に見られるように電気角でπ[ラ
ジアン]の距離、機械角θでπ/(p/2)の距離にあ
るものを集めて電気接続するように配するのである。
In order to achieve the above object, in the present invention, as shown in FIG. 4 of a specific electrical connection diagram, the stator is provided with an armature winding section 1 for passing a load current, and the rotor is provided with a field winding section 1. By providing a wire portion and electrically connecting certain terminals 23, 24, 25 of the windings 12, 13, 14 provided on the stator with the excitation winding portion 16 provided on the stator, the excitation winding Line part 1
The arrangement is such that the excitation power is supplied to the excitation windings 6 and 6, and the arrangement is such that the interlinking magnetic circuit of the armature winding section 1 and the interlinking magnetic circuit of the excitation winding section 16 serve as both, and the excitation current is supplied to the excitation windings. Part 1
The relationship between the number of magnetic poles created by passing a load current through the armature winding section 1 and the number of magnetic poles created by passing a load current through the armature winding section 1 is as follows: one of them is 1, and the other is twice that number. The winding arrangement is such that the excitation winding section 16 has the same number of poles as the rotor excitation winding section which cuts the magnetic poles created by passing an excitation current through the excitation winding section 16. An excitation voltage is induced in the field, and the excitation voltage causes a current to flow through the field winding.
In the arrangement for creating field poles, the number of magnetic poles created by passing an excitation current through the excitation winding section 16 is the number of magnetic poles created by passing a load current through the armature winding section 1, and the number of P poles is As shown in FIG. 6, a slot 28 is provided on the magnetic pole surface 22 of the field pole, and the field windings 26, 2
When viewed from the cross section of the slot 28, an electric conductor 27 separate from the field windings 26 and 29 is inserted in a part closer to the magnetic pole surface 22 than the insertion part of the field winding 29. A plurality of inserted electrical conductors 27 are electrically connected at both ends thereof to short-circuit the electrical conductors 27, and the distance between the inserted electrical conductors τ is
As shown at 27 and 30 in Figure 8, the objects that are at a distance of π [radian] in electrical angle and π/(p/2) in mechanical angle θ are gathered and arranged so as to be electrically connected. be.

第8図では挿入導体間の関係位置を示し、lは界磁巻線
が挿入された鉄心スロットのある部分を示し、そのスロ
ットに設けられた電気導体27や30が示されている。
FIG. 8 shows the relative positions between the inserted conductors, l indicates a portion of the core slot into which the field winding is inserted, and electrical conductors 27 and 30 provided in the slot are shown.

これら互いに導体間距離τが電気角でπ[ラジアン]に
ある導体27や28を集めてエンドリング31、32で
短絡するのである。第5図はそのような制動巻線となる
導体の27、30、33、34の両端部をエンドリング
31と32で短絡することを示しているが、導体27、
30、33、34のそれぞれの角間隔はτ=π[ラジア
ン]の電気角が保たれる。第5図はそのような導体間の
相互位置を示したものであって、第6図の中では導体断
面は梯形で示さているのに対し、第5図では導体断面は
円形で示される。
These conductors 27 and 28, whose distance τ between the conductors is π [radian] in electrical angle, are brought together and short-circuited by end rings 31 and 32. FIG. 5 shows that both ends of conductors 27, 30, 33, and 34, which become such damper windings, are short-circuited by end rings 31 and 32.
The electrical angle of τ=π [radian] is maintained for each angular interval of 30, 33, and 34. FIG. 5 shows the mutual positions of such conductors; in FIG. 6, the conductor cross section is shown as a trapezoid, whereas in FIG. 5, the conductor cross section is shown as a circle.

第5図は導体4本だけをまとめた場合であるのに対し、
第11図はそのような導体4本の組み合わせを2組設け
た場合である。このようにして、3組、4組と増やして
ゆくことが出来る。導体27と30と33と34の間は
電気角τ=πの角度を距てて設けられる。又導体35と
36と37と38の間も電気角τ=πの角度を距てて設
けられる。
Figure 5 shows the case where only four conductors are grouped together, whereas
FIG. 11 shows a case where two such combinations of four conductors are provided. In this way, you can increase the number of sets to 3 or 4. The conductors 27, 30, 33, and 34 are spaced apart by an electrical angle τ=π. Further, the conductors 35, 36, 37, and 38 are also provided at an electrical angle of τ=π.

導体27と30と33と34にはそれらの両端にエンド
リング31と32が結合され、導体35と36と37と
38にはそれらの両端にエンドリング39と40が結合
される。この27−30−33−34の導体系と35−
36−37−38の導体系との間は互いに電気的に接続
されず、絶縁されている。このようにすれば制動巻線の
作用が強く働らくようになる。
Conductors 27, 30, 33, and 34 have end rings 31 and 32 coupled to their respective ends, and conductors 35, 36, 37, and 38 have end rings 39 and 40 coupled to their respective ends. This 27-30-33-34 conductor system and 35-
The conductor systems 36-37-38 are not electrically connected to each other and are insulated. In this way, the action of the brake winding becomes stronger.

以上の本発明の要点を以下に詳細説明する。第4図には
固定子巻線に関する配列のみが示され、回転子巻線に関
する配列は示されていない。電機子巻線1は星形接続し
た三相巻線12、13、14から成り、その中性点21
を中心に巻かれる。
The main points of the present invention described above will be explained in detail below. In FIG. 4, only the arrangement for the stator windings is shown, and the arrangement for the rotor windings is not shown. The armature winding 1 consists of star-connected three-phase windings 12, 13, and 14, and their neutral point 21
wrapped around.

三端子23、24、25は外部負荷又は外部電源に接続
される。整流器20はグレーツ回路で、その素子は制御
素子付き整流器より成り、その制御素子を制御する制御
装置15が接続される。第4図の回路を同期発電機とし
て使う場合、例えば同期発電機の端子電圧が負荷電流の
増減により変化した場合、その電圧を検出し、電圧が設
定電圧より低くならうとすると、制御装置20を働らか
せて自動的に制御素子付き整流器の制御素子回路を制御
して励磁巻線16に供給する直流励磁電流を増すような
制御装置15がこれである。第4図において電機子巻線
1の端子電圧が例えば440Vであり、励磁巻線16の
両端に加えるべき直流電圧が50[V]程度であれば、
コンデンサー17、18、19がその両者間の電圧降下
分を受け持つことになる。而もコンデンサー17、18
、19は損失を生じるものではなく、電機子巻線1の端
子電圧に対して進み電流をとるものである。このような
進み電流は発電機の端子電圧を上昇せしめる効果を持ち
、負荷に流れる電流による電圧降下を多少とも補償する
ことになる。
Three terminals 23, 24, 25 are connected to an external load or external power source. The rectifier 20 is a Graetz circuit, the elements of which are composed of a rectifier with a control element, and the control device 15 for controlling the control element is connected thereto. When the circuit shown in FIG. 4 is used as a synchronous generator, for example, when the terminal voltage of the synchronous generator changes due to an increase or decrease in load current, the voltage is detected, and if the voltage becomes lower than the set voltage, the control device 20 is activated. This is a control device 15 that automatically controls the control element circuit of the rectifier with a control element to increase the DC excitation current supplied to the excitation winding 16. In FIG. 4, if the terminal voltage of the armature winding 1 is, for example, 440 V, and the DC voltage to be applied to both ends of the excitation winding 16 is about 50 [V], then
Capacitors 17, 18, and 19 will take charge of the voltage drop between them. Also capacitors 17 and 18
, 19 do not cause any loss, but take a leading current with respect to the terminal voltage of the armature winding 1. Such a leading current has the effect of increasing the terminal voltage of the generator, and more or less compensates for the voltage drop caused by the current flowing through the load.

