JPS6212987A - Magnetic bubble memory device - Google Patents

Magnetic bubble memory device

Info

Publication number
JPS6212987A
JPS6212987A JP60150447A JP15044785A JPS6212987A JP S6212987 A JPS6212987 A JP S6212987A JP 60150447 A JP60150447 A JP 60150447A JP 15044785 A JP15044785 A JP 15044785A JP S6212987 A JPS6212987 A JP S6212987A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
bubble memory
correction
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60150447A
Other languages
Japanese (ja)
Other versions
JPH0219555B2 (en
Inventor
Seiichi Iwasa
誠一 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60150447A priority Critical patent/JPS6212987A/en
Publication of JPS6212987A publication Critical patent/JPS6212987A/en
Publication of JPH0219555B2 publication Critical patent/JPH0219555B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To widen a temperature range for securing operation by providing a correcting magnetic field generating means for generating the correcting magnetic field opposite in direction to the bias magnetic field of a package at the outside of magnetic shield of a magnetic bubble memory package packaged on a printed circuit board. CONSTITUTION:Plural packages PA are packaged on a printed circuit board 15, plates 11, 12 made of soft magnetic material such as 'Permalloy(R)' are disposed vertically in the outside of magnetic shield case 6 of a package PA and at both end parts of these plates, permanent magnets 13, 14 are interposed respectively. As for the polarity of the permanent magnets 13, 14, an upper side in the drawing is N pole and a lower side is S pole, then, a correcting magnetic field HCO opposite in direction to a bias magnetic field HB is generated between the soft magnetic plates 11, 12. As the permanent magnets 13, 14 for generating the correcting magnetic field, a Ba ferrite or Sr ferrite or the lie are used, the correcting magnetic field HCO is also change in a changing rate of -0.2%/ deg.C.

Description

【発明の詳細な説明】 〔概要〕 本発明の磁気バブルメモリ装置に関し、その動作保鉦温
度範囲を広くするため、プリン)&上に実装された磁気
バブルメモリパッケージの磁気シ−ルドの外側に、該パ
ッケージのバイアス磁界と逆方向の補正用磁界を発生す
る補正用磁界発生手段を設けたことを特徴とする。
[Detailed Description of the Invention] [Summary] Regarding the magnetic bubble memory device of the present invention, in order to widen the operating temperature range, the outside of the magnetic shield of the magnetic bubble memory package mounted on the The present invention is characterized in that a correction magnetic field generating means for generating a correction magnetic field in a direction opposite to the bias magnetic field of the package is provided.

〔産業上の利用分野〕[Industrial application field]

本発明は磁気バブルメモリ装置(以下単に「バブルメモ
リ」とも略記」に関し、特にバイアス磁界を温度に関し
て補正して広い動作保証温度範囲を実現可能とするバイ
アス磁界補正手段を具えたパッケージ構造に関するもの
である。
The present invention relates to a magnetic bubble memory device (hereinafter simply referred to as "bubble memory"), and in particular to a package structure equipped with bias magnetic field correction means that corrects the bias magnetic field with respect to temperature to realize a wide guaranteed operating temperature range. be.

バブルメモリは可動部分のない固定ファイルメモリを実
現するものとして期待されている。近年、バブルメモリ
の用途が広がるにつれ、その信頼性の高さ及び振動や衝
隼に対する強さが注目され、航空機搭載用メモリとして
の適用が図られている。
Bubble memory is expected to realize fixed file memory with no moving parts. In recent years, as the use of bubble memory has expanded, its high reliability and resistance to vibration and impact have attracted attention, and its application as memory on board aircraft has been attempted.

この場合、飛行機が成msを飛行するようなときは例え
ば−55℃といった低温になり、このよう々低温でも安
定に動作することが要求される。しかしながら、後述す
るように従来のバブルメモリはこのような低温では安定
な動作を保証できず、その対策が要望されていた。
In this case, when the airplane flies at temperatures as low as -55° C., for example, it is required to operate stably even at such low temperatures. However, as will be described later, conventional bubble memories cannot guarantee stable operation at such low temperatures, and a countermeasure has been desired.

〔従来の技術および発明が解決しようとする問題点〕以
下、従来技術につき図面の第1図から第6図を参照して
説明する。第1図及び第2図は従来のバブルメモリパッ
ケージの一例の構造を示すそれぞれ一部破断分解斜視図
及び要部側面図である。
[Prior art and problems to be solved by the invention] Hereinafter, the prior art will be explained with reference to FIGS. 1 to 6 of the drawings. 1 and 2 are a partially cutaway exploded perspective view and a side view of essential parts, respectively, showing the structure of an example of a conventional bubble memory package.

