JPS62129185A - Resin lining steel pipe and its production - Google Patents

Resin lining steel pipe and its production

Info

Publication number
JPS62129185A
JPS62129185A JP26850085A JP26850085A JPS62129185A JP S62129185 A JPS62129185 A JP S62129185A JP 26850085 A JP26850085 A JP 26850085A JP 26850085 A JP26850085 A JP 26850085A JP S62129185 A JPS62129185 A JP S62129185A
Authority
JP
Japan
Prior art keywords
steel pipe
lining
resin
layer
lined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26850085A
Other languages
Japanese (ja)
Inventor
Satoru Owada
哲 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26850085A priority Critical patent/JPS62129185A/en
Publication of JPS62129185A publication Critical patent/JPS62129185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To delay abrasion damage in the feeding of a slurry as slow as possible, by forming a first layer having a uniform thickness to the inner surface of a steel pipe over the entire length thereof in the circumferential direction thereof and additionally forming a second thick layer to the first layer within a predetermined range. CONSTITUTION:A resin lining part 2 is formed to the inner surface of a raw steel pipe 3 over the entire length thereof as a first layer having a predetermined uniform thickness. In this case, lining is performed by a centrifugal molding method and, at the point of time when the generation of the liquid dripping phenomenon of the resin is eliminated, the rotation of the steel pipe is stopped and the injection of the resin for a second layer is performed. The thick lining part 1 of the second layer is continuously formed in a range of 50% the circumferential length of the steel pipe but, without performing the stationary curing or rotation of the resin, the lining thickness of the pipe bottom side part is additionally increased by curing under reciprocal movement. As a result, the offset abrasion to the pipe bottom side part can be dealt with and the life of a slurry transport pipeline is enhanced.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は樹脂ライニング鋼管およびその製造方法に係り
、詳しくは、管円周長の50%以下の範囲で連続した厚
膜部を有する内面樹脂ライニング鋼管およびその製造方
法に係る。
Detailed Description of the Invention <Object of the Invention> Industrial Field of Application The present invention relates to a resin-lined steel pipe and a method for manufacturing the same. The present invention relates to a steel pipe with an inner resin lining and a method for manufacturing the same.

従来の技術 各種のパイプラインに用いられる内面樹脂ライニング鋼
管のなかでもすぐれた耐食・耐摩耗性を有するポリウレ
タン等の内面樹脂ライニング鋼管が注目されている。
BACKGROUND OF THE INVENTION Among steel pipes with inner resin lining used in various pipelines, steel pipes with inner resin lining such as polyurethane are attracting attention because of their excellent corrosion resistance and wear resistance.

従来、この種の内面樹脂ライニング鋼管は例えば特開昭
58−37390号公報などに示されるように炭素鋼、
合金鋼、鋳鋼あるいはその他の鋼管を原管として用い、
その内面を管内周方向および管長方向の全面にわたって
ポリウレタン樹脂等のライニング材により均一な膜厚で
ライニングされた形状のものであり、その製造方法とし
ては液状樹脂よりなるライニング材料を静止状態の鋼管
内に注入後、管体を回転成型させながらライニング材を
硬化させ、あるいは管体を回転させながらライニング材
料を鋼管内に注入し、硬化させてライニングを完成させ
る所謂遠心成型ライニング法が利用されている(参考文
献:鉄と鋼、G61023(1980)、腐食防食協会
第28腐食防食討論会予稿集125頁)。
Conventionally, this type of inner resin-lined steel pipe has been made of carbon steel,
Using alloy steel, cast steel or other steel pipes as the base pipe,
The inner surface of the tube is lined with a lining material such as polyurethane resin at a uniform thickness over the entire surface in the inner circumferential direction and lengthwise direction of the tube.The manufacturing method involves placing the lining material made of liquid resin inside a stationary steel tube. The so-called centrifugal molding lining method is used, in which the lining material is cured while the pipe body is rotationally molded, or the lining material is injected into the steel pipe and hardened while the pipe body is rotated to complete the lining. (Reference: Tetsu to Hagane, G61023 (1980), Proceedings of the 28th Corrosion Prevention Conference, Japan Association for Corrosion Prevention, p. 125).

−例としてスラリー輸送パイプラインの摩耗対策として
用いられる内面ポリウレタンライニング鋼管について述
べれば、内面ライニングを施される原管は通常炭素14
iI管が用いられ、その内面に例えばアジプレンL(デ
ュポン社製)のような2液反応硬化型ポリウレタン樹脂
を数理から数10+nmの膜厚で鋼管内面の全面にわた
って均一にライニングされ、第3図に示すような形状の
ものとなっている。口の際、当該ライニング鋼管の使用
される環境や使用目的あるいは経済的理由等により原管
の鋼種、ライニング用樹脂およびライニング膜厚等はそ
れぞれ目的に合わせた最適な仕様が適用されるのが一般
的である。また、その製造方法としては第4図に示す工
程がとられる。すなわち、アジブレンLをライニング材
料とする場合、主剤(プレポリマー)および硬化剤をそ
れぞれ別々に加熱溶融し、減圧i脱泡させた後、所定の
混合比率で混合させる。
- As an example, if we talk about inner polyurethane lined steel pipes used as a wear countermeasure in slurry transport pipelines, the raw pipes that are inner lined are usually carbon 14
An iI tube is used, and its inner surface is uniformly lined with a two-component reaction-curing polyurethane resin such as Adiprene L (manufactured by DuPont) with a film thickness of several tens of nanometers, as shown in Figure 3. It has the shape shown. When lining steel pipes, the optimum specifications for the original pipe steel type, lining resin, lining film thickness, etc. are generally applied depending on the environment in which the lined steel pipe is used, the purpose of use, economic reasons, etc. It is true. Further, as a manufacturing method thereof, the steps shown in FIG. 4 are taken. That is, when Ajibrene L is used as a lining material, the base material (prepolymer) and the curing agent are heated and melted separately, defoamed under reduced pressure, and then mixed at a predetermined mixing ratio.