第12図は本発明に用いられる回転電気機械の回転子に
設けられる巻線と整流器の例である。第4図には固定子
巻線が示され、この第4図の固定子巻線に対し第12図
の回転子巻線41が用いられ、又第13図の固定子電機
子巻線42と第12図の回転子巻線41を組み合わせて
使うことも出来る。第13図では固定子電機子巻線42
の接続が二重星形接続となっており、三相の端子U′、
V′、W′に対し外部電源より43で示す矢印のように
交流電力が供給され、回転電気機械が電動機の場合、端
子U′、V′、W′を経て電機子巻線42へ電力が入っ
て行くが、回転電気機械が発電機の場合、電機子巻線4
2から外部へ電力が出てゆく。電機子巻線42の二個の
中性点44と45に対しも整流器46の直流側端子が接
続される。整流器46の交流端子は入力端子として電源
と接続される。もし発電機として使用されるならば矢印
47で示すように電源より電力が整流器46の交流側端
子へ入れられるが、その電源は固定子電機子巻線そのも
のとなる。もし電動機として使われるならば、矢印47
による電源は上記固定子電機子巻線とは別の交流電源で
、それから整流器46の交流側端子へ励磁電力が入れら
れる。このように第13図の電機子巻線42は励磁巻線
部としても作動することになる。すなわちU′、V′、
W′なる三相端子から外部へ、或るは三相端子を通して
電流を流すとき、42は負荷電流を流す電機子巻線とし
て働らくが、二つの中性点44、45から黒色矢印の直
流電流を入れ込む時、42は励磁巻線部としても働らく
ことになる。電機子巻線42の中を流れる負荷電流は空
白矢印の電流で示され、同時に電機子巻線42の中を流
れる黒色矢印の電流は励磁電流を示す、第12図の回転
子巻線41にも外部接続端子U、V、W及び巻線相互間
接続端子48、49が中性点のように設けられる。第1
3図の固定子電機子巻線42において、巻線相互間接続
端子44、45が各相の端子u1′、u2′、v1′、
v2′、w1′、w2′に接続されているように、第1
2図の回転子巻線41においても巻線間相互接続端子4
8、49が各相の端子u1、u2、v1、v2、w1、
w2に接続されている。固定子の電機子巻線42に流れ
る黒色矢印の電流による励磁機の作動に応じて回転子巻
線41では空白矢印の電流が流れ、回転子巻線41はそ
れによって回転子励磁巻線として働らく。その交流電流
は回転整流器50の交流側端子へ入り、回転整流器50
を経て巻線相互間接続端子48、49を通して再び回転
子巻線41へ直流を送り込むことになる。その電流は第
12図の黒色矢印によって示されるが、その電流の作用
によって回転子巻線50は界磁巻線として作動すること
になる。界磁巻線としての回転子巻線41と対応して第
13図の電機子巻線42は動作して、電機子巻線42の
なかの空白矢印方向の起電力を誘導したり、その方向に
電流を流したりすることになる。このようにして、第1
2図と第13図の組合せによる回転電気機械を構成する
固定子電機子巻線42と回転子巻線41の間には次のよ
うな関係がある。すなわち、固定子電機子巻線42にも
回転子巻線41にも二種類の電流が発生する。一方は負
荷電流を流し、界磁電流を流す回転電気機械本体の系で
あり、他方は励磁電流を流す励磁機としての系である。
FIG. 12 is an example of a winding and a rectifier provided on a rotor of a rotating electrical machine used in the present invention. FIG. 4 shows a stator winding, and the rotor winding 41 of FIG. 12 is used for the stator winding of FIG. 4, and the stator armature winding 42 of FIG. The rotor winding 41 shown in FIG. 12 can also be used in combination. In Fig. 13, stator armature winding 42
The connection is a double star connection, and the three-phase terminals U',
AC power is supplied to V' and W' from an external power source as shown by the arrow 43, and if the rotating electrical machine is an electric motor, the power is supplied to the armature winding 42 via terminals U', V', and W'. However, if the rotating electric machine is a generator, the armature winding 4
Power goes out from 2 to the outside. The DC side terminal of the rectifier 46 is also connected to the two neutral points 44 and 45 of the armature winding 42 . The AC terminal of the rectifier 46 is connected to a power source as an input terminal. If used as a generator, power is input from the power supply to the AC side terminal of the rectifier 46 as shown by arrow 47, but the power source is the stator armature winding itself. If used as an electric motor, arrow 47
The power source is an AC power source separate from the stator armature winding, and excitation power is input to the AC side terminal of the rectifier 46. In this way, the armature winding 42 shown in FIG. 13 also functions as an excitation winding section. That is, U', V',
When a current flows from the three-phase terminal W' to the outside or through the three-phase terminal, 42 acts as an armature winding that carries the load current, but direct current (black arrows) flows from the two neutral points 44 and 45. When introducing current, 42 also functions as an excitation winding section. The load current flowing in the armature winding 42 is shown by the blank arrow current, and at the same time the black arrow current flowing in the armature winding 42 shows the excitation current, which is similar to the rotor winding 41 in FIG. Also, external connection terminals U, V, W and inter-winding connection terminals 48, 49 are provided like a neutral point. 1st
In the stator armature winding 42 shown in FIG.
The first
In the rotor winding 41 in Fig. 2, the inter-winding interconnection terminal 4 is also connected.
8, 49 are terminals u1, u2, v1, v2, w1 of each phase,
Connected to w2. In response to the operation of the exciter by the current shown by the black arrow flowing through the armature winding 42 of the stator, the current shown by the blank arrow flows through the rotor winding 41, and the rotor winding 41 thereby works as a rotor excitation winding. easy. The alternating current enters the alternating current terminal of the rotary rectifier 50, and
Then, direct current is sent to the rotor winding 41 again through the winding interconnection terminals 48 and 49. The action of the current, indicated by the black arrow in FIG. 12, causes the rotor winding 50 to operate as a field winding. The armature winding 42 in FIG. 13 operates in correspondence with the rotor winding 41 as a field winding to induce an electromotive force in the direction of the blank arrow in the armature winding 42, and to induce an electromotive force in the direction of the blank arrow. This will cause a current to flow through. In this way, the first
The following relationship exists between the stator armature winding 42 and the rotor winding 41 that constitute the rotating electrical machine formed by the combination of FIGS. 2 and 13. That is, two types of currents are generated in both the stator armature winding 42 and the rotor winding 41. One is a rotating electric machine main body system that passes a load current and a field current, and the other is an exciter system that passes an excitation current.

前者すなわち電機子巻線42に負荷電流を流して造られ
る磁極の極数つまり界磁電流を流して回転子に造られる
磁極の極数は、励磁電流を流して造られる磁極の極数と
の間で1対2又は2対1の関係を持つ。例えばその一方
が2極であれば、他方が4極、一方が4極であれば他方
が8極、更に一方が8極で他方が4極と云うような関係
である。こも両者の系は磁気回路を兼用しており、同数
の極数に関連する巻線相互は電磁的結合があらわれるが
、異なった数の磁極に関連する巻線相互は電磁的結合の
結果が消える。
The former, that is, the number of magnetic poles created by passing a load current through the armature winding 42, that is, the number of magnetic poles created on the rotor by passing a field current, is the same as the number of magnetic poles created by passing an exciting current. There is a 1:2 or 2:1 relationship between them. For example, if one of them is 2 poles, the other is 4 poles, if one is 4 poles, the other is 8 poles, and furthermore, one is 8 poles and the other is 4 poles. Both systems also serve as magnetic circuits, and electromagnetic coupling appears between windings associated with the same number of poles, but the result of electromagnetic coupling disappears between windings associated with different numbers of magnetic poles. .

第13図の電機子巻線42の接続の一例を展開図として
示したのが第14図であり、第15図である。第14図
と第15図は同一の電機子巻線の中に流す電流が異なる
場合を示す。第13図の電機子巻線42における端子符
号U′、V′、W′、u1′、u2′、v1′、v2′
、w1′、w2′と同じ符号で同じ端子個所を第14図
と第15図で示す。巻線のコイル片は実線が溝中の上口
コイル片を示し、点線は溝中の下口コイル片を示す。第
14図の矢印は第13図の電機子巻線42の中を流れる
励磁電流すなわち第13図の黒色矢印の電流を示す。第
14図では励磁電流を流して電機子巻線が8極磁極を造
ることを示す、第15図の矢印は第13図の電機子巻線
42に流れる負荷電流を示し、それによって電機子巻線
42が4極磁極を造ることが判る。第13図において、
中性点44、45に対して接続される電機子巻線42の
順序は次のようになる。すなわち、一方の中性点44に
対してはu1′とv1′とw1′が接続されず、その中
のw1′の代りにw2′が接続され、結局u1′とv1
′とw2′が接続され、他方の中性点45に対してはu
2′とv2′とw1′が接続される。これは第14図と
第15図においてもわかるように、三相星形の巻線配列
が二組配列される中、その一組が互いに逆の中性点に接
続されることになる。第13図の直流励磁電流によって
磁極が強く造られるようにするためである。
FIGS. 14 and 15 are developed views showing an example of the connection of the armature winding 42 shown in FIG. 13, respectively. FIG. 14 and FIG. 15 show cases in which different currents are passed through the same armature winding. Terminal symbols U', V', W', u1', u2', v1', v2' in the armature winding 42 in FIG.
, w1', w2' and the same terminal locations are indicated by the same reference numerals in FIGS. 14 and 15. Regarding the coil pieces of the winding, the solid line indicates the upper coil piece in the groove, and the dotted line indicates the lower coil piece in the groove. The arrows in FIG. 14 indicate the excitation current flowing through the armature winding 42 in FIG. 13, that is, the current indicated by the black arrow in FIG. FIG. 14 shows that the armature winding creates eight magnetic poles by passing an excitation current. The arrows in FIG. 15 indicate the load current flowing through the armature winding 42 of FIG. It can be seen that wire 42 creates a quadrupole magnetic pole. In Figure 13,
The order of the armature windings 42 connected to the neutral points 44, 45 is as follows. That is, u1', v1', and w1' are not connected to one neutral point 44, and w2' is connected instead of w1', and eventually u1' and v1
' and w2' are connected, and for the other neutral point 45, u
2', v2' and w1' are connected. As can be seen from FIGS. 14 and 15, two sets of three-phase star-shaped winding arrangements are arranged, one of which is connected to opposite neutral points. This is to ensure that the magnetic poles are made strong by the DC excitation current shown in FIG.