これらの図中、符号P&はパッケージ全体を示し、パッ
ケージPAはバブルメモリ素子(以下「メモリ素子」と
略記)1、このメモリ素子1を括載するプリント基板2
、メモリ素子1内の磁気バブル(以下単に「バブル」と
も略記)の糾持のためのバイアス磁界HBを発生する永
久磁石3及び4、バブル駆動用の面内回転磁界HDを発
生するためのコイル5、及び以上の要素を外部磁界から
遮断する磁気シールドケース6から構成されている0メ
そり素子1は基本的には例えばガドリニウム・ガリウム
・ガーネットの単結晶基板上に液相エピタキシャル成長
により磁性ガーネット等の磁性薄膜(パズル結晶)を形
成したものであり、バブル結晶内のパズルの有無を2進
法情報のそれぞれ“1°及び°0′″に対厄させて情報
を記憶する。ノくプルはバブル結晶中に存在する泡状−
区であり、適当な大きさのバイアス磁界が印加されてい
る状態でのみ存在可能である。バイアス磁界が成る大き
さを越えるとバブルは消滅し、また成る大きさ以下では
ストライプ磁区となる。これらのバイアス磁界をそれぞ
れ消滅(コラプス)磁界およびストリップアウト(−ま
たはストライプアウト)a界と称する□またメモIJ 
g子1にはバブル結晶上にバブルの発生、トランスファ
、レプリケート及は検出等の機能をする稀々の機能部、
更にはパーマロイ等の軟磁性体パターンあるいはイオン
注入パターンによってバブル転送路が形成され、面内回
転駆動磁界HDの印加によってバブルは転送路によって
伝送され、機能部に制御電流を印加することによってパ
ズルが制御されて情報の書込み及び胱出しが行われる。
In these figures, the symbol P& indicates the entire package, and the package PA includes a bubble memory element (hereinafter abbreviated as "memory element") 1 and a printed circuit board 2 on which this memory element 1 is mounted.
, permanent magnets 3 and 4 that generate a bias magnetic field HB for holding the magnetic bubble (hereinafter simply referred to as "bubble") in the memory element 1, and a coil that generates an in-plane rotating magnetic field HD for driving the bubble. 5, and a magnetic shielding case 6 that shields the above elements from external magnetic fields. The mesori element 1 is basically formed by liquid phase epitaxial growth on a single crystal substrate of, for example, gadolinium, gallium, or garnet. A magnetic thin film (puzzle crystal) is formed, and information is stored by comparing the presence or absence of a puzzle within the bubble crystal to binary information of "1° and °0'", respectively. Nokupuru is a bubble-like substance that exists in bubble crystals.
This can only exist when a bias magnetic field of an appropriate magnitude is applied. When the bias magnetic field exceeds the magnitude, the bubble disappears, and below the bias magnetic field, the bubble becomes a striped magnetic domain. These bias magnetic fields are called the collapse field and the strip-out (- or stripe-out) a field, respectively □Also note IJ
G-1 has rare functional parts on the bubble crystal that perform functions such as bubble generation, transfer, replication, and detection.
Furthermore, a bubble transfer path is formed by a soft magnetic material pattern such as permalloy or an ion implantation pattern, and the bubbles are transmitted by the transfer path by applying an in-plane rotational drive magnetic field HD, and the puzzle is solved by applying a control current to the functional part. Information writing and bladder evacuation are controlled.