一方、ライニングを施される鋼管は原管(裸@)をショ
ツトブラスト、サンドブラストあるいはグリッドブラス
トなどの適当な方法により内面除錆処理をした後、防食
およびライニング材との接着力発現を目的としてブライ
マーを所定の厚みで塗布し、乾燥させた後、100〜1
10℃の所定温度に予熱される。
On the other hand, for steel pipes to be lined, the raw pipe (bare) is treated to remove rust from the inside by an appropriate method such as shot blasting, sandblasting, or grid blasting, and then a brimmer is applied to prevent corrosion and to develop adhesive strength with the lining material. After applying it to a specified thickness and drying it,
It is preheated to a predetermined temperature of 10°C.

その後、上述のように予め混合されたライニング用樹脂
を、所定のライニング厚さを得るのに必要な陽を注型機
などを用いて静止状態あるいは回転状態にある鋼管内に
注入し、当該鋼管を100〜110℃の所定温度に加熱
しながら、ターニングローラを用いて50〜25Orp
mの回転数で15〜20分間程度一定の速度で連続回転
させ、ライニング材を硬化させて製品を完成させる。こ
の際、樹脂主剤、硬化剤の溶融時の加熱温度、脱泡時の
加熱温度および減圧条件、混合時のA度および比率はラ
イニングに用いる樹脂ごとに異なり、各々において最も
適した条件が採用される。また、遠心成型ライニング時
の鋼管の加熱温度、回転数および回転継続時間は鋼管の
径、ターニングローラの能力、使用ライニング材料の届
や硬化反応特性、鋼管加熱設備や能力等によって種々異
なるものである。
Thereafter, the premixed lining resin as described above is injected into the steel pipe in a stationary or rotating state using a casting machine or the like with the amount of positive necessary to obtain a predetermined lining thickness. While heating to a predetermined temperature of 100 to 110°C, use a turning roller to
Continuously rotate at a constant speed of m for about 15 to 20 minutes to harden the lining material and complete the product. At this time, the heating temperature when melting the main resin and curing agent, the heating temperature and depressurization conditions during defoaming, and the A degree and ratio during mixing differ depending on the resin used for the lining, and the most suitable conditions for each are adopted. Ru. In addition, the heating temperature, rotation speed, and rotation duration of the steel pipe during centrifugal forming lining vary depending on the diameter of the steel pipe, the capacity of the turning roller, the availability and hardening reaction characteristics of the lining material used, the steel pipe heating equipment and capacity, etc. .

ところで、実施スラリー輸送パイプラインに用いられた
ポリウレタンライニング鋼管について、その摩耗状況を
調査したところ、第5図に示すように、スラリーを構成
する沈降性の固体粒子の流送によって生じるライニング
鋼管の特に大きく摩耗される部位は、当該ライニング鋼
管の内面の管底側のごとく狭い部位に限られることがわ
がった。〔参考文献:鋼材倶楽部、運輸省港湾技術研究
所共同報告書「土砂輸送用パイプの耐摩耗性に関する研
究(その3)」(1985))すなわち、パイプライン
全体の耐用年数はこの集中的に摩耗損傷を受ける部位の
ライニング厚さの減少速度によって決定されることにな
り、鋼管内面の管底側以外の部位がまったく損(nを受
けていないにもかがわらず、鋼管の取換えを令儀なくさ
れているのが実状である。
By the way, when we investigated the wear status of the polyurethane-lined steel pipes used in the implemented slurry transportation pipeline, we found that, as shown in Fig. It has been found that the area that is heavily worn is limited to a narrow area such as the bottom side of the inner surface of the lining steel pipe. [Reference: Steel Materials Club and the Ministry of Transport's Port Technology Research Institute joint report "Study on wear resistance of earth and sand transport pipes (part 3)" (1985)] In other words, the service life of the entire pipeline is limited by this intensive wear. This is determined by the rate at which the lining thickness decreases in the damaged area, and even though the inner surface of the steel pipe other than the bottom side has not suffered any damage, it is imperative that the steel pipe be replaced. The reality is that it is being lost.

このような現状に鑑みて、従来のようにライニングの厚
みが鋼管の内面の円周方向の全長にわたって均一なもの
ではなく、!14管内面の管底側に当る部分を選択的な
厚膜で形成した形状のライニング鋼管を用いることがパ
イプラインの耐用年数の向上の点およびライニング材料
の部約の面から大いに望ましい。しがしながら、従来、
管内の一部を選択的に厚膜化した内面樹脂ライニング鋼
管の製造は技術的に確立されていなかった。
In view of this current situation, the thickness of the lining is not uniform over the entire circumferential length of the inner surface of the steel pipe, as in the past! It is highly desirable to use a lining steel pipe in which the portion of the inner surface of the pipe that corresponds to the bottom side is formed with a selectively thick film, from the viewpoint of improving the service life of the pipeline and saving the lining material. However, conventionally,
The production of inner resin-lined steel pipes with selectively thickened parts of the inside of the pipes had not been technically established.

発明が解決しようとする問題点 本発明は己れらの問題点の解決を目的とし、具体的には
沈降性固体粒子を含むスラリーのパイプライン輸送にお
いて生ずる内面ライニング鋼管の管底側における摩耗損
傷の偏在化に帰因するパイプラインの耐用年数の縮小化
の問題を解決することを目的とする。
Problems to be Solved by the Invention The present invention aims to solve the problems of the present invention, specifically, to solve the problems caused by wear and tear on the bottom side of inner-lined steel pipes that occur during pipeline transportation of slurry containing sedimentary solid particles. The purpose of this project is to solve the problem of shortening the service life of pipelines due to the uneven distribution of pipelines.

