JPS62128515A - Molecular-beam epitaxy equipment - Google Patents

Molecular-beam epitaxy equipment

Info

Publication number
JPS62128515A
JPS62128515A JP26971185A JP26971185A JPS62128515A JP S62128515 A JPS62128515 A JP S62128515A JP 26971185 A JP26971185 A JP 26971185A JP 26971185 A JP26971185 A JP 26971185A JP S62128515 A JPS62128515 A JP S62128515A
Authority
JP
Japan
Prior art keywords
molecular beam
molecular
molecular beams
crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26971185A
Other languages
Japanese (ja)
Inventor
Hideki Yakida
八木田 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26971185A priority Critical patent/JPS62128515A/en
Publication of JPS62128515A publication Critical patent/JPS62128515A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the utilization rate of a material, to enhance the quality of a growing crystal and to elevate the operating efficiency of equipment by ionizing molecular beams between a molecular beam source and a crystal substrate and deflecting ionized molecular beams. CONSTITUTION:Most of molecular beams 2 are ionized when they pass through an ionizer 3, and they are deflected from the direction of radiation that a deflector 4 originally has the same time s ionization. Consequently, molecular beams 2 passing through the ionizer 3 and the deflector 4 uniformly deposit on the whole surface of a substrate crystal on an average. Consequently, a growth film having the high uniformity of film thickness is obtained, the uniformity of the quantity of molecular beams can be acquired on the substrate crystal even when the directivity of molecular beams is large, and molecular beams can be utilized in the direction that the quantity of molecular beams can be utilized in the direction that the quantity of molecular beams is maximized. A device in which a heater is used or a device 23 in which a high-frequency electromagnetic field is utilized is employed s the ionizer. A device in which an AC electric field is used or a device in which an AC magnetic field is utilized or the like is employed as the deflector.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は分子線エピタキシー装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a molecular beam epitaxy device.

従来の技術 分子線エピタキシーは結晶材料を加熱などによって超高
真空中で蒸発させた分子線を単結晶基板上にゆっくりと
蒸着させながらエピタキシー結晶成長を行う方法である
。この方法では単原子層の極薄膜での制御が可能であシ
、結晶成長中に同時観察が可能であることなど、他の結
晶成長方法には無い特徴を有している。
Conventional technology Molecular beam epitaxy is a method of epitaxial crystal growth while slowly depositing molecular beams, which are obtained by evaporating a crystalline material in an ultra-high vacuum by heating or the like, onto a single crystal substrate. This method has features not found in other crystal growth methods, such as being able to control extremely thin monoatomic layers and allowing simultaneous observation during crystal growth.

分子線エピタキシーにおいて最も重要な点は真空度であ
る。真空度が悪い場合には真空中に残留する不純物分子
が結晶中に取り込まれ、結晶品質を悪くする。一般に真
空度は1高品質の結晶を得るために6×10 以下であ
ることが要求されている。また残留不純物分子である水
の分子(H2O)。
The most important point in molecular beam epitaxy is the degree of vacuum. If the degree of vacuum is poor, impurity molecules remaining in the vacuum will be incorporated into the crystal, impairing the quality of the crystal. Generally, the degree of vacuum is required to be 6×10 or less in order to obtain high quality crystals. Water molecules (H2O) are also residual impurity molecules.

あるいは二酸化炭素(CO2)などは可能な限り取υ除
かれる。この様に装置の内部を超高真空に保つだめに最
も有効な方法は装置の内部を大気にさらす回数を減す事
である。装置の内部を一度大気にさらしてしまうと、も
との超高真空の状態を得るために数日間の真空排気が必
要であることにっけ加え、大気中から結晶品質に悪影響
を及ぼす不純物分子を再び屯り込んでしまう。
Alternatively, carbon dioxide (CO2) and the like are removed as much as possible. The most effective way to maintain an ultra-high vacuum inside the device is to reduce the number of times the inside of the device is exposed to the atmosphere. Once the inside of the device is exposed to the atmosphere, evacuation is required for several days to restore the original ultra-high vacuum state, and impurity molecules from the atmosphere that have a negative effect on crystal quality I end up going back into it.