第14図と第15図の巻線配列によって判るように、固
定子電機子巻線部の溝数Z′と相数m′と極数P′の関
係により毎極毎相の溝数g′をz′/(m′p′)とし
て計算されたg′の値をもとに決定した数の分布巻或い
は集中巻の巻線配列とするのである。第14図と第15
図を見る時、選択方式として二通りが考えられる。すな
わち固定子電機子巻線42に負荷電流を流し、回転子の
界磁電流によって造られる界磁極と対応させて毎極毎相
の溝数を決定するか、電機子巻線42に励磁電流を流し
て励磁機固定子巻線を作動させて、これをもとに毎極毎
相の溝数を決定するかである。具体的に第14図及び第
15図において溝数が36であるが、励磁機として基準
にとると、8極であるから、三相とすれば36/(8×
3)=1.5すなわち、毎極毎相1.5溝となる。この
ような巻線配列の場合には公知のように各相のコイル数
は2と1が交互に繰り返され、全体として各相の電圧は
平衡して対稱三相起電力を得ることが出来る。つまり2
個の分布巻と1個の集中巻の結合による巻線配列とする
ことになるが、本発明ではそのようにはしない。
As can be seen from the winding arrangement in FIGS. 14 and 15, the number of grooves for each pole and each phase, g', depends on the relationship between the number of grooves Z' in the stator armature winding, the number m' of phases, and the number of poles P'. The number of distributed windings or concentrated windings is determined based on the value of g' calculated as z'/(m'p'). Figures 14 and 15
When looking at the diagram, there are two possible selection methods. That is, either a load current is applied to the stator armature winding 42 and the number of grooves for each pole and each phase is determined in correspondence with the field poles created by the rotor's field current, or an exciting current is applied to the armature winding 42. The number of grooves for each pole and each phase can be determined based on this by operating the exciter stator winding. Specifically, in Figures 14 and 15, the number of grooves is 36, but if we take the exciter as a standard, it has 8 poles, so if it is a three-phase, it is 36/(8×
3)=1.5, that is, there are 1.5 grooves for each pole and each phase. In the case of such a winding arrangement, as is well known, the number of coils in each phase is alternately 2 and 1, and the voltage of each phase is balanced as a whole, making it possible to obtain a three-phase electromotive force. . In other words, 2
Although the winding arrangement is a combination of distributed windings and concentrated windings, this is not the case in the present invention.

第15図に示すように、溝数36、3相、4極として固
定子電機子巻線の巻線配列を本体の電機子巻線として回
転子巻線に界磁電流を流し、これに対応して電機子巻線
に負荷電流を通した場合を基準に巻線配列をする。すな
わち毎極毎相当り溝数3とし、各相のコイル数は3であ
り、巻線は3個の分布巻とするのである。このように固
定子電機子巻線の巻線配列は同期機本体として働らかせ
る電機子巻線を対象として、g′=Z′/(m′p′)
とし計算したg′の値をもとに、その分布巻或いは集中
巻の巻線配列とするのである。このようにして造られた
巻線配列に対して第13図の中性点44、45へ励磁電
流を流すことにより第14図に示すように8極磁極が造
られるのである。
As shown in Figure 15, the number of grooves is 36, 3 phases, 4 poles, and the winding arrangement of the stator armature winding is used as the armature winding of the main body, and the field current is applied to the rotor winding. The winding arrangement is based on the case where the load current is passed through the armature winding. That is, the number of grooves per pole is 3, the number of coils for each phase is 3, and the windings are 3 distributed windings. In this way, the winding arrangement of the stator armature winding is g'=Z'/(m'p') for the armature winding that works as the main body of the synchronous machine.
Based on the calculated value of g', a winding arrangement of distributed winding or concentrated winding is determined. By passing excitation current through the winding arrangement thus created to the neutral points 44 and 45 in FIG. 13, eight magnetic poles are created as shown in FIG. 14.

次に第12図の回転子巻線41の巻線展開図例が第16
図と第17図に示される。二層巻である点及び溝番号を
円で囲まれた数字で示している点は第14図、第15図
と同様である。第16図と第17図の巻線配列によって
判るように、回転子巻線41の溝数Zと相数mと極数P
の関係より毎極毎相の溝数g=Z/(mp)により計算
されたgの値をもとに決定した数の分布巻或いは集中巻
の巻線配列とするのである。すなわち第16図と、第1
7図を見る時、選択方法としてこの場合も二通りが考え
られるのである。それは第12図の回転子巻線41の毎
極毎相の溝数を決定する場合、回転子巻線41に励磁電
流を空白矢印で示すように流し、固定子電機子巻線42
に流す励磁電流と対応させて励磁機としての回転子巻線
として毎極毎相の溝数を決定するか、第12図の回転子
巻線41に黒色矢印で示すような界磁電流を通して固定
子電機子巻線42に流す負荷電流と対応させて同期機本
体として作動させるようにした時に毎極毎相の溝数を決
定するかの何れかである。具体的に第16図と第17図
において溝数が24であるが、結論的には第17図の界
磁電流を流す場合を対象にはせず、第16図の励磁電流
を流す場合を対象にする。すなわち、励磁機としての回
転子巻線を第16図で考え、三相8極であり、毎極毎相
の溝数は1個になる。このように第16図で各相のコイ
ル数は1であり、巻線は1個の集中巻とするのである。
Next, an example of the winding development diagram of the rotor winding 41 in FIG.
and FIG. 17. The points that it is a two-layer winding and that the groove numbers are indicated by numbers enclosed in circles are the same as in FIGS. 14 and 15. As can be seen from the winding arrangement in FIGS. 16 and 17, the number of grooves Z, the number of phases m, and the number of poles P of the rotor winding 41 are
From the following relationship, the number of distributed windings or concentrated windings is determined based on the value of g calculated by the number of grooves for each pole and each phase, g=Z/(mp). That is, Fig. 16 and 1
When looking at Figure 7, there are two possible selection methods in this case as well. When determining the number of grooves for each pole and each phase of the rotor winding 41 in FIG.
The number of grooves for each pole and each phase of the rotor winding as an exciter is determined in correspondence with the excitation current to be applied to the rotor winding, or the field current shown by the black arrows is passed through the rotor winding 41 in Fig. 12 to fix it. Either the number of grooves for each pole and each phase is determined in correspondence with the load current flowing through the child armature winding 42 when the main body of the synchronous machine is operated. Specifically, the number of grooves in Figures 16 and 17 is 24, but in conclusion, the case where the field current shown in Figure 17 is applied is not the target, but the case where the excitation current shown in Figure 16 is applied. Target. That is, considering the rotor winding as an exciter in FIG. 16, it has three phases and eight poles, and the number of grooves for each pole and each phase is one. In this way, the number of coils in each phase in FIG. 16 is one, and the winding is one concentrated winding.

このように回転子巻線の配列は励磁巻線として働らかせ
る回転子巻線を対象として、g=Z/(mp)と計算し
たgの値をもとに、その分布巻き或いは集中巻の巻線配
列とするのである。このようにして造られる巻線配列に
対して、第12図の回転子巻線41の中性点48、49
へ界磁電流を流すことにより第17図に示すように4極
磁極が造られることになるのである。もし本発明を逆に
する場合、すなわち、本例において、もし固定子電機子
巻線の巻線配列を決定するに際し、本体としての電機子
巻線配列を考えず、励磁機として電機子巻線に励磁電流
を流す時を対象に固定子電機子巻線の配列を決定し、そ
のような巻線配列をもとに固定子電機子巻線に負荷電流
を通そうとすれば、発電機の場合も電動機の場合も作動
しない。回転子巻線の配列もそれに応じて本発明と逆に
決定し、もし界磁巻線に対して先日毎極毎相当りの溝数
を決定し、その後に励磁電流を流す励磁巻線をきめてゆ
くとすれば作動しない。
In this way, the arrangement of the rotor winding is determined based on the value of g calculated as g = Z / (mp) for the rotor winding that is used as the excitation winding, and the distribution winding or concentrated winding is selected. It is a winding arrangement. For the winding arrangement created in this way, the neutral points 48, 49 of the rotor winding 41 in FIG.
By passing a field current through it, four magnetic poles are created as shown in FIG. 17. If the present invention is reversed, that is, in this example, when determining the winding arrangement of the stator armature winding, the armature winding arrangement as the main body is not considered, and the armature winding is used as the exciter. If we determine the arrangement of the stator armature windings for when the excitation current is applied to the Neither the case nor the electric motor works. The arrangement of the rotor windings is determined accordingly, contrary to the present invention, and if the number of grooves corresponding to each pole is determined for the field winding the other day, then the excitation winding through which the excitation current is passed is determined. If you keep going, it won't work.