く発明の構成〉 問題点を解決するための 手段ならびにその作用 本発明者は内面樹脂ライニング鋼管の素材、構造、形状
、遠心成型ライニング法による製造工程、条件、また、
ライニング材料の硬化反応特性等について鋭意検討する
とともに、実製造設備および各種試験設備において種々
の実験を行ない、詳細な検討を重ねた結果、内面ライニ
ング鋼管のライニング構造を原管(裸鋼管)の上に第1
層目のライニングを鋼管内面の円周方向全長にわたって
均一の厚さで形成し、さらに、ライニング層の上に第2
11目のライニングを円周長方向50%以下のある範囲
の連続部分にわたって形成した構造とすれば、実地スラ
リー輸送用内面ライニング鋼管の管底側部への偏在的摩
耗現象に対処でき、スラリー輸送パイプラインの耐用年
数の向上を達成できることを見い出すとともに、かかる
構造のライニング鋼管の製造にあたっては、樹脂のライ
ニングの際、第1@目のライニング用樹脂注入により鋼
管内面円周方向全長にわたって均一な膜厚のライニング
を遠心成型ライニング法により形成させ、樹脂の液ダレ
現象が発生しなくなった後、鋼管の回転を停止し、第2
跨目の樹脂注入を行ない、樹脂を静置硬化させまたは回
転に至らない往復動下の硬化により鋼管の管底側部のラ
イニング厚さを追加厚膜化する方法をとればよいことを
見い出した。
Composition of the Invention> Means for Solving the Problems and Their Effects The present inventor has disclosed the material, structure, shape, manufacturing process and conditions by the centrifugal molding lining method of the inner resin-lined steel pipe, and
As a result of intensive studies on the hardening reaction characteristics of lining materials, various experiments in actual manufacturing equipment and various test equipment, and repeated detailed studies, we found that the lining structure of internally lined steel pipes was changed over the original pipe (bare steel pipe). 1st to
A second lining layer is formed with a uniform thickness over the entire circumferential length of the inner surface of the steel pipe, and a second lining layer is formed on top of the lining layer.
If the structure is such that the 11th lining is formed over a continuous part within a certain range of 50% or less in the circumferential length direction, it is possible to cope with the phenomenon of uneven wear on the bottom side of the internally lined steel pipe for actual slurry transport, and to improve the slurry transport. In addition to discovering that it is possible to improve the service life of pipelines, in manufacturing lined steel pipes with such a structure, when lining with resin, the first lining resin is injected to create a uniform film over the entire circumferential length of the inner surface of the steel pipe. After a thick lining is formed by the centrifugal molding lining method and no resin dripping occurs, the rotation of the steel pipe is stopped and the second
We have discovered that it is possible to add a thicker lining to the bottom side of a steel pipe by injecting resin into the straddle and curing the resin while it is standing still or by curing it under reciprocating motion that does not result in rotation. .

すなわち、本発明は、内面に樹脂をライニングしたライ
ニング鋼管において、管円周長の50%以下の範囲で連
続した厚膜部を有することを特徴とする。
That is, the present invention is characterized in that a lined steel pipe whose inner surface is lined with resin has a continuous thick film portion within a range of 50% or less of the pipe circumference.

以下、本発明の構成ならびに作用を更に説明すると次の
通りである。
Hereinafter, the structure and operation of the present invention will be further explained as follows.

第1図は本発明によるライニング鋼管の横断面図であり
、第2図は本発明によるライニング鋼管の製造工程図で
あり、第3図は従来法によるライニング鋼管の横断面図
であり、第4図は従来法によるライニング鋼管の製造工
程図であり、第5図は土砂スラリー輸送パイプラインに
おけるウレタン樹脂ライニング鋼管の摩耗形態を示すグ
ラフであり、第6図はウレタン樹脂の粘度上昇特性の一
例を示すグラフであり、第7図および第8図は本発明の
樹脂ライニング鋼管底部および天側部より夫々切出した
剥離試験片の形状を示す斜視図である。
1 is a cross-sectional view of a lined steel pipe according to the present invention, FIG. 2 is a manufacturing process diagram of a lined steel pipe according to the present invention, FIG. 3 is a cross-sectional view of a lined steel pipe according to a conventional method, and FIG. Figure 5 is a diagram showing the manufacturing process of lined steel pipes using the conventional method, Figure 5 is a graph showing the wear pattern of urethane resin lined steel pipes in earth and sand slurry transportation pipelines, and Figure 6 is an example of the viscosity increase characteristics of urethane resin. 7 and 8 are perspective views showing the shapes of peel test pieces cut from the bottom and top parts of the resin-lined steel pipe of the present invention, respectively.

本発明の樹脂ライニング鋼管は第1図に、そのライニン
グ構造を示すように、原管(裸鋼管)の上に鋼管内面の
円周方向の全長にわたって所定の均一な膜厚を有する第
1層目の樹脂ライニング制を有し、口のライニング層の
上に第2層目の樹脂ライニング層を鋼管円周長さの50
%以下の範囲で連続して追加形成することにより第2岡
目のライニング層形成部の膜厚を選択的に厚くした構造
とする樹脂ライニング鋼管である。
The resin-lined steel pipe of the present invention has a first layer on the original pipe (bare steel pipe) having a predetermined uniform film thickness over the entire circumferential length of the inner surface of the steel pipe, as shown in Fig. 1, which shows its lining structure. The second resin lining layer is placed on top of the mouth lining layer with a length of 50 mm around the circumference of the steel pipe.
This is a resin-lined steel pipe having a structure in which the film thickness of the second lining layer forming portion is selectively increased by continuously forming additional layers within a range of % or less.