このようなパプルメ七り素子の動作特性は一般に駆動磁
界HDK対するバイアス磁界HHの動作マージンで評1
1!IIきnる。f!Ajえげ第3図は2μmバブル用
のメモリ素子の動作特性を示すものでちり、横軸に駆動
磁界HDs縦軸にバイアス磁界HBを示しである。図中
、符号H6は前述の消減磁界を示し、符号H富は前述の
ストライプアウト磁界を示し、HaとHlとの間の領域
FBがフリーバブル存在領域、つまりパブ/I/転送路
等が形成さfていない磁気パブA/結晶中にバブルが自
由な状態で存在し得るバイアス磁界の範囲を示す。−万
、曲線りは動作マージン曲線であり、この曲線で囲まれ
た領域(特にハツチングを付して明示)がメモリ素子の
動作領域である。この動作領域の上限値H。
The operating characteristics of such Papulume elements are generally evaluated by the operating margin of the bias magnetic field HH with respect to the drive magnetic field HDK.
1! II Kinru. f! Figure 3 shows the operating characteristics of a memory element for a 2 μm bubble, with the horizontal axis representing the drive magnetic field HDs and the vertical axis representing the bias magnetic field HB. In the figure, the symbol H6 indicates the above-mentioned extinction/demagnetization field, the symbol H-rich indicates the above-mentioned stripe-out magnetic field, and the region FB between Ha and Hl is the free bubble existence region, that is, the pub/I/transfer path etc. are formed. Figure 2 shows the range of bias magnetic fields in which bubbles can exist in a free state in an unfinished magnetic bubble A/crystal. -10,000 The curved line is an operating margin curve, and the area surrounded by this curve (especially indicated by hatching) is the operating area of the memory element. Upper limit value H of this operating region.

は転送中のパズルが消滅するバイアス磁界の大きさ、ま
た下限値H,はバブルが転送路に沿っであるいは転送路
からそれてストリップアウトするバイアス磁界の大きさ
を表わす。一般に動作領域はフリーバブル存在領*FB
よ妙やや高いi界領域となり、動作領域の上限値Ha及
び下限r+iH,は7リーバブル存在領域FBよりやや
高い磁界a城となるが、動作領域の上I@値F1゜及び
下限値H8はフリーバブル消減磁界H,に比例すること
が知られている。
represents the magnitude of the bias magnetic field at which the puzzle during transfer disappears, and the lower limit H, represents the magnitude of the bias magnetic field at which the bubble strips out along the transfer path or away from the transfer path. Generally, the operating region is the free bubble existence region *FB
It is a slightly higher i-field region, and the upper limit Ha and lower limit r+iH of the operating region are slightly higher than the 7 livable existence region FB, but the upper I @ value F1 ° and lower limit H8 of the operating region are free. It is known that bubble extinction is proportional to the demagnetizing field H.

また、バブルメモリ素子の動作は温度に依存する。第4
図はフリーバブル消減磁界I(0の温度依存性を示す。
Additionally, the operation of bubble memory devices is temperature dependent. Fourth
The figure shows the temperature dependence of the free bubble demagnetization field I(0).

図示の如<H(lは温度Tの変化に対して非直線的に変
化するが、例えば0℃から70℃の範囲の平均変化率は
−0,2%/’Cである。また第5図は駆動磁界H1)
=500.でのメモリ素子の動作特性の温度依存性を示
し、動作領域の上限値H0および下限値H8は共に0℃
から70℃の範囲で約−0,21/℃の変化率を有する
。−万、永久磁石は例えばSrフェライトまたはBaフ
ェライト等を用いると、その発生磁界は温度に依存して
一〇、2チ/℃の変化率で直線的に変化する。従来は°
このような温度特性の永久磁石3,4を用いて例えば第
5図に示すようなバイアス磁界HBを発生させるように
しである。第6図は第5図におけるバイアス磁界HBと
動作領域の上限値Ho および下限値H1との差ΔHB
の温度依存性を示すものである。この図のハツチング部
分が動作保証されることかわかる。
As shown in the figure, <H(l changes non-linearly with respect to changes in temperature T, but for example, the average rate of change in the range from 0°C to 70°C is -0.2%/'C. The figure shows the driving magnetic field H1)
=500. The upper limit H0 and lower limit H8 of the operating region are both 0°C.
It has a rate of change of approximately -0.21/°C in the range from 70°C to 70°C. - If the permanent magnet is, for example, Sr ferrite or Ba ferrite, the generated magnetic field changes linearly at a rate of change of 10.2 inches/°C depending on the temperature. Previously °
The permanent magnets 3 and 4 having such temperature characteristics are used to generate a bias magnetic field HB as shown in FIG. 5, for example. Figure 6 shows the difference ΔHB between the bias magnetic field HB and the upper limit value Ho and lower limit value H1 of the operating region in Figure 5.
This shows the temperature dependence of It can be seen that the hatched part in this figure is guaranteed to work.

しかしかかる従来構造では前記の一55℃といった低温
では動作が保証されず、このため装置全体を恒温箱に入
れてパッケージ周辺温度が0℃以下にならないようKす
る等の対策を溝する必要があった。
However, with this conventional structure, operation is not guaranteed at temperatures as low as 155°C, and therefore it is necessary to take measures such as placing the entire device in a thermostatic box and heating it to prevent the ambient temperature of the package from dropping below 0°C. Ta.