第18図は本発明が適用されうるサイリスタモーターの
回路の一例を示す。回転電気機械は固定子部51と回転
子部52から成る。固定子電機子巻線42の配列は第1
3図の配列と同様であり、回転子巻線41の配列は第1
2図の配列と同様である。電機子巻線42に外部接続電
線53と接続する外部接続端子U′V′W′と電機子巻
線相互間を接続する巻線相互間接続端子u1′、u2′
、v1′、v2′、w1′、w2′を設け、一方上記外
部接続端子U′、V′、W′に対し外部電源54より周
波数変換装置55を経て電力を供給するように接続し、
他方外部電源54より上記周波数変換装置55を適さず
に、これとは並列的に上記巻線間相互接続端子を結合し
た中性点44、45へ励磁電流を供給するように配列し
、上記電機子巻線42に周波数の異なる電流を同時に流
すように配列している。第18図では電機子巻線42は
二重星形接続に近い巻線接続をなし三相の巻線端子U′
、V′、W′を頂点とし、各相はそれぞれ二重にu′相
、v′相、w′相を形成する巻線から成る。上記外部電
源54から中性点44、45に到る間に第18図では制
御素子付き整流器46とコンデンサー56が接続される
。制御素子付き整流器46は制御装置57によりその励
磁電流の挿入量を制御しうる。このように制御素子付き
整流器46の直流側端子を二重星形接続の電機子巻線4
2の中性点45、44に接続すれば、電機子巻線42は
励磁巻線部としても作動することになる。すなわち、U
′、V′、W′なる三相端子へ外部電源54より周波数
変換装置55を通して黒色矢印のような瞬時電流を流す
とき、電機子巻線42は負荷電流を流す通常の電機子巻
線として働らくが、二つの中性点44,45から中空矢
印の直流電流を供給する時、電機子巻線42は励磁巻線
として働らくことになる。第18図における電機子巻線
42の接続の一例を第19図に示す。第19図において
も黒色矢印は負荷電流の瞬時の流れの方向を示し、中空
矢印は直流励磁電流の方向を示す。又第18図の固定子
電機子巻線42のそれぞれの端子U′、V′、W′、u
1′、u2′、v1′、v2′、w1′、w2′に対応
して第19図の同符号端子が使われる。第18図の固定
子電機子巻線42の中性点44、45に対して接続され
る電機子巻線42の順序は次のようになる。すなわち一
方の中性点44に対してはu1′とv1′とw1′が接
続されず、u1′とv1′とw2′が接続され、他方の
中性点45に対してはu2′とv2′とw2′の接続の
代りにu2′とv2′とw1′が接続される。これは前
述と同様の接続である。第18図では回転子52に回転
子巻線41と回転整流器50が設けられている。回転子
巻線41はその接続が固定子電機子巻線42と類似して
いる。
FIG. 18 shows an example of a thyristor motor circuit to which the present invention can be applied. The rotating electrical machine consists of a stator section 51 and a rotor section 52. The stator armature winding 42 is arranged in the first
The arrangement of the rotor windings 41 is similar to that shown in FIG.
This is the same arrangement as in Figure 2. External connection terminal U'V'W' that connects the external connection wire 53 to the armature winding 42, and inter-winding connection terminals u1', u2' that connect the armature windings to each other.
, v1', v2', w1', and w2', and are connected to the external connection terminals U', V', and W' so that power is supplied from an external power source 54 via a frequency converter 55,
On the other hand, the frequency converter 55 is arranged so as to supply excitation current from the external power source 54 to the neutral points 44 and 45 connected to the inter-winding interconnection terminals in parallel with the frequency converter 55, and The child windings 42 are arranged so that currents of different frequencies flow simultaneously. In FIG. 18, the armature winding 42 has a winding connection similar to a double star connection, and the three-phase winding terminal U'
, V', and W' are the vertices, and each phase consists of a double winding forming a u' phase, a v' phase, and a w' phase, respectively. In FIG. 18, a rectifier 46 with a control element and a capacitor 56 are connected between the external power source 54 and the neutral points 44, 45. The rectifier 46 with a control element can control the amount of excitation current inserted by the control device 57. In this way, the DC side terminal of the rectifier 46 with a control element is connected to the armature winding 4 connected in a double star shape.
2, the armature winding 42 also operates as an excitation winding section. That is, U
When an instantaneous current as shown by the black arrow is caused to flow from the external power supply 54 to the three-phase terminals ', V', and W' through the frequency converter 55, the armature winding 42 acts as a normal armature winding that carries the load current. When the armature winding 42 supplies the hollow arrow direct current from the two neutral points 44 and 45, the armature winding 42 will work as an excitation winding. An example of the connection of the armature winding 42 in FIG. 18 is shown in FIG. 19. Also in FIG. 19, black arrows indicate the direction of instantaneous flow of load current, and hollow arrows indicate the direction of DC exciting current. Also, each terminal U', V', W', u of the stator armature winding 42 in FIG.
1', u2', v1', v2', w1', and w2', terminals with the same symbols in FIG. 19 are used. The order of the armature windings 42 connected to the neutral points 44, 45 of the stator armature windings 42 in FIG. 18 is as follows. That is, for one neutral point 44, u1', v1', and w1' are not connected, but u1', v1', and w2' are connected, and for the other neutral point 45, u2' and v2 are connected. Instead of connecting ' and w2', u2', v2' and w1' are connected. This is a similar connection as described above. In FIG. 18, a rotor 52 is provided with a rotor winding 41 and a rotating rectifier 50. The rotor winding 41 is similar in its connections to the stator armature winding 42.

以上の接続で中性点端子44、45へ中空矢印のような
方向の直流励磁電流を流した場合、例えば8極の磁界を
造るとする。これは大略固定磁界であるが、これに対応
して回転子には中空矢印で示すような交流電圧を誘起す
るが、この交流電圧を回転整流器50が受けて、その直
流側端子から二つの中性点48、49を通して回転子巻
線41に流した電流を黒色矢印で示す。この黒色矢印の
直流電流で造られた磁極は前記の8極に対し4極のよう
に、黒色矢印によって示される電流で造られる磁極数と
空白矢印によって示される電流で造られる磁極数との関
係は相互に2対1か1対2である。第18図ではこのよ
うにして固定子電機子巻線42にも回転子巻線41にも
二種類の電流が流れることになる。その場合、固定子電
機子巻線42に励磁電流を空白矢印のように流して8極
磁界が造られる時、その8極磁界を回転子巻線41が切
ることによって8極の交流電圧が発生し、その電圧が回
転整流器50を通して中性点48、49間に加えられる
。それにより回転子巻線41に界磁電流が流れて、4極
の界磁極が造られることになる。この4極界磁極と電機
子巻線42との間に4極電動機が形成される。このよう
にして回転子巻線41が回転子励磁巻線と界磁巻線を兼
用する第18図では固定子電機子巻線42と回転子巻線
41の間で電動機本体を励磁機とした場合の磁気回路が
兼用されることになるが、このように磁気回路を兼用し
た時、因極数の磁極を形成する巻線間にのみ電磁誘導作
用が働らき、異極数の磁極を形成する巻線間には電磁誘
導作用が働らかないと云うことが考え方の基本となって
いる。
When a DC excitation current is caused to flow in the direction of the hollow arrow through the neutral point terminals 44 and 45 with the above connection, for example, an eight-pole magnetic field is created. This is roughly a fixed magnetic field, and in response to this, an AC voltage is induced in the rotor as shown by the hollow arrow.This AC voltage is received by the rotary rectifier 50, and from its DC side terminal there are two The current flowing through the rotor winding 41 through the sex points 48 and 49 is indicated by black arrows. The magnetic poles created by the direct current indicated by the black arrows are 4 poles compared to the 8 poles described above.The relationship between the number of magnetic poles created by the current indicated by the black arrows and the number of magnetic poles produced by the current indicated by the blank arrows is as follows. are 2 to 1 or 1 to 2 with respect to each other. In FIG. 18, two types of current flow in both the stator armature winding 42 and the rotor winding 41 in this way. In that case, when an 8-pole magnetic field is created by passing an exciting current through the stator armature winding 42 as shown by the blank arrow, the rotor winding 41 cuts the 8-pole magnetic field, generating an 8-pole AC voltage. The voltage is applied between neutral points 48 and 49 through rotary rectifier 50. As a result, a field current flows through the rotor winding 41, creating four field poles. A four-pole motor is formed between the four-pole field poles and the armature winding 42. In this way, the rotor winding 41 serves as both the rotor excitation winding and the field winding. In FIG. In this case, the magnetic circuits are used in common, but when the magnetic circuits are used in this way, electromagnetic induction acts only between the windings that form equal numbers of magnetic poles, forming magnetic poles with different numbers of poles. The basic idea is that there is no electromagnetic induction between the windings.