第2層目のライニング層の形成部を鋼管円周長の50%
以下の範囲と限定したのは、第5図で示すように、実施
スラリーパイプラインにおいて特に内面ライニングの摩
耗損傷の原因となる固体粒子の流動状態を調べたところ
、鋼管内の管底側の円周長にして50%以下の範囲での
摺動した流動状態であることがわかったからであり、こ
れ以上の広い範囲において第21I目のライニング層を
形成しても、その効果はほとんど向上せず、経済的に不
利となるばかりである。また、第2層目のライニング層
が広範囲となればなる程、管内流送断面積は減少し、輸
送効率は低下することからも、第2Iライニング層の形
成範囲を前記の50%以下の範囲とした理由である。
The forming part of the second lining layer is 50% of the circumference of the steel pipe.
The reason for limiting the range to the following is that, as shown in Figure 5, when we investigated the flow state of solid particles that cause wear damage to the inner lining in an actual slurry pipeline, we found that the circle on the bottom side of the steel pipe This is because it was found that the sliding fluid state existed in a range of 50% or less of the circumference, and even if the 21st lining layer was formed in a wider range than this, the effect would hardly improve. , it will only be economically disadvantageous. In addition, the wider the area of the second lining layer, the smaller the cross-sectional area of the pipe and the lower the transport efficiency. This is the reason.

なお、第2層目ライニング層を形成するライニング樹脂
材料は、特に限定されるものではなく、それぞれの用途
に従い適当な材料を用いればよいが、第1層目のライニ
ング層を形成する樹脂と同一あるいは同種の樹脂である
ことがライニング隔間のなじみの面から望ましい。
The lining resin material that forms the second lining layer is not particularly limited, and any suitable material may be used depending on the application, but it may be the same as the resin that forms the first lining layer. Alternatively, it is desirable to use the same type of resin from the viewpoint of compatibility between the lining spaces.

また、第2層目ライニング層の断面形状は、特に限定さ
れるものではないが、例えば第1図に示したような半月
形やあるいは三日月形などスラリーの流送上支障となら
ない形状であることが好ましい。
The cross-sectional shape of the second lining layer is not particularly limited, but it should be a shape that does not interfere with the flow of the slurry, such as a half-moon shape or a crescent shape as shown in Figure 1. is preferred.

本発明の樹脂ライニング鋼管の製造方法は、第2図にそ
のライニング工程を具体的に示すように、内面ライニン
グ鋼管のライニングの際に、まず最初に第1m目のライ
ニング樹脂として鋼管内面円周方向全長を所定の厚さで
均一にライニングするために必要なmの液状ライニング
樹脂を静止状態あるいは回転状態にある鋼管内に注入し
、使用ライニング材料の硬化反応に適する室温から30
0℃の温度に鋼管の温度を保持しながらターニングロー
ラにより10〜500rpmの回転数で回転させて硬化
成型させる。そののち、ライニング材料の便化反応が進
み、その粘度が少なくともG5.OOOセンチポイズに
到達した時点で鋼管の回転を停止し、直ちに鋼管底側部
のライニング厚さを選択的に厚膜化するのに必要な液状
ライニング材料を再び注入し、鋼管は静止のまままたは
回転に至らない往復動下の硬化により樹脂が完全に硬化
するまでライニング材料を硬化させることにより鋼管内
面円周方向の一部を連続的に厚膜化したライニング鋼管
の製造方法である。
In the method for manufacturing a resin-lined steel pipe of the present invention, as the lining process is specifically shown in FIG. The amount of liquid lining resin required to uniformly line the entire length with a predetermined thickness is injected into a stationary or rotating steel pipe, and the temperature is increased from room temperature to 30 m, which is suitable for the curing reaction of the lining material used.
While maintaining the temperature of the steel pipe at 0° C., it is rotated by a turning roller at a rotation speed of 10 to 500 rpm to harden and mold. After that, the faeces reaction of the lining material progresses, and its viscosity increases to at least G5. When OOO centipoise is reached, the rotation of the steel pipe is stopped, and the liquid lining material necessary to selectively thicken the lining thickness on the bottom side of the steel pipe is immediately injected again, and the steel pipe remains stationary or rotates. This is a method of manufacturing a lined steel pipe in which a part of the inner circumferential direction of the steel pipe is continuously thickened by curing the lining material until the resin is completely hardened by curing under reciprocating motion that does not reach 100%.

この場合、第1層口の樹脂注入後の遠心成型ライニング
において、鋼管の回転時間をライニング材料の粘度が少
なくとも65.000センチボイスに到達するまでと定
めたのは、これ以下の粘度では鋼管の回転を停止した際
、硬化が不十分でライニング材料のダレなどの好ましく
ない現象がみられるからである。一方、回転停止の粘度
について特に上限は定めていないが、ライニング材料の
硬化が進み過ぎると第2曜目の注入を行なった際に未硬
化のライニング材料との間の接着性が低下するので、第
2苦目のライニング樹脂の注入は下限として定めたG5
.000センチポイズを満していれば、できるだけ小さ
な粘度で行なうことが好ましい。
In this case, in the centrifugally molded lining after resin injection at the first layer port, the rotation time of the steel pipe was set until the viscosity of the lining material reached at least 65,000 cmvoice. This is because when the rotation is stopped, undesirable phenomena such as sagging of the lining material may occur due to insufficient curing. On the other hand, there is no particular upper limit for the viscosity at which rotation stops, but if the lining material hardens too much, the adhesion between it and the uncured lining material will decrease when the second injection is performed. The injection of the second worst lining resin was set as the lower limit of G5
.. It is preferable to use the lowest possible viscosity as long as it satisfies 000 centipoise.