〔問題点を解決するための手段および作用〕本発明は上
記従来技術の問題薇を解消すること。
[Means and effects for solving the problems] The present invention solves the problems of the above-mentioned prior art.

すなわち保温等の特別な対策を必要とせずに従来のそれ
よりも広い温度範囲で安定な動作を保証し得るすぐれた
磁気バブルメモリ装置を提供することを目的とするもの
である。
That is, the object of the present invention is to provide an excellent magnetic bubble memory device that can guarantee stable operation over a wider temperature range than conventional devices without requiring special measures such as heat insulation.

上記目的の実現にあたり、前記従来技術を鑑みれば、従
来の動作保証温度範囲が挾い原因はメモリ素子の動作特
性と永久磁石によるバイアス磁界の温度依存性が相違す
る点にある。す表わち、第5図に示す如くメモリ素子動
作領域の上限及び下限の温度依存性が非直線的ざあるの
に対して永久磁石によるバイアス磁界のそれが直線的で
あることに起因しており、バイアス磁界の温度依存性が
直線的である限り、従来より広い動作保証温度範囲を得
ることは不可能である。
In order to achieve the above object, in view of the conventional technology, the reason why the conventional guaranteed operation temperature range falls short is that the operating characteristics of the memory element and the temperature dependence of the bias magnetic field generated by the permanent magnet are different. In other words, as shown in FIG. 5, the temperature dependence of the upper and lower limits of the memory element operating range is non-linear, whereas that of the bias magnetic field from the permanent magnet is linear. Therefore, as long as the temperature dependence of the bias magnetic field is linear, it is impossible to obtain a wider guaranteed operating temperature range than in the past.

そこで本発明はメモリパッケージにバイアス磁界補正手
段を設け、バイアス磁界をその温度依存性が広い温度範
囲にわたってメモリ素子の動作時性のそれとほぼ近似す
る如く補正して広い動作保証領域を実現するものである
Therefore, the present invention provides a bias magnetic field correction means in the memory package, and corrects the bias magnetic field so that its temperature dependence almost approximates that of the memory element's operating characteristic over a wide temperature range, thereby achieving a wide guaranteed operation range. be.

すなわち本発明は、磁気バブルメモリ素子の磁気バブル
を維持するためのバイアス磁界発生手段と、該バイアス
研界発住手段の外側に設けられていて外部磁界を遮断す
る磁気シールドとを少く共具備する磁気バブルメモリパ
ッケージを少く共1個実装したプリント板と、前記磁気
シールドの外側に配設した前記バイアス磁界と逆方向の
補正用磁界を発生する補正用磁界発生手段を少なくとも
具備した構成としたものである。
That is, the present invention includes a bias magnetic field generating means for maintaining the magnetic bubble of the magnetic bubble memory element, and a magnetic shield provided outside the bias magnetic field generating means to block external magnetic fields. A configuration comprising at least a printed board on which at least one magnetic bubble memory package is mounted, and a correction magnetic field generating means for generating a correction magnetic field in a direction opposite to the bias magnetic field, which is disposed outside the magnetic shield. It is.

〔実施例〕〔Example〕

以下、本発明の実施例につき図面の第7図から第14図
を参照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 7 to 14 of the drawings.

第7図(a)(b)は本発明によるバブルメモリパッケ
ージの第1実施例の側面図と斜視図である。図中、符号
Pんは第1図及び第2図に示したパッケージと同じもの
を示す。そしてこのパッケージP入を複数個プリント板
15に実装し、核パッケージPAの磁気シールドケース
6の外側の上下に、例えばパーマロイ等の軟磁性体から
まる板11.12を配置し、これらの板の両端部にそれ
ぞれ永久磁石13.14を介在配置した構造としである
。永久磁石13,14の極性を図で上側がN極、下側が
S極となるようにすると、軟磁性体板11.12の間に
バイアス磁界HBとは逆向きの補正用磁界)Tcoが生
ずる0補正磁界発生用の永久磁石13.14としてBa
フェライトあるいはSr7エライト等を用いれば、補正
用磁界Hco4tた−0.2%/℃の変化率で変化する
FIGS. 7(a) and 7(b) are a side view and a perspective view of a first embodiment of a bubble memory package according to the present invention. In the figure, the symbol P indicates the same package as shown in FIGS. 1 and 2. Then, a plurality of these packages P are mounted on the printed board 15, and round plates 11 and 12 made of soft magnetic material such as permalloy are arranged above and below the outside of the magnetic shield case 6 of the nuclear package PA, and both ends of these plates are arranged. It has a structure in which permanent magnets 13 and 14 are interposed in each part. When the polarities of the permanent magnets 13 and 14 are set so that the upper side is the N pole and the lower side is the S pole, a correction magnetic field (Tco) is generated between the soft magnetic plates 11 and 12 in the opposite direction to the bias magnetic field HB. Ba as permanent magnet 13.14 for generating zero correction magnetic field
If ferrite, Sr7 elite, etc. are used, the correction magnetic field Hco4t changes at a rate of change of -0.2%/°C.