更に重要なことは一定周波数の交流電源54から周波数
変換装置55を介さず、単に整流器46を経てその直流
側端子から直流励磁電流を電機子巻線42に興える一方
、周波数変換装置55を通し電機子巻線42の外部接続
端子U′、V′、W′を経て電機子巻線42に興うる交
流電力の周波数は広範囲に変化すると云うことで、その
周波数を変えても上述の関係すなわち因極数の磁極を形
成する巻線間のみ電磁的誘導作用が働らき、異極数の磁
極を形成する巻線間には相互に電磁誘導作用が働らかな
いことが基本となっている。
What is more important is that the DC excitation current is generated from the constant frequency AC power supply 54 to the armature winding 42 from the DC side terminal of the rectifier 46 without passing through the frequency converter 55. Since the frequency of the AC power applied to the armature winding 42 via the external connection terminals U', V', and W' of the armature winding 42 changes over a wide range, even if the frequency is changed, the above-mentioned relationship, i.e. The basic principle is that electromagnetic induction acts only between the windings that form equal numbers of magnetic poles, and that no electromagnetic induction acts mutually between the windings that form different numbers of magnetic poles.

第18図ではサイリストモーターの制御回路が示されて
いる。回転子の軸Nに設けられた位置検出装置59の検
出機構に合せてゲート制御回路58が動作し、それによ
って周波数変換装置55のインバーター部分60の制御
素子付き整流器のゲートを制御することになる。周波数
変換装置55はインバーター部分60とリアクトル61
及びコンバーター部分62より成る。コンバーター部分
62の制御素子付き整流器は位相制御回路63により制
御されるが、その位相制御は回転子の回転速度を変換し
た速度変換装置65を基準速度変換装置64と比較した
誤差値によっておこなわれる。第18図ではこの基準速
度変換装置64の設定値を変えて位相制御回路63を制
御し、それによりコンバーター部分62の位相制御をお
こないインバーター60の入力電圧 を制御して電動機の速度を制御する。このようなサイリ
スタモーターにおける始動時には整流器46から中性点
44、45へ直流電圧を加えることなく、短絡スイッチ
66を閉じ、整流器46の直流回路を開く67のスイッ
チを開いて中性点44と45の間に直流電圧が加えられ
ないようにする。このようなサイリスタモーターの始動
時、本発明の制動巻線が装備されるが、その説明は後述
する。
FIG. 18 shows a control circuit for the thyrist motor. The gate control circuit 58 operates in accordance with the detection mechanism of the position detection device 59 provided on the axis N of the rotor, thereby controlling the gate of the rectifier with control element of the inverter section 60 of the frequency conversion device 55. . The frequency converter 55 includes an inverter section 60 and a reactor 61
and a converter portion 62. The rectifier with a control element of the converter section 62 is controlled by a phase control circuit 63, and the phase control is performed by an error value obtained by comparing a speed converter 65, which converts the rotational speed of the rotor, with a reference speed converter 64. In FIG. 18, the set value of this reference speed converter 64 is changed to control the phase control circuit 63, thereby controlling the phase of the converter section 62, controlling the input voltage of the inverter 60, and controlling the speed of the motor. When starting such a thyristor motor, the short circuit switch 66 is closed and the DC circuit of the rectifier 46 is opened. Make sure that no DC voltage is applied between the When starting such a thyristor motor, the brake winding of the present invention is installed, and its description will be described later.

第1図、第2図、第3図には単相同期機の回転子部分を
除く回路が示されている。第1図では固定子電機子巻線
1の構成を外部接続電線2,3と接続する二端子4,5
の間でAA′、BB′巻線系列の並列接続とし、そのA
A′巻線系列の中間端子CとBB′巻線系列の中間端子
Dを設け、上記電機子巻線の中間端子CD間に接続され
た回路に誘起された起電力によって中間端子CD間に電
流が流れるように電気接続する。単相同期機の場合、通
常全周に装備された溝の中、その2/3にあたる溝のみ
が巻線配列に利用され、残りの1/3は利用されていな
い。第1図では昭和59年特許願第167208号や昭
和60年特許願第15045号と同様に電機子巻線AA
′、BB′とは別の独立した巻線系列Fを上記の利用さ
れていない溝の中に設け、巻線Fを起電力源とし、その
起電力により上記中間端子CD間に電流が流れるように
接続し、上記電機子巻線に負荷電流だけではなく、同時
に励磁電流も流れるように配列する。第1図では上記巻
線系列Fと直列にコンデンサー7を接続し、この直列回
路と上記中間端子CDの間にブリッジ形順変換装置6を
電気接続する。この順変換装置6の制御素子付き整流器
は制御装置8により制御されるように接続される。10
が電源であれば、1は電動機の電機子巻線となる。
1, 2, and 3 show the circuit of a single-phase synchronous machine excluding the rotor portion. In Figure 1, the configuration of the stator armature winding 1 is shown as two terminals 4, 5 connected to external connection wires 2, 3.
The winding series AA' and BB' are connected in parallel between
An intermediate terminal C of the A' winding series and an intermediate terminal D of the BB' winding series are provided, and a current is generated between the intermediate terminals CD by the electromotive force induced in the circuit connected between the intermediate terminals CD of the armature winding. Connect electrically so that it flows. In the case of a single-phase synchronous machine, only 2/3 of the grooves provided around the entire circumference are used for winding arrangement, and the remaining 1/3 is not used. In Figure 1, the armature winding AA is
An independent winding series F, different from ' and BB', is provided in the unused groove, and the winding F is used as an electromotive force source, so that the electromotive force causes a current to flow between the intermediate terminals CD. and are arranged so that not only the load current but also the excitation current flows through the armature winding. In FIG. 1, a capacitor 7 is connected in series with the winding series F, and a bridge type forward converter 6 is electrically connected between this series circuit and the intermediate terminal CD. A rectifier with a control element of this forward conversion device 6 is connected to be controlled by a control device 8 . 10
If is the power supply, 1 becomes the armature winding of the motor.

第1図の9は自動電圧調整機構を示したもので母線の電
圧を検出し、一定目標電圧の基準入力要素11と比較し
、その比較誤差をもとにして制御回路8ほ作動させて順
変換装置6の制御素子付き整流器を働らかせるのである
。そのようにして母線電圧を一定んらしめる。この場合
には負荷10へ電力を供給する発電機の接続となる。1
は発電機の電機子巻線である。
Reference numeral 9 in FIG. 1 shows an automatic voltage adjustment mechanism, which detects the bus voltage, compares it with the reference input element 11 of a constant target voltage, and operates the control circuit 8 based on the comparison error. This activates the rectifier with control element of the converter 6. In this way, the bus voltage is kept constant. In this case, a generator that supplies power to the load 10 is connected. 1
is the armature winding of the generator.

第2図は第1図の順変換装置6の代りに逆並列回路72
を接続した場合を示す。逆並列回路72は制御素子付き
整流器及が逆並列接続され、その整流器の制御素子回路
が制御装置8により制御されることを示す。
FIG. 2 shows an anti-parallel circuit 72 instead of the forward converter 6 in FIG.
Shows when connected. An antiparallel circuit 72 indicates that a rectifier with a control element is connected in antiparallel, and the control element circuit of the rectifier is controlled by the control device 8.

第3図の場合、コンデンサー7が巻線系列Fに対し並列
に接続される場合が示される。第1図、第2図、第3図
の回転子には第12図の三相巻線回転子など多相巻線回
転子が好ましい。
In the case of FIG. 3, a case is shown in which the capacitor 7 is connected in parallel to the winding series F. The rotors of FIGS. 1, 2, and 3 are preferably polyphase wound rotors, such as the three-phase wound rotor of FIG. 12.