また、この回転継続時間は予め種々の硬化条件下で詳細
に調査検討されたライニング材料の粘度上昇特性を基準
として設定されるものであるが、当然のことながらライ
ニング材料の注入に要する時間、樹脂のレベリングに要
する時間等を考慮して決定されるものであることは言う
までもない。また、この際の鋼管の回転数はターニング
ローラの能力、鋼管の径によって決定されるものである
In addition, this rotation duration is set based on the viscosity increase characteristics of the lining material, which have been investigated and studied in detail under various curing conditions, but of course it also depends on the time required for injecting the lining material and the resin. Needless to say, this is determined by considering the time required for leveling. Further, the rotation speed of the steel pipe at this time is determined by the ability of the turning roller and the diameter of the steel pipe.

なお、本発明の製造方法に関して用いられろライニング
材料はウレタン系樹脂、エポキシ樹脂、ポリエチレン系
樹脂、ポリアミド系樹脂など、−成型、二液型を問わず
、一般的にライニング材料として用いられるものであれ
ば良い。
The lining materials used in the manufacturing method of the present invention include urethane resins, epoxy resins, polyethylene resins, polyamide resins, etc., regardless of whether they are molded or two-component, and are commonly used as lining materials. It's good to have.

原管(裸鋼管)の下地処理は一般的に行なわれている方
法で良く、サンドプラスI・、ショツトブラストあるい
はグリッドブラスト等の方法により内面除錆処理した後
、必要に応じて使用ライニング材料に適した接着剤ある
いは防食等も兼ねてブライマーの塗布を一般的には数ミ
クロンから数十ミクロンの厚みで行なうものであるl)
c、さらに耐食性等の面を加味するため、クロヌード処
理やリン酸塩処理等を必要量適こすことができる。
The surface treatment of raw pipes (bare steel pipes) can be carried out by any commonly used method, and after the inner surface is rust-removed by methods such as Sand Plus I, shot blasting, or grid blasting, the lining material used can be treated as necessary. Brimer is generally applied to a thickness of several microns to several tens of microns to serve as a suitable adhesive or anticorrosion agent.l)
c. In order to further improve corrosion resistance, a necessary amount of chlornude treatment, phosphate treatment, etc. can be applied.

また、原管のライニング前の予熱処理j5よび使用ライ
ニング材料のh0熱溶融、減圧脱泡、二液系の場合の混
合条件などの前処理は各材料の特性に応じて適宜実施す
れば良い。
In addition, pretreatments such as preheating treatment j5 before lining the original tube, h0 thermal melting of the lining material used, degassing under reduced pressure, and mixing conditions in the case of a two-component system may be carried out as appropriate depending on the characteristics of each material.

実  施  例 以下、本発明の実施例として内面ポリウレタン樹脂ライ
ニング鋼管に例をとって説明する。
EXAMPLE Hereinafter, as an example of the present invention, a steel pipe with inner surface polyurethane resin lining will be explained.

実施例1 外径355.01111Rφ(呼び径350A、肉厚7
.9mm、長さ6000mmの配管用炭素鋼鋼管(JI
S 5GP)をショツトブラストにより除錆処理した後
、常温下でフェノール、ブチラール系プライマー(商品
名:ケムロツク218、ロードヒューソンケミカル社’
11)を塗布し、通風乾燥させ(乾燥膜厚20μm)、
120°Cで30分間焼付は硬化させた。
Example 1 Outer diameter 355.01111Rφ (nominal diameter 350A, wall thickness 7
.. 9mm, length 6000mm carbon steel pipe for piping (JI
S 5GP) was subjected to rust removal treatment by shot blasting, and then treated with a phenol and butyral primer (product name: Chemrock 218, Lord Hewson Chemical Co., Ltd.) at room temperature.
11) was applied and dried with ventilation (dry film thickness 20 μm),
The bake was cured at 120°C for 30 minutes.

次に、鋼管をターニングローラー上に置き、110〜1
20℃の範囲に鋼管の温度を保持するように!J4管下
側よりバーナーで加熱を続けた。一方で、ポリテトラメ
チレングリコール(PTMG)系ウレタンプレポリマー
(商品名:タケネートL−2710:底円薬品工業(株
)製)およびアミン系硬化物(商品名:イハラキュアミ
ンMT、イハラケミカル(株)製)を各々別々のタンク
で80℃および110℃で加熱溶融し、次いで、5mm
11gの減圧下で脱泡を行なった。
Next, place the steel pipe on a turning roller and
Keep the temperature of the steel pipe within 20℃! Heating continued with a burner from the bottom of the J4 tube. On the other hand, polytetramethylene glycol (PTMG)-based urethane prepolymer (product name: Takenate L-2710, manufactured by Sokoen Yakuhin Kogyo Co., Ltd.) and amine-based cured product (product name: Iharakyuamine MT, Ihara Chemical Co., Ltd.) ) were heated and melted at 80°C and 110°C in separate tanks, and then 5 mm
Defoaming was performed under a reduced pressure of 11 g.