従来技術による分子線エピタキシー装置では、装置の内
部を大気にさらす回数は次の2点の理由により多くなっ
ている。第1点は装置の故障の場合で、故障の修理のた
めに装置の内部を大気にさらさざるを得なかった。第2
点は原料の枯渇の場合で、定期的に原料を充填するため
に大気にさらす必要があった。
In conventional molecular beam epitaxy equipment, the number of times the inside of the equipment is exposed to the atmosphere is increased for the following two reasons. The first problem is when the equipment malfunctions, and the inside of the equipment has to be exposed to the atmosphere in order to repair the malfunction. Second
The point is in the case of raw material depletion, and it was necessary to expose it to the atmosphere in order to periodically fill it with raw materials.

これら装置の故障および原料の枯渇の問題は、従来技術
による分子線エピタキ7−装置においては直接、成長膜
厚の均一性を高める方法・と深いかかわりを持っている
。従来技術においては、高い均一性を得るために結晶基
板を回転する方法と原料の分子線の放射方向に対して結
晶基板の面方向を著しくずらす方法が併用されている。
These problems of device failure and raw material depletion are directly related to methods for improving the uniformity of the grown film thickness in conventional molecular beam epitaxy devices. In the prior art, in order to obtain high uniformity, a method of rotating the crystal substrate and a method of significantly shifting the plane direction of the crystal substrate with respect to the radiation direction of the molecular beam of the raw material are used in combination.

結晶基板を回転する方法では、結晶基板表面での分子線
量が不均一であっても回転によって平均化されることに
より成長膜厚の均一性を高めることができる。しかし結
晶基板を回転する場合、結晶基板の温度制御性、温度の
均一性も同時に考慮する必要があるために5回転機構は
複雑となっている。この様な複雑な機構にもかかわらず
超高真空中で使用されるために可動部品にはいかなる潤
滑油も使用できないため可動部品の寿命を著しく縮めて
いる。そのため、装置の内部で発生する故障のほとんど
がこの回転機構によるものであった。
In the method of rotating the crystal substrate, even if the molecular beam dose is non-uniform on the surface of the crystal substrate, the uniformity of the grown film thickness can be improved by averaging it by rotation. However, when rotating the crystal substrate, it is necessary to consider temperature controllability and temperature uniformity of the crystal substrate at the same time, making the five-rotation mechanism complicated. Despite such a complicated mechanism, since it is used in an ultra-high vacuum, no lubricating oil can be used on the moving parts, which significantly shortens the life of the moving parts. Therefore, most of the failures that occur inside the device are due to this rotating mechanism.

結晶基板の面方向を原料の分子線の放射方向に対してず
らす方法は1分子線源から結晶基板を見た立体角を少さ
く取ることによって膜厚の均一性を高めることができる
。しかしこの方法では分子線源から蒸発した全分子線の
ほとんどは基板結晶上に堆積せず、全分子線の数パーセ
ントが基板結晶上で有効に利用される。このことは原料
の有効利用ができないことがら原料の枯渇を著しく早め
The method of shifting the plane direction of the crystal substrate with respect to the radiation direction of the molecular beam of the raw material can improve the uniformity of the film thickness by reducing the solid angle when viewing the crystal substrate from the single molecule beam source. However, in this method, most of the total molecular beams evaporated from the molecular beam source are not deposited on the substrate crystal, and only a few percent of the total molecular beams are effectively utilized on the substrate crystal. This significantly accelerates the depletion of raw materials because they cannot be used effectively.

原料の補給回数を増加せしめている。The frequency of replenishment of raw materials has been increased.

発明が解決しようとする問題点 本発明が解決しようとする問題点は、従来技術における
基板結晶回転機構の故障と、原料の利用効率を上げるこ
とであり5本発明の目的はこれらの問題点を取り除き分
子線エピタキシー装置の内部を大気にさらす回数を減ら
し、成長結晶の品質を向上せしめると同時に装置の稼動
率を上げることである。
Problems to be Solved by the Invention The problems to be solved by the present invention are to improve the failure of the substrate crystal rotation mechanism in the prior art and to improve the utilization efficiency of raw materials.5 The purpose of the present invention is to solve these problems. The objective is to reduce the number of times the inside of the molecular beam epitaxy apparatus is exposed to the atmosphere, improve the quality of the grown crystal, and at the same time increase the operating rate of the apparatus.