第20図と第21図は第1図の電機子巻線の配列に対応
した接続図例である。第1図の電機子巻線の接続に対応
し、端子の符号4、5、C、Dと同符号が第20図と第
21図に示される。第1図の実線矢印及び点線矢印の電
流に対応し、第20図と第21図の実線矢印及び点線矢
印の電流が示される。第20図のような接続では負荷電
流により4極磁界が造られ、励磁電流により2極磁界が
造られることを示し、第21図の接続では負荷電流によ
り2極磁界が造られ、励磁電流により4極磁界が造られ
ることを示す。このようにして二種類の電流を同時に同
じ巻線に流し、その磁極を2対1又は1対2になしうる
ことを示した。
20 and 21 are connection diagram examples corresponding to the armature winding arrangement shown in FIG. 1. Corresponding to the connections of the armature windings in FIG. 1, the same symbols as terminals 4, 5, C, and D are shown in FIGS. 20 and 21. Corresponding to the currents indicated by solid line arrows and dotted line arrows in FIG. 1, the currents indicated by solid line arrows and dotted line arrows in FIGS. 20 and 21 are shown. In the connection shown in Figure 20, a four-pole magnetic field is created by the load current, and a two-pole magnetic field is created by the exciting current.In the connection shown in Figure 21, a two-pole magnetic field is created by the load current, and a two-pole magnetic field is created by the exciting current. This shows that a quadrupole magnetic field is created. In this way, it was shown that two types of current could be passed through the same winding at the same time, and the magnetic poles could be made 2:1 or 1:2.

以上の説明の多くは本発明の適用対象となる回転電気機
械の説明に終始したが、本発明ではこのような回転電気
機械の回転子に制動巻線を設ける様子について述べたも
のである。回転子に設けた溝中には第6図のような回転
子巻線かせ設けられている。この第6図の溝の断面を示
したもので、溝28内部にはパーチメント紙68やワニ
スクロス69又26などの絶縁物を敷き、その中に二重
綿巻銅線29が入れ込まれている。22は鉄枝部表面、
70は開口である。制動巻線となる導体27がこの溝中
に挿入されるのであるが、界磁極の磁極表面に設けた溝
に界磁巻線29を挿入し、溝断面から見て界磁巻線29
より磁極表面22に近い部分に、界磁巻線29とは別の
導体27が設けられる。この導体27は界磁巻線29と
は平行に装備され第8図のように回転子の磁極表面近く
に設けられるが、その両端部でエンドリング31、32
に電気接続される。第7図や第9図では導体27の形状
が第6図の場合と若干異なっていることを示す。
Although much of the above explanation has been about the rotating electrical machine to which the present invention is applied, the present invention describes how a brake winding is provided on the rotor of such a rotating electrical machine. Rotor winding skeins as shown in FIG. 6 are provided in the grooves provided in the rotor. This figure shows a cross section of the groove shown in Fig. 6. Inside the groove 28, an insulating material such as parchment paper 68 or varnish cloth 69 or 26 is laid, and a double cotton-wrapped copper wire 29 is inserted into it. . 22 is the iron branch surface;
70 is an opening. The conductor 27 that becomes the brake winding is inserted into this groove.The field winding 29 is inserted into the groove provided on the magnetic pole surface of the field pole, and when viewed from the cross section of the groove, the field winding 29
A conductor 27 separate from the field winding 29 is provided in a portion closer to the magnetic pole surface 22 . This conductor 27 is installed parallel to the field winding 29 and is provided near the magnetic pole surface of the rotor as shown in FIG.
electrically connected to. 7 and 9 show that the shape of the conductor 27 is slightly different from that in FIG. 6.

第8図や第5図では励磁巻線部に励磁電流を流して造ら
れる磁極の極数を8極とし、電機子巻線部に負荷電流を
流して造られる磁極の極数を4極とした場合の制動巻線
ま配列が示される。第5図では27、30、33、34
の4本の導体の両端を短絡導体31、32で短絡し、短
絡導体の形を例えば回転子円筒の周囲に円周に沿ったエ
ンドリングとする。第8図では制動巻線導体相互の距離
τが電気角でπ[ラヂアン]の距離。すなわち回転子の
定格回転速度N[γpm]、電気子誘導起電力の定格周
波数f[Hz]として、120f=NPとした時に上記
挿入導体間距離τが電気角でπ[ラヂアン]、機械角θ
でπ/(p/2)の距離にあるものを集めて電気接続す
る。定格回転速度N[γpm]=1800[γpm]、
f[Hz]=60[Hz]とし、P=120f/N=4
、よりθ=π/2[ラヂアン]となる。第8図や第5図
のように4本の導体27、30、33、34の4本の導
体が相互に機械角θ=π/2[ラジアン]の距離を保っ
て電気接続され、短絡導体31と32で上記4本の導体
を短絡する。
In Figures 8 and 5, the number of magnetic poles created by passing an excitation current through the excitation winding is 8, and the number of magnetic poles created by flowing a load current through the armature winding is 4. The damper winding arrangement in this case is shown. In Figure 5, 27, 30, 33, 34
Both ends of the four conductors are short-circuited with short-circuit conductors 31 and 32, and the shape of the short-circuit conductors is, for example, an end ring extending circumferentially around the rotor cylinder. In FIG. 8, the distance τ between the brake winding conductors is a distance of π [radian] in electrical angle. In other words, when the rated rotational speed of the rotor is N [γpm] and the rated frequency f [Hz] of the armature induced electromotive force is 120f=NP, the distance τ between the inserted conductors is electrical angle π [radian] and mechanical angle θ
, gather things that are at a distance of π/(p/2) and electrically connect them. Rated rotational speed N [γpm] = 1800 [γpm],
f [Hz] = 60 [Hz], P = 120 f/N = 4
, so θ=π/2 [radian]. As shown in Fig. 8 and Fig. 5, the four conductors 27, 30, 33, and 34 are electrically connected to each other while maintaining a distance of mechanical angle θ = π/2 [radian], and the short-circuited conductor The above four conductors are short-circuited at 31 and 32.

第10図はこのような第5図や第8図の制動巻線配列が
妥当であることの説明である。第10図の横軸は導体配
列の回転子周辺を展開した回転子周辺距離を示し、縦軸
がある瞬間の磁束を示したもので、g1は電機子巻線部
に負荷電流を流して造られる磁極のある瞬間の状態を示
す。又g2は励磁巻線部に励磁電流を流して造られる磁
極のある瞬間の状態である。第10図において導体間距
離τで示され、導体HとKがとなり合ったものとする。
FIG. 10 explains why the damper winding arrangements shown in FIGS. 5 and 8 are appropriate. In Fig. 10, the horizontal axis shows the distance around the rotor when the conductor array is expanded around the rotor, and the vertical axis shows the magnetic flux at a certain moment. This shows the state of the magnetic pole at a certain moment. Furthermore, g2 is the instantaneous state of the magnetic pole created by passing an excitation current through the excitation winding. In FIG. 10, the distance between the conductors is indicated by τ, and it is assumed that conductors H and K are adjacent to each other.

回転電気機械が定常状態で同期的に回転している場合、
回転磁界g1の回転速度と導体HとKの回転速度と同期
しているため、導体HとKには起電力を誘導しない。回
転磁界g1の回転速度と導体H、Kの回転速度が異なっ
た場合に、例えば第10図の導体HとKにおける丸印と
ばつ印の起電力を生じ、その直列接続により短絡電流を
生じて制動巻線の効果を発揮する。定常運転時にはg2
なる回転磁界は導体H−Kの回転速度と同期的に回転し
ないから、その回転磁界g2は導体H−Kによって切ら
れることになる。然し、導体H−Kと回転磁界g2との
関係は導体h−mと回転磁界g2との関係と同じになり
、導体hが磁界g2を切ることによって誘導される起電
力と導体mが磁界g2を切ることによって誘導される起
電力が常に等しくなるので導体hとmの直列回路では磁
界g2によって電流を生じない。結局導体H−Kは回転
電気機械の定常運転時、磁束g1及びg2の何れによっ
てもその中に電流を通すことにはならないため、不必要
に制動巻線の損失を大きくすることにはならない。
If a rotating electrical machine is rotating synchronously in steady state,
Since the rotational speed of the rotating magnetic field g1 is synchronized with the rotational speeds of the conductors H and K, no electromotive force is induced in the conductors H and K. If the rotational speed of the rotating magnetic field g1 and the rotational speed of the conductors H and K are different, for example, electromotive forces as shown by the circles and crosses will be generated in the conductors H and K in Fig. 10, and their series connection will cause a short circuit current. Demonstrates the effect of the brake winding. g2 during steady operation
Since the rotating magnetic field g2 does not rotate synchronously with the rotational speed of the conductor HK, the rotating magnetic field g2 is cut off by the conductor HK. However, the relationship between the conductor H-K and the rotating magnetic field g2 is the same as the relationship between the conductor h-m and the rotating magnetic field g2, and the electromotive force induced by the conductor h cutting the magnetic field g2 and the electromotive force induced by the conductor m when the magnetic field g2 Since the electromotive force induced by cutting is always equal, no current is generated by the magnetic field g2 in the series circuit of conductors h and m. After all, during steady operation of the rotating electrical machine, conductor H-K does not allow current to pass through it due to either magnetic fluxes g1 or g2, so loss in the brake winding does not increase unnecessarily.