その後、均一ライニングの目標厚みを4mmとして、前
記プレポリマーと硬化剤を100部=12部の割合で混
合した液状ウレタン樹脂を281aJ14管内に注入し
、鋼管長さ方向でレベリングさせた後、ioorpmの
回転速度で鋼管温度を110〜120℃に保持しつつ、
遠心成型ライニングを5分08秒間行なった。なお、こ
の時間はプレポリマーおよび硬化剤を上記実施例と同一
条件で混合硬化させて行なった室内実験より得られた粘
度上昇曲線(第6図参照)より粘度が65,000セン
チポイズに到達するのに要する時間を7分10秒前後と
推定し、ライニング材料の注入および鋼管内レベリング
に要する時間2分05秒を考慮して設定されたものであ
る。
Then, with the target thickness of the uniform lining set at 4 mm, a liquid urethane resin prepared by mixing the prepolymer and hardening agent at a ratio of 100 parts = 12 parts was injected into the 281aJ14 pipe, leveled in the longitudinal direction of the steel pipe, and then the ioorpm While maintaining the steel pipe temperature at 110-120℃ at rotation speed,
Centrifugal molding lining was performed for 5 minutes and 8 seconds. Furthermore, this is the time required for the viscosity to reach 65,000 centipoise according to the viscosity increase curve (see Figure 6) obtained from a laboratory experiment in which the prepolymer and curing agent were mixed and cured under the same conditions as in the above example. The time required for this is estimated to be around 7 minutes and 10 seconds, and the setting was made taking into consideration the time required for pouring the lining material and leveling the steel pipes at 2 minutes and 05 seconds.

次いで、鋼管の回転を停止した後、上記の同じ混合条件
の液状ウレタン樹脂を15kJ鋼管内に注入し、レベリ
ングさせた後、鋼管を静置状態のまま保持して110〜
120℃の温度で3時間加熱硬化させた。この結果、均
一ライニング部の膜厚4,2mmで鋼管円周長の16%
が連続的かつ選択的に厚くライニングされ、その最大厚
さが25w+mであるポリウレタンライニング鋼管を液
ダレや流れ出しなどが発生することなく得られた。
Next, after stopping the rotation of the steel pipe, liquid urethane resin under the same mixing conditions as above was injected into the 15kJ steel pipe and leveled, and the steel pipe was kept stationary for 110~
It was heat-cured at a temperature of 120° C. for 3 hours. As a result, the film thickness of the uniform lining part is 4.2 mm, which accounts for 16% of the steel pipe circumference.
A polyurethane-lined steel pipe in which polyurethane was continuously and selectively lined thickly and the maximum thickness was 25 W+m was obtained without any dripping or outflow.

実施例2 外径165.2mmφ(呼び径150A)、肉厚5.O
n+n+、長さ5500mmの鋼管内面に実施例1と同
じ樹脂9klJを注入し、遠心成型ライニング法により
鋼管回転速度210rpH、回転継続時間5分35秒(
注入、レブリング時間1分30秒)で3ma+の目標膜
厚の均一ライニング圀を形成した。
Example 2 Outer diameter 165.2mmφ (nominal diameter 150A), wall thickness 5. O
n+n+, 9 klJ of the same resin as in Example 1 was injected into the inner surface of a steel pipe with a length of 5500 mm, and the steel pipe rotation speed was 210 rpm and the rotation duration was 5 minutes 35 seconds (
A uniform lining region with a target film thickness of 3 ma+ was formed by injection and revving time of 1 minute and 30 seconds.

この後、直ちに鋼管の回転を停止し、同一の樹脂を6k
g注入し、鋼管を静止のまま鋼管保持温度110〜12
0℃で樹脂を硬化させ、ライニングを施した。その結果
、鋼管円周長の21%が連続的かつ選択的に厚くライニ
ングされ、その最大ライニング厚さが1011111、
平均ライニング部の膜厚2.8mmのポリウレタンライ
ニング鋼管が表面性状の良い状態で得られた。
After this, the rotation of the steel pipe was immediately stopped, and the same resin was
g injection, and keep the steel pipe stationary at a temperature of 110 to 12
The resin was cured at 0°C and lined. As a result, 21% of the steel pipe circumference was continuously and selectively lined thickly, and the maximum lining thickness was 1011111,
A polyurethane-lined steel pipe with an average thickness of 2.8 mm at the lining portion was obtained with good surface quality.

次に、実施例1および実施例2により製作された内面ポ
リウレタンライニング鋼管について行なったウレタン皮
膜の接着力測定試験およびループ摩耗試験結果について
説明する。接着力測定試験は実施例1製作材を室温で3
週間養生後、鋼管底側部(厚膜ライニング部)および天
側部(均一ライニング部)より第7図および第8図に示
す形状(但し、図中a=70mm、 b=200mm、
 c=20mmlの試験片をそれぞれ切り出し、切り出
し直後および25°Cの水道水に30日間浸漬後の2条
件について、インストロン引張試験機を用いて室温中引
張り巾20mm、引張速度10 mm /分の条件で9
0°剥離試験を行ない、剥離強度を求めた。
Next, the results of the urethane film adhesion measurement test and loop abrasion test conducted on the inner polyurethane-lined steel pipes manufactured in Examples 1 and 2 will be described. The adhesive force measurement test was conducted using the material manufactured in Example 1 at room temperature.
After curing for a week, the shape shown in Figures 7 and 8 is obtained from the bottom side (thick film lining part) and top side (uniform lining part) of the steel pipe (in the figures, a = 70 mm, b = 200 mm,
A test piece of c=20 mml was cut out and tested under two conditions: immediately after cutting out and after being immersed in tap water at 25°C for 30 days, using an Instron tensile tester at room temperature with a tensile width of 20 mm and a tensile speed of 10 mm/min. 9 on condition
A 0° peel test was conducted to determine the peel strength.

なお、鋼管底部試験片については第2層目ライニング層
をグラインダーで第1箇目ライニング層と同じ膜厚まで
研削した後、第2跨目ライニング隔と第1謂目ライニン
グ図の間の剥離強度を求めた。また、比較材として従来
の方法により41IIIllのライニング厚さで均一に
ライニングされた試験片についても同様の測定を行なっ
た。
In addition, for the steel pipe bottom test piece, after grinding the second lining layer with a grinder to the same thickness as the first lining layer, the peel strength between the second straddle lining interval and the first lining diagram was measured. I asked for Further, as a comparative material, similar measurements were performed on a test piece uniformly lined with a lining thickness of 41IIIll by a conventional method.