一方、第8図はシールドケース6のシールド特性を示し
、図から分かるように外部磁界が7006を越えるとケ
ース内部の磁界が急激に変化する。
On the other hand, FIG. 8 shows the shielding characteristics of the shield case 6, and as can be seen from the figure, when the external magnetic field exceeds 7006, the magnetic field inside the case changes rapidly.

このことは、シールドケースが外部磁界700eで飽和
し、700eを越える田界成分をほとんど通過させるこ
とを示している。
This indicates that the shield case is saturated by the external magnetic field 700e and allows almost all field components exceeding 700e to pass through.

従って、永久磁石13.14による補正用磁界HcQを
20℃で700eに設定すると、20℃以下におけるH
coの値ならびにHcoのシールドケース通過成分によ
るバイアス磁界)THの低減分−Δ指は第1表に示す如
くとなる。
Therefore, if the correction magnetic field HcQ by the permanent magnets 13 and 14 is set to 700e at 20°C, H
The value of co and the reduction in TH (bias magnetic field due to the component of Hco passing through the shield case) - Δ finger are as shown in Table 1.

第1表 この結果、前記第5図と同様の第9図に示す如くバイア
ス磁界HBは20℃付近で折れ曲った折れ線状となる。
Table 1 As a result, as shown in FIG. 9, which is similar to FIG. 5, the bias magnetic field HB takes the form of a polygonal line that is bent around 20°C.

図中のハツチング領域がHBの低減分−ΔHBであり、
直線HB′が補正されたバイアス磁界を示す。すなわち
1図から分るように一55℃から20℃の温度範囲にお
いてはバイアス磁界HB′の変化率が動作領域の上限値
Hσ′および下限値H3のそれとほぼ近似することにな
る。尚、20℃以上の温度では補正用磁界HcOはシー
ルドケース6に吸収されて内部には10@程度しか入り
込まないため、バイアス磁界HBは本来の温度依存性に
のみ依存して変化し、従って従来と変らぬ温度特性が得
られる。第10図は第9図に関して前記第6図と同手法
でもっで動作保証領域(ハツチング部分)を示したもの
であり、この図から分るように一55℃以下から70″
′ctでの広い温度範囲で安定した動作が保証されるこ
とになる。
The hatched area in the figure is the reduction in HB - ΔHB,
A straight line HB' indicates the corrected bias magnetic field. That is, as can be seen from FIG. 1, in the temperature range from -55 DEG C. to 20 DEG C., the rate of change of the bias magnetic field HB' is approximately close to that of the upper limit value Hσ' and the lower limit value H3 of the operating region. Note that at temperatures above 20°C, the correction magnetic field HcO is absorbed by the shield case 6 and only about 10@C enters the inside, so the bias magnetic field HB changes only depending on the original temperature dependence, and therefore the conventional The same temperature characteristics can be obtained. Figure 10 shows the guaranteed operation area (hatched area) using the same method as in Figure 6 with respect to Figure 9.
Stable operation is guaranteed over a wide temperature range at 'ct.

尚、シールドケース6は補正用磁界Hcoにより飽和さ
れるとシールド機能を失うが、その外側にある軟磁性体
板11.12がシールド機能を有するため、外部磁界を
有効に遮断可能である。
Although the shielding case 6 loses its shielding function when saturated by the correction magnetic field Hco, the soft magnetic plates 11 and 12 on the outside thereof have a shielding function, so that they can effectively block external magnetic fields.