導体hやjはもしその点に導体をおいて磁界g1の回転
速度と同期速度で回転させると、第10図のばつ印の起
電力を誘導することになり、導体h、h、m、jをエン
ドリングで短絡させると、定常回転時にも不必要な短絡
電流をこれらの導体中に流す結果、制動巻線中に大きい
損失を生じることになる。
If the conductors h and j are placed at that point and rotated at a speed synchronous with the rotational speed of the magnetic field g1, the electromotive force indicated by the cross in Fig. 10 will be induced, and the conductors h, h, m, j If these are short-circuited at the end ring, unnecessary short-circuit current will flow through these conductors even during steady rotation, resulting in large losses in the damper winding.

以上説明してきた本発明の作用効果の特長についてまと
めると、次のようになる。
The features of the effects of the present invention explained above can be summarized as follows.

(1)本発明では単相、三相或いは多相の同期発電機や
電動機など、所謂同期機構造の回転電気機械において、
磁気回路を兼用し、二種類の磁極極数をもたせて、励磁
極をなくし、構造を簡略化させるのであるが、制動巻線
そのものの効果は一般の回転電気機械における制動巻線
の効果と同様である。然し、同期機本体を励磁機として
も使い、同期機本体の電機子巻線に流す負荷電流により
造られる磁極の極数と、固定子巻線に流す励磁電流によ
り造られる磁極の極数との関係を1対2又は2対1とし
てブラシレスで且つ励磁機のない同期機構造の回転電気
機械を造る時、通常の同期機に対する制動巻線では定常
状態で何らかの電流が制動巻線中を流れ、不必要に損失
を大きくし、不必要に制動巻線が電力を供給し、好まし
い制動巻線にならないが、本発明ではこのような不必要
な電流が制動巻線中を流れず、通常運転時の損失を大き
くすることなく、且つ適確な制動巻線動作をすることに
なる。
(1) In the present invention, in a rotating electrical machine with a so-called synchronous machine structure, such as a single-phase, three-phase or multi-phase synchronous generator or electric motor,
Although the structure is simplified by using a dual-purpose magnetic circuit and having two types of magnetic pole numbers and eliminating excitation poles, the effect of the brake winding itself is similar to that of a brake winding in a general rotating electric machine. It is. However, when the synchronous machine body is also used as an excitation machine, the number of magnetic poles created by the load current flowing through the armature winding of the synchronous machine body and the number of magnetic poles created by the excitation current flowing through the stator winding are different. When building a brushless rotating electric machine with a synchronous machine structure without an exciter with a relationship of 1:2 or 2:1, some current flows in the brake winding in a steady state in the brake winding for a normal synchronous machine. This increases loss unnecessarily, causes the brake winding to supply power unnecessarily, and does not make the brake winding desirable. However, in the present invention, such unnecessary current does not flow through the brake winding, and the brake winding can be used during normal operation. Therefore, the damper winding can operate properly without increasing the loss.

(2)上記のような制動巻線は始動時その他過渡的に電
流を流すので、本発明のように磁極表面に設けることは
電流を多く流しうる結果となり、好ましい。又第6図や
第7図の制動巻線導体の溝内配列から判るように、導体
27が回転子巻線を外側へ出ないようにするくさび作用
を兼用する結果ともなり、又制動巻線のためだけの溝を
造る必要もなく、結局回転子構造が簡単な構造となる。
(2) Since the above-mentioned damper winding causes a current to flow transiently at the time of starting and other times, it is preferable to provide it on the surface of the magnetic pole as in the present invention because it allows a large amount of current to flow. In addition, as can be seen from the arrangement of the brake winding conductors in the grooves in Figures 6 and 7, the conductor 27 also functions as a wedge to prevent the rotor winding from coming out, and the brake winding There is no need to create a groove just for this purpose, and the rotor structure becomes simple after all.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図は何れも本発明を適用する電
気回路図例であり、回転子の接続図を除いたもので、単
相同期機についてのものである。 第4図は本発明を適用しうる三相同期機の固定子部分の
電気接続図例である。 第5図は制動巻線とエンドリングの関係を示す平面図と
立面図で、4極機の場合の図例である。 第6図は回転子に設けた溝の中に配列した界磁巻線と制
動巻線の関係図例で、第7図と第9図は第6図から変形
した制動巻線の配列図例を示す。第8図は制動巻線とエ
ンドリングの関係例を示す図である。第10図は本発明
の制動巻線とエンドリングの関係による制動巻線作用を
説明する図である。第11図は制動巻線とエンドリング
の関係を示す平面図と立面図で、4極機の場合の図例で
ある。第12図は本発明が適用されうる回転電気機械の
回転子部分の接続図例である。第13図は本発明適用の
同期機固定子接続図例である。第14図は第13図の電
機子巻線42の接続の一例を展開図として示したもの、
第15図も第13図の電機子巻線の接続の一例を展開図
として示したものである。第14図では励磁電流を流し
て電機子巻線が8極磁極をつくることを示し、第15図
では負荷電流を流して電機子巻線が4極磁極をつくるこ
とを示す。第16図と第17図は第12図の回転子巻線
の展開図例であり、第16図では励磁電流が流される場
合、第17図では界磁電流を流す場合が示される。第1
8図は本発明が適用されるサイリスモーターの回路の一
例を示す。第19図は第18図における電機子巻線42
の接続の一例である。第20図と第21図は電機子巻線
接続図例である。 つぎに図の主要な部分をあらわす符号には以下に示すよ
うなものがある。 1:固定子電機子巻線、 2.3:外部接続電線、 4
.5:接続端子、 6:順変換装置、7:コンデンサー
、 8:制御装置、 9:自動電圧調整機構、 10:
電源又は負荷、 11:一定目標電圧の基準入力要素、
 12.13.14:固定子巻線、 15:制御装置、
 16:励磁巻線部、 17.18.19:コンデンサ
ー、20:順変換装置、 21:中性点、 22:磁極
表面、 23.24.25:端子、 26:界磁巻線、
 27.30.33.34:制動巻線電気導体、 28
:スロット、 29:界磁巻線、 31.32:電気導
体短絡用エンドリング、27:制動巻線電気導体、 3
5.36.37.38:制動巻線電気導体、 39.4
0:電気導体短絡用エンドリング、 41:回転子巻線
、42:固定子電機子巻線、 43:交流電力供給を示
す矢印、 44.45:中性点、 46:整流器、 4
7:電源より電力を供給されることを示す矢印、 48
:49:中性点、 50:整流器、 51:固定子、 
52:回転子、 53:外部接続電線、 54:外部電
源、 55:周波数変換装置、 56:コンデンサー、
 57:制御装置、 58:ゲート制御回路、 59:
位置検出装置、 60:インバーター、 61:リアク
トル、 62:コンバーター、 63:位相制御回路、
 64:基準速度変換装置、 65:速度変換装置、 
66.67:スイッチ、 68:パーチメント紙、 6
9:ワニスク ロス、 70:開口、 71:絶縁紙、 72:逆並列
回路。
1, 2, and 3 are examples of electrical circuit diagrams to which the present invention is applied, excluding the rotor connection diagram, and are for a single-phase synchronous machine. FIG. 4 is an example of an electrical connection diagram of a stator portion of a three-phase synchronous machine to which the present invention can be applied. FIG. 5 is a plan view and an elevation view showing the relationship between the brake winding and the end ring, and is an example of a four-pole machine. Figure 6 is an example of a relationship diagram of field windings and brake windings arranged in grooves provided in the rotor, and Figures 7 and 9 are examples of brake winding arrangement diagrams modified from Figure 6. shows. FIG. 8 is a diagram showing an example of the relationship between the brake winding and the end ring. FIG. 10 is a diagram illustrating the brake winding action according to the relationship between the brake winding and the end ring of the present invention. FIG. 11 is a plan view and an elevation view showing the relationship between the damper winding and the end ring, and is an example of a four-pole machine. FIG. 12 is an example of a connection diagram of a rotor portion of a rotating electric machine to which the present invention can be applied. FIG. 13 is an example of a synchronous machine stator connection diagram to which the present invention is applied. FIG. 14 shows an example of the connection of the armature winding 42 in FIG. 13 as a developed diagram;
FIG. 15 also shows an example of the connection of the armature windings shown in FIG. 13 as a developed diagram. FIG. 14 shows that the armature winding forms eight magnetic poles by passing an excitation current, and FIG. 15 shows that the armature winding forms four magnetic poles by passing a load current. FIGS. 16 and 17 are examples of developed views of the rotor winding shown in FIG. 12, with FIG. 16 showing the case where an exciting current is passed, and FIG. 17 showing the case where a field current is flowing. 1st
FIG. 8 shows an example of a thyristor motor circuit to which the present invention is applied. Figure 19 shows the armature winding 42 in Figure 18.
This is an example of a connection. FIGS. 20 and 21 are examples of armature winding connection diagrams. Next, there are the following symbols that represent the main parts of the diagram. 1: Stator armature winding, 2.3: External connection wire, 4
.. 5: Connection terminal, 6: Forward conversion device, 7: Capacitor, 8: Control device, 9: Automatic voltage adjustment mechanism, 10:
Power supply or load, 11: Reference input element of constant target voltage,
12.13.14: Stator winding, 15: Control device,
16: Excitation winding section, 17.18.19: Capacitor, 20: Forward converter, 21: Neutral point, 22: Magnetic pole surface, 23.24.25: Terminal, 26: Field winding,
27.30.33.34: Brake winding electrical conductor, 28
: Slot, 29: Field winding, 31.32: End ring for electrical conductor short circuit, 27: Brake winding electrical conductor, 3
5.36.37.38: Brake winding electrical conductor, 39.4
0: End ring for electrical conductor short circuit, 41: Rotor winding, 42: Stator armature winding, 43: Arrow indicating AC power supply, 44.45: Neutral point, 46: Rectifier, 4
7: Arrow indicating that power is supplied from the power source, 48
:49: Neutral point, 50: Rectifier, 51: Stator,
52: Rotor, 53: External connection wire, 54: External power supply, 55: Frequency converter, 56: Capacitor,
57: Control device, 58: Gate control circuit, 59:
position detection device, 60: inverter, 61: reactor, 62: converter, 63: phase control circuit,
64: Reference speed converter, 65: Speed converter,
66.67: Switch, 68: Parchment paper, 6
9: Varnish cloth, 70: Opening, 71: Insulating paper, 72: Anti-parallel circuit.