これらの結果を第1表に示す。These results are shown in Table 1.

第1表から本発明による製品において選択厚膜部である
第1層目ライニング裔は第1層目ライニング帝と十分強
い接着強度を有するとともに、第1層目ライニング層の
均一膜厚部し鋼との間で従来法による製品と比べ、十分
に強い接着力を有していることが分る。
Table 1 shows that in the product according to the present invention, the selected thick film part, the first layer lining base, has sufficiently strong adhesive strength with the first layer lining layer, and the uniform film thickness part of the first lining layer has a uniform thickness. It can be seen that the adhesion between the two is sufficiently strong compared to products made using conventional methods.

次に、ループ摩耗実験は全長401のループに実施例2
で製作した試験鋼管をフランジ接続で選択厚膜部が管底
側となるように配管し、スラリー固彫物(摩耗剤)とし
て平均粒径(d50>3柵の珪石を用い、スラリー濃度
(Cv)20%、流速4m/秒、流送圧力3.Okq/
[)”、流送媒体は水道水、屋外大気温度、試験期間は
500時間で実施した。
Next, a loop wear experiment was performed on a loop with a total length of 401 in Example 2.
The test steel pipe manufactured in 1. was connected with a flange so that the selected thick film part was on the bottom side of the pipe, and silica stone with an average particle diameter (d50>3) was used as the slurry hardening material (wearing agent), and the slurry concentration (Cv) was 20%, flow rate 4m/sec, flow pressure 3.Okq/
[)'', the flow medium was tap water, outdoor atmospheric temperature, and the test period was 500 hours.

なお、比較材として、圧力配管用炭素#4鋼管(STi
lG 38、スケジュール40.肉厚7.1mn+X外
径IG5,2胴φ×長さ5500mm)および実施例2
と同じ樹脂を同じ吊(15klJ)用いて従来の方法に
より製作されたポリウレタンライニング鋼管(原管、配
管用炭素mm管SPG、肉厚5.0mmx外径165.
2mmφ×長さ5500 mm、ポリウレタンライニン
グ厚さ均一5mm)を用いた。摩耗量は各試験鋼管の管
底位置および管側90°の位置でスラリー人側管端から
鋼管接続部での内面段差の影響が出ないよう3000m
m、 4000mm、5000 mmの3箇所でライニ
ング厚さあるいは鋼管肉厚の減少量を測定して行なった
。その結果を第2表に示す。
As a comparison material, carbon #4 steel pipe for pressure piping (STi
lG 38, Schedule 40. Wall thickness 7.1mm + x outer diameter IG5, 2 barrels φ x length 5500mm) and Example 2
A polyurethane-lined steel pipe (original pipe, carbon mm pipe SPG for piping, wall thickness 5.0 mm x outer diameter 165.
2 mmφ x length 5500 mm, polyurethane lining thickness uniform 5 mm) was used. The amount of wear was measured at the bottom position of each test steel pipe and at a 90° position on the pipe side, at a distance of 3000 m from the end of the slurry side pipe to avoid the influence of the inner surface level difference at the steel pipe connection part.
The amount of decrease in lining thickness or steel pipe wall thickness was measured at three locations: m, 4000 mm, and 5000 mm. The results are shown in Table 2.

また、第3表には最大摩耗位置での鋼管素地この結果か
ら、本発明によるポリウレタンライニング鋼管の耐摩耗
性は従来法によるポリウレタンライニング鋼管に劣らず
、鋼管の耐用寿命は大巾に向上し得ることがわかった。
In addition, Table 3 shows the steel pipe base at the position of maximum wear.From this result, the wear resistance of the polyurethane-lined steel pipe according to the present invention is not inferior to that of the polyurethane-lined steel pipe according to the conventional method, and the service life of the steel pipe can be greatly improved. I understand.

また、摩耗実験中において均一ライニング哨(第1閾目
ライニング隔)と選択厚膜部(第2@目ライニング需)
間での剥離も全くみとめられなかった。このように本発
明による内面ポリウレタンライニング鋼管はその実用性
能を低下させることなく鋼管の耐用寿命を大巾に向上さ
じることhcできた。
In addition, during the wear experiment, uniform lining spacing (first lining spacing) and selective thick film portion (second @th lining spacing) were observed.
No peeling was observed at all. As described above, the inner polyurethane-lined steel pipe according to the present invention has been able to significantly extend the service life of the steel pipe without deteriorating its practical performance.