第11図から第14図は本発明の第2から第5の実施例
をそれぞれ示す。これらの実施例の基本的な構成及び作
用は前記第1実施例と全く同じであり、同一部分には同
一符号を示しである。
11 to 14 show second to fifth embodiments of the present invention, respectively. The basic structure and operation of these embodiments are completely the same as those of the first embodiment, and the same parts are denoted by the same reference numerals.

第11図の第2実施例では、軟磁性体板11゜12の両
端部において小さな永久磁石16.16を回転可能に設
けてあり、それの角度を調整することにより軟磁性体板
11.12間の補正用磁界Hco (第7図)の大きさ
を適宜調整することができるようにしである。
In the second embodiment shown in FIG. 11, small permanent magnets 16.16 are rotatably provided at both ends of the soft magnetic plates 11.12, and by adjusting the angle of the small permanent magnets 16.16, the soft magnetic plates 11.12 This allows the magnitude of the correction magnetic field Hco (FIG. 7) between them to be adjusted as appropriate.

また第12図の第3実施例では、軟磁性体板11の両端
部に出性体からなるネジ17.18を設け、これらのネ
ジを出し入れして上記同様に補正用磁界)(COの大き
さを適宜調整可能としである。
In addition, in the third embodiment shown in FIG. 12, screws 17 and 18 made of a magnetic material are provided at both ends of the soft magnetic plate 11, and these screws are inserted and removed to adjust the magnetic field for correction (the magnitude of CO). The height can be adjusted as appropriate.

第13図の第4実施例では、シールドケース6と軟磁性
体板11との間にAJ、 Cu、セラミック等の熱良導
体のスペーサ19(特にハツチングを付して明示)を介
在させた構造としである。これによりパッケージPAで
発生した熱を外側に逃がすことができる。
In the fourth embodiment shown in FIG. 13, a spacer 19 made of a good thermal conductor such as AJ, Cu, or ceramic is interposed between the shield case 6 and the soft magnetic plate 11 (particularly indicated by hatching). It is. Thereby, the heat generated in the package PA can be released to the outside.

更に第14図の第5実施例では、軟磁性体板11の表面
に放熱フィン21を設けた構造としである。
Furthermore, the fifth embodiment shown in FIG. 14 has a structure in which radiation fins 21 are provided on the surface of the soft magnetic plate 11.

これKより軟磁性体板11が放熱器としても機能し、高
温側の温度特性をも改善可能である。尚、放熱フィン2
1の代わりに軟磁性体板11の表面を凹凸にしても良い
。この場合、板の表面を直接凹凸に加工しても良いし、
あるいは予め凹凸が形成された別の板を取抄付けるよう
にすることもできる。
Because of this K, the soft magnetic plate 11 also functions as a radiator, and the temperature characteristics on the high temperature side can also be improved. In addition, heat radiation fin 2
Instead of 1, the surface of the soft magnetic plate 11 may be made uneven. In this case, the surface of the plate may be directly processed into irregularities,
Alternatively, it is also possible to attach another plate on which unevenness has been formed in advance.

以上の説明ではプリント板上にバブルメモリパッケージ
だけが実装されている例を示したが、この他に磁界の影
響を受けない部品(例えばIC。
In the above explanation, an example was shown in which only a bubble memory package was mounted on a printed board, but there are also other components that are not affected by magnetic fields (such as ICs).

抵抗、コンデンサ等)が同時に該プリント仮に実装され
ていても良いことは言うまでもない。
It goes without saying that resistors, capacitors, etc.) may be temporarily mounted on the print at the same time.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば動作保証温度範囲の非常に
広い磁気バブルメモリ装置を実現でき、振動や衝撃に対
する高い信頼性と相まって非常に広汎な用途への適用を
図ることが可能となる。
As described above, according to the present invention, it is possible to realize a magnetic bubble memory device with a very wide guaranteed operating temperature range, and in combination with high reliability against vibrations and shocks, it is possible to apply it to a very wide range of uses.