Claims (1)

【特許請求の範囲】[Claims] 固定子に負荷電流を通す電機子巻線部を、又回転子に界
磁巻線部を設け、上記固定子に装備された巻線の或る端
子と上記固定子に設けられた励磁巻線部とを電気接続す
ることによって励磁巻線部に励磁電力を供給するように
配列し、電機子巻線部の鎖交する磁気回路と励磁巻線部
の鎖交する磁気回路を兼用する配列とし、その励磁電力
を励磁巻線部に流すことにより造られる磁極の極数と、
上記電機子巻線部に負荷電流を流して造られる磁極の極
数との関係を、その何れか一方を1とし、他方をその2
倍とする関係となる巻線配列とし、その励磁巻線部に励
磁電流を流して造られる磁極を、これと同一の極数の回
転子励磁巻線部が切って回転子の励磁巻線部に励磁電圧
を誘起させ、その励磁電圧により界磁巻線部に電流を流
し、界磁極を造る配列において、上記励磁巻線部に励磁
電流を流して造られる磁極の極数を、上記電機子巻線部
に負荷電流を流して造られる磁極の極数、P極の2倍と
し、界磁極の磁極表面にスロットを設け、このスロット
に界磁巻線を挿入し、そのスロット断面から見た時、界
磁巻線の挿入部より磁極表面に近い部分に界磁巻線とは
別の電気導体を挿入し、この挿入電気導体の複数個の両
端部でそれぞれ電気接続して電気導体を短絡し、この挿
入電気導体相互間距離τが電気角でπ[ラジアン]の距
離、すなわち回転子の定格回転速度N[γpm]、電機
子誘導起電力の定格周波数f[Hz]として120f=
NPとした時に、上記挿入導体間距離がτとして、電気
角でτがπ[ラジアン]、機械角Oでπ/(P/2)の
距離にあるものを集めて電気接続するように配した回転
電気機械の構造
The stator is provided with an armature winding section for passing a load current, and the rotor is provided with a field winding section, and a certain terminal of the winding installed on the stator and an excitation winding provided on the stator are provided. The arrangement is such that excitation power is supplied to the excitation winding section by electrically connecting the armature winding section with the excitation winding section, and the arrangement serves as both the interlinking magnetic circuit of the armature winding section and the interlinking magnetic circuit of the excitation winding section. , the number of magnetic poles created by flowing the excitation power to the excitation winding,
Regarding the relationship between the number of magnetic poles created by passing a load current through the armature winding section, one of them is defined as 1, and the other is defined as 2.
The windings are arranged in a double relationship, and the magnetic poles created by passing an excitation current through the excitation winding are cut by the rotor excitation winding with the same number of poles, and the excitation winding of the rotor is cut. In an arrangement in which an excitation voltage is induced in the armature and a current is caused to flow through the field winding section to create a field pole, the number of magnetic poles created by passing an excitation current through the excitation winding section is determined by The number of poles of the magnetic pole created by passing a load current through the winding section is twice the number of P poles, a slot is provided on the surface of the field pole, the field winding is inserted into this slot, and the figure is as seen from the cross section of the slot. When an electrical conductor separate from the field winding is inserted in a part closer to the magnetic pole surface than the insertion part of the field winding, electrical connections are made at both ends of the inserted electrical conductors to short-circuit the electrical conductors. Assuming that the distance τ between the inserted electric conductors is a distance of π [radian] in electrical angle, that is, the rated rotational speed of the rotor N [γpm] and the rated frequency f [Hz] of the armature induced electromotive force, 120f=
When set to NP, the distance between the inserted conductors is τ, and the conductors at a distance of π [radian] in electrical angle and π/(P/2) in mechanical angle O are gathered and arranged to be electrically connected. Structure of rotating electrical machine
JP60268048A 1985-11-28 1985-11-28 Structure of rotary electric machine Pending JPS62131744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60268048A JPS62131744A (en) 1985-11-28 1985-11-28 Structure of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60268048A JPS62131744A (en) 1985-11-28 1985-11-28 Structure of rotary electric machine

Publications (1)

Publication Number Publication Date
JPS62131744A true JPS62131744A (en) 1987-06-15

Family

ID=17453156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60268048A Pending JPS62131744A (en) 1985-11-28 1985-11-28 Structure of rotary electric machine

Country Status (1)

Country Link
JP (1) JPS62131744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694553B2 (en) 2009-06-17 2017-07-04 Graphic Packaging International, Inc. Tool for forming a three dimensional container or construct

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694553B2 (en) 2009-06-17 2017-07-04 Graphic Packaging International, Inc. Tool for forming a three dimensional container or construct

Similar Documents

Publication Publication Date Title
KR100215534B1 (en) Dual-stator induction synchronous motor
US4393344A (en) Squirrel cage induction motors
US4038575A (en) Multi-phase generator
US6891301B1 (en) Simplified hybrid-secondary uncluttered machine and method
US5796233A (en) Multiple-stator induction synchronous motor
JP3489105B2 (en) Brushless self-excited three-phase synchronous generator
JPH078122B2 (en) AC generator
US4656410A (en) Construction of single-phase electric rotating machine
JPS62131744A (en) Structure of rotary electric machine
JPS6271461A (en) Structure of rotary electric machine
JPS61288755A (en) Structure of rotary electric machine
JPH04265645A (en) Stator wiring structure of synchronous motor
KR860000925B1 (en) Self-excited generator
JPS63144744A (en) Brushless axial field rotary electric machine without exciter
JPS5967858A (en) Structure of rotary electric machine
JPS62221847A (en) Structure of rotary electric machine
JPS58165648A (en) Single phase rotary electric machine
JPS6122796A (en) Controller for rotary electric machine
JPS58224549A (en) Structure of rotary electric machine
JPH10108425A (en) Motor that can be operated at two different voltage levels
JPS6181157A (en) Structure of rotary electric machine
JPS6022450A (en) Structure of rotary electric machine
JPH09285195A (en) Generator for welding
JPS59110356A (en) Structure of rotary electric machine
JPH0218039B2 (en)