〈発明の効果〉 以上説明したように、本発明は内面に樹脂ライニングし
たライニング鋼管において、管円周良の50%以下の範
囲で連続した厚膜部を有する樹脂ライニング鋼管および
その製造方法であって、本発明によって沈降性で、かつ
、摩耗性の激しいスラリーパイプラインのように鋼管底
側部位が選択的に摩耗損傷を受ける環境下で使用される
スラリー輸送用鋼管における摩耗10(nの対応として
必要な部分のみ厚くライニングし、その他の部分は必要
最小限度に薄くライニングした構造とすることでライニ
ング材料の使用者を増やすことなく、かつ、その実用性
能を低下させることなく耐用寿命を大巾に向上させるこ
とができるので経済的であり、実用的効果は非常に大き
い。
<Effects of the Invention> As explained above, the present invention provides a resin-lined steel pipe whose inner surface is lined with a resin and has a continuous thick film portion within 50% or less of the pipe circumference, and a method for manufacturing the same. Therefore, according to the present invention, wear 10 (corresponding to n By creating a structure in which only the necessary parts are thickly lined, and other parts are lined as thinly as possible, the service life can be greatly extended without increasing the number of users of the lining material and without degrading its practical performance. It is economical and has a very large practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるライニング鋼管の横断面図、第2
図は本発明によるライニング鋼管の製造工程図、第3図
は従来法によるライニング鋼管の横断面図、第4図は従
来法によるライニング鋼管の製造工程図、第5図は土砂
スラリー輸送パイプラインにおけるウレタン樹脂ライニ
ング鋼管の摩耗形態を示すグラフ、第6図はウレタン樹
脂の粘度上昇特性の一例を示すグラフ、第7図および第
8図は本発明の樹脂ライニング鋼管底部および天側部よ
り夫々切出した剥離試験片の形状を示す斜視図である。 符号1・・・・・・本発明による厚膜ライニング部2・
・・・・・均一ライニング部 3・・・・・原管 4・・・・・・剥離部切り込み 5・−・・・・剥離部
FIG. 1 is a cross-sectional view of a lined steel pipe according to the present invention, and FIG.
The figure is a manufacturing process diagram of a lined steel pipe according to the present invention, Figure 3 is a cross-sectional view of a lined steel pipe according to a conventional method, Figure 4 is a manufacturing process diagram of a lined steel pipe according to a conventional method, and Figure 5 is a diagram showing a process for manufacturing a lined steel pipe according to a conventional method. A graph showing the wear pattern of a urethane resin-lined steel pipe, Fig. 6 is a graph showing an example of the viscosity increase characteristics of urethane resin, and Figs. 7 and 8 are cuts taken from the bottom and top sides of the resin-lined steel pipe of the present invention, respectively. FIG. 3 is a perspective view showing the shape of a peel test piece. Code 1... Thick film lining part 2 according to the present invention.
... Uniform lining part 3 ... Original tube 4 ... Peeling part notch 5 ... Peeling part

Claims (1)

【特許請求の範囲】 1)内面に樹脂をライニングしたライニング鋼管におい
て、管円周長の50%以下の範囲で連続した厚膜部を有
することを特徴とする樹脂ライニング鋼管。 2)遠心成型ライニング法により管内面に均一な厚さの
樹脂ライニング層を形成し、該ライニング層の樹脂粘度
が少なくとも65,000センチポイズ以上に達した後
、鋼管の回転を停止し、再び樹脂を注入して静置硬化ま
たは回転には至らない往復動下の硬化により管円周長の
50%以下の範囲で連続した厚膜部を形成することを特
徴とする樹脂ライニング鋼管の製造方法。
[Scope of Claims] 1) A resin-lined steel pipe whose inner surface is lined with resin, characterized in that the pipe has a continuous thick film portion within a range of 50% or less of the circumference of the pipe. 2) Form a resin lining layer with a uniform thickness on the inner surface of the tube by the centrifugal molding lining method, and after the resin viscosity of the lining layer reaches at least 65,000 centipoise, stop the rotation of the steel tube and apply the resin again. A method for manufacturing a resin-lined steel pipe, which comprises forming a continuous thick film part within 50% or less of the circumference of the pipe by injecting and curing at rest or by curing under reciprocating motion that does not reach rotation.
JP26850085A 1985-11-28 1985-11-28 Resin lining steel pipe and its production Pending JPS62129185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26850085A JPS62129185A (en) 1985-11-28 1985-11-28 Resin lining steel pipe and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26850085A JPS62129185A (en) 1985-11-28 1985-11-28 Resin lining steel pipe and its production

Publications (1)

Publication Number Publication Date
JPS62129185A true JPS62129185A (en) 1987-06-11

Family

ID=17459359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26850085A Pending JPS62129185A (en) 1985-11-28 1985-11-28 Resin lining steel pipe and its production

Country Status (1)

Country Link
JP (1) JPS62129185A (en)

Similar Documents

Publication Publication Date Title
US4588420A (en) Methods of manufacturing abrasive articles
US4480411A (en) Finishing chamber with readily-removable lining and means for assisting with said removal, and finishing machine embodying the same
CN102814888B (en) Metal composite delivery pipe with polyurethane elastomer lining and manufacturing method and application of metal composite delivery pipe
US20080174110A1 (en) Elastomer lined, abrasion resistant pipe and method for manufacture
EP0455357A1 (en) Method of applying an internal coating to pipe and the product made thereby
CN107246123B (en) A kind of terrace composite coating and its preparation process
KR100737344B1 (en) Ceramic coated steel pipe and method for coating the same
JPS62129185A (en) Resin lining steel pipe and its production
US3333371A (en) Non-foamed polyurethane sander pad for abrasive discs
US1978319A (en) Method of making abrasive metal castings
PL193779B1 (en) A process for the manufacture of soft tipped blades
CN106519902A (en) Repairing technology for epoxy resin on surface of flow passage component of slurry pump
US1982710A (en) Reenforcement of high speed abrasive wheels
TW379157B (en) Round-shaped-board-type coloring grinding wheel for cutting purposes and the manufacturing method
KR101109414B1 (en) Coating method for ion-pipe and coated ion-pipe
US2114229A (en) Abrasive article and method of manufacturing the same
KR102624452B1 (en) Method for water pipe regeneration
JP7359385B2 (en) Construction method of self-leveling material
JP2019155530A (en) Method for surface treatment before coating inner face of cast iron pipe
CN210715230U (en) Suction cap
JP3667402B2 (en) Barge construction method
JP2022001729A (en) Center form faceplate, center and center form faceplate processing method
JPH02131939A (en) Forming method for wear resistant layer
JPH07148659A (en) Manufacture of barrel tank for barrel working machine
JPS622386Y2 (en)