またプリント板上にバブルメモリデバイスが実装された
メモリボードの外側に補正用磁界発生手段を付加するだ
けでよいので、すでに完成された装置を広い温度範囲で
動作するように改造することも容易となる。
Furthermore, since it is only necessary to add a correction magnetic field generating means to the outside of the memory board on which the bubble memory device is mounted on the printed circuit board, it is easy to modify an already completed device to operate in a wide temperature range. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第6図は従来技術の説明図であり、第1図及
び第2図は磁気バブルメモリパッケージの一例の構造を
示す一部破断分解斜視図及び要部側面図、第3図はメモ
リ素子の動作特性図、第4図はバブル結晶におけるフリ
ーバブル消減磁界の温度特性図、第5図はメモリ素子及
びバイアス硼界発生用永久磁石の温度特性図、第6図は
メモリパッケージの温度特性図である。 第7図から第14図は本発明の詳細な説明図であり、第
7図(al (blは磁気バブルメモリパッケージの第
1実施例の側面図と斜視図、第8図は磁気シールドケー
スのシールド物性図、第9図はバイアス磁界の補正の説
明図、第10図はメモリパッケージの温度特性図、第1
1図から第14図は磁気バブルメモリパッケージのそれ
ぞれ第2.第3゜第4及び第5の実施例の側面図である
。 P&・・・磁気バブルメモリパッケージ、l・・・磁気
バブルメモリ素子、2・・・プリント基板、3,4・・
・バイアス磁界発生用永久磁石、5・・・面内回転磁界
発生用コイル、6・・・磁気シールドケース、11゜1
2・・・軟磁性体板、13.14・・・補正用磁界発生
、15・・・プリント板、16.16’  ・補正用バ
イアス磁界調奎用磁石、17,18・・・補正用バイア
ス磁界調整ネジ、19・・・熱良導体、21・・・放熱
フィン。 茅l 図 第?凹 第3図 東勉礒界 HD (θe) fi度TじC) 7 (’C) 芽8図 T(’C) 茅13図 矛!4図
1 to 6 are explanatory diagrams of the prior art; FIGS. 1 and 2 are a partially cutaway exploded perspective view and a side view of essential parts showing the structure of an example of a magnetic bubble memory package, and FIG. Figure 4 shows the temperature characteristics of the free bubble extinction magnetic field in the bubble crystal, Figure 5 shows the temperature characteristics of the memory element and the permanent magnet for generating bias field, and Figure 6 shows the temperature of the memory package. It is a characteristic diagram. 7 to 14 are detailed explanatory diagrams of the present invention. Shield physical properties diagram, Figure 9 is an explanatory diagram of bias magnetic field correction, Figure 10 is a temperature characteristic diagram of the memory package, Figure 1
1 to 14 show the respective second portions of the magnetic bubble memory package. FIG. 3 is a side view of the fourth and fifth embodiments. P&...Magnetic bubble memory package, l...Magnetic bubble memory element, 2...Printed circuit board, 3, 4...
・Permanent magnet for generating bias magnetic field, 5... Coil for generating in-plane rotating magnetic field, 6... Magnetic shield case, 11゜1
2... Soft magnetic plate, 13.14... Magnetic field generation for correction, 15... Printed board, 16.16' - Magnet for adjusting bias magnetic field for correction, 17, 18... Bias for correction Magnetic field adjustment screw, 19...Good thermal conductor, 21...Radiating fin. Kaya diagram number? Concave 3rd figure East study world HD (θe) fi degree Tji C) 7 ('C) Bud 8 figure T ('C) Kaya 13 figure spear! Figure 4

Claims (7)

【特許請求の範囲】[Claims] (1)磁気バブルメモリ素子の磁気バブルを維持するた
めのバイアス磁界発生手段と、該バイアス磁界発生手段
の外側に設けられていて外部磁界を遮断する磁気シール
ドとを少く共具備する磁気バブルメモリパッケージを少
く共1個実装したプリント板と、前記磁気シールドの外
側に配設した前記バイアス磁界と逆方向の補正用磁界を
発生する補正用磁界発生手段を具備したことを特徴とす
る磁気バブルメモリ装置。
(1) A magnetic bubble memory package that includes a bias magnetic field generating means for maintaining the magnetic bubble of a magnetic bubble memory element and a magnetic shield provided outside the bias magnetic field generating means to block external magnetic fields. A magnetic bubble memory device comprising: a printed board on which at least one of the above is mounted; and a correction magnetic field generating means for generating a correction magnetic field in a direction opposite to the bias magnetic field, which is disposed outside the magnetic shield. .
(2)前記補正用磁界発生手段は温度が低くなるにつれ
て補正用磁界を強めることを特徴とする第1項記載の磁
気バブルメモリ装置。
(2) The magnetic bubble memory device according to item 1, wherein the correction magnetic field generating means strengthens the correction magnetic field as the temperature decreases.
(3)前記補正用磁界の強さが所定温度以下で前記磁気
シールドのシールド磁界を越えることを特徴とする第1
項又は第2項記載の磁気バブルメモリ装置。
(3) A first feature characterized in that the strength of the correction magnetic field exceeds the shielding magnetic field of the magnetic shield at a predetermined temperature or lower.
3. The magnetic bubble memory device according to item 1 or 2.
(4)前記補正用磁界の強さを調整する調整手段を具備
することを特徴とする第1項から第3項のいずれかに記
載の磁気バブルメモリ装置。
(4) The magnetic bubble memory device according to any one of items 1 to 3, further comprising an adjusting means for adjusting the strength of the correction magnetic field.
(5)前記補正磁界発生手段と磁気シールドとの間に熱
良導体からなるスペーサを配設したことを特徴とする第
1項から第4項のいずれかに記載の磁気バブルメモリ装
置。
(5) The magnetic bubble memory device according to any one of items 1 to 4, characterized in that a spacer made of a good thermal conductor is disposed between the correction magnetic field generating means and the magnetic shield.
(6)前記補正用磁界発生手段が放熱部材を有すること
を装徴とする第1項から第4項のいずれかに記載の磁気
バブルメモリ装置。
(6) The magnetic bubble memory device according to any one of items 1 to 4, wherein the correction magnetic field generating means has a heat radiating member.
(7)前記補正用磁界発生手段が前記少く共1個の前記
バブルメモリパッケージを実装した前記プリント板を内
蔵するように配置されていることを特徴とする第1項か
ら第6項のいずれかに記載の磁気バブルメモリ装置。
(7) Any one of items 1 to 6, wherein the correction magnetic field generating means is arranged so as to incorporate the printed board on which at least one of the bubble memory packages is mounted. The magnetic bubble memory device described in .
JP60150447A 1985-07-09 1985-07-09 Magnetic bubble memory device Granted JPS6212987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150447A JPS6212987A (en) 1985-07-09 1985-07-09 Magnetic bubble memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150447A JPS6212987A (en) 1985-07-09 1985-07-09 Magnetic bubble memory device

Publications (2)

Publication Number Publication Date
JPS6212987A true JPS6212987A (en) 1987-01-21
JPH0219555B2 JPH0219555B2 (en) 1990-05-02

Family

ID=15497132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150447A Granted JPS6212987A (en) 1985-07-09 1985-07-09 Magnetic bubble memory device

Country Status (1)

Country Link
JP (1) JPS6212987A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179991A (en) * 1984-02-28 1985-09-13 Fujitsu Ltd Magnetic bubble memory device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179991A (en) * 1984-02-28 1985-09-13 Fujitsu Ltd Magnetic bubble memory device

Also Published As

Publication number Publication date
JPH0219555B2 (en) 1990-05-02

Similar Documents

Publication Publication Date Title
JP5542856B2 (en) Magnetoresistive element and magnetic memory
US20220149269A1 (en) Spintronics element and magnetic memory device
WO2018159015A1 (en) Magnetoresistance effect element and magnetic memory
US20160155485A1 (en) Magnetic device with spin polarisation
WO2009136454A1 (en) Spin valve element and storage device
JP2017054936A (en) Magnetic memory element and magnetic memory
JPS6212987A (en) Magnetic bubble memory device
JP2012248688A (en) Perpendicular magnetization magnetoresistance effect element and magnetic memory
JP6917205B2 (en) Manufacturing method of magnetoresistive sensor
JP5354388B2 (en) Spin valve recording element and storage device
US20140225207A1 (en) Magnetic storage element and magnetic memory
JPS60179991A (en) Magnetic bubble memory device
JP2018014376A (en) Bipolar voltage writing type magnetic memory element
JP2011141934A (en) Magnetic recording head
Olson et al. Magnetization Creep in Nickel‐Iron Films via the Lever Mechanism
JP2020155564A (en) Magnetic memory device
Knowles The magnetostatic energy associated with a polycrystalline ferrite
Humphrey et al. Domain wall structure in bulk magnetic materials
JP2005011860A (en) Circuit board structure with external magnetic field shielding function
JP6450390B2 (en) Storage medium, recording device, data processing device, data recording device, and communication device
JPS58153309A (en) Garnet film for ion implantation element
US20200058846A1 (en) Magnetic tunnel junction device and magnetic resistance memory device
Patton III et al. Wall motion by reverse Néel walls in thin films
Akitaya et al. High-frequency magnetic recording using a dual write head
WO2006057121A1 (en) Magneto-optical space light modulator