問題点を解決するための手段 問題点を解決するための本発明の手段は、複雑な機構を
有する基板回転と結晶基板の面方向をずらすことの併用
にょる膜厚均一化手段の代わりに、他の新規な成長膜厚
の均一性を高める装置、すなわち分子線源と結晶基板と
の間に分子線をイオン化する装置およびイオン化分子線
を偏向せしめる装置を分子線エピタキシー装置に具備せ
しめることである。
Means for Solving the Problems The means of the present invention for solving the problems is, instead of the film thickness uniformization means that uses a combination of substrate rotation having a complicated mechanism and shifting the plane direction of the crystal substrate, Another novel device for improving the uniformity of the grown film thickness is to equip a molecular beam epitaxy device with a device that ionizes the molecular beam between the molecular beam source and the crystal substrate, and a device that deflects the ionized molecular beam. .

作用 本発明によれば基板回転機構等の複雑な機構を必要とし
ないので、故障を激減でき、加えて原料の有効利用を図
ることができる。しかも超高真空容器を大気にさらす回
数を激減できるので結晶品質を高く保ち、量産性を向上
することができる。
According to the present invention, since a complicated mechanism such as a substrate rotation mechanism is not required, failures can be drastically reduced, and in addition, raw materials can be used effectively. Moreover, since the number of times the ultra-high vacuum container is exposed to the atmosphere can be drastically reduced, crystal quality can be kept high and mass productivity can be improved.

実施例 本発明による実施例を、ヒ化ガリウム(以下GILA!
i  )の分子線エピタキシーの場合を例に説明する。
EXAMPLE An example according to the present invention will be described using gallium arsenide (hereinafter GILA!).
The case of i) molecular beam epitaxy will be explained as an example.

GaAsの分子線エピタキシーの場合、一般に知られて
いる様に成長膜厚の均一性および成長速度は、全くガリ
ウム(Ga)の分子線の状態に依存している。したがっ
て本実施例では分子線源としてガリウムおよびひ素の両
分子線源を用いて用っているが、本発明による新規な成
長膜厚の均一性を高める装置の説明には、説明を分り易
くするためにガリウムの分子線源のみを中心に説明する
In the case of GaAs molecular beam epitaxy, as is generally known, the uniformity of the grown film thickness and the growth rate completely depend on the state of the gallium (Ga) molecular beam. Therefore, in this example, both gallium and arsenic molecular beam sources are used as molecular beam sources. Therefore, only the gallium molecular beam source will be explained.

この時ひ素の分子線は考えている空間に均一に存在する
と考えている。
At this time, we believe that the arsenic molecular beam exists uniformly in the space we are considering.

第1図は本発明の第1の実施例における分子線エピタキ
シー装置である。1はGa分子線源で。
FIG. 1 shows a molecular beam epitaxy apparatus in a first embodiment of the present invention. 1 is a Ga molecular beam source.

2はGa分子線、3は加熱ヒーターを利用したイオン化
装置で、4は交流電界を利用した偏向装置で、6はG2
LAS結晶基板である。(1分子線源1より放射された
指向性の強いGa分子線2は加熱ヒーターを利用したイ
オン化装置でイオン化される。この加熱ヒーターは、メ
ツシュ状のタングステン(W)線を通電加熱したものを
用いた。イオン化された分子線は偏向されるが、本実施
例では複数の対をなす電極に交流電界を印加して偏向さ
れている。イオン化された分子線の偏向は前記交流電界
によって分子線の放射方向と垂直方向に偏向される。こ
の場合複数の対をなす電極に印加される交流電界の電界
強度と周波数は、Ga分子線2がGaAs結晶基板6上
で査走され、平均的にGa分子線2が均一に堆積する様
に調整されている。
2 is a Ga molecular beam, 3 is an ionization device that uses a heating heater, 4 is a deflection device that uses an AC electric field, and 6 is a G2
This is a LAS crystal substrate. (The highly directional Ga molecular beam 2 emitted from the single molecule beam source 1 is ionized by an ionization device using a heating heater. This heating heater uses a mesh-shaped tungsten (W) wire heated with electricity. The ionized molecular beam is deflected, and in this example, it is deflected by applying an alternating current electric field to multiple pairs of electrodes.The ionized molecular beam is deflected by the alternating electric field. is deflected in a direction perpendicular to the radiation direction of It is adjusted so that the Ga molecular beam 2 is deposited uniformly.

その結果、 GaAs基板5の結晶面上に膜厚の均一性
の良いGaAsエピタキシ一層を得た。
As a result, a single GaAs epitaxy layer with good film thickness uniformity was obtained on the crystal plane of the GaAs substrate 5.

本実施例装置の作用を第2図を用いて説明する。The operation of the device of this embodiment will be explained using FIG. 2.

第2図において、第1図におけると同様1は分子線源1
2は分子線、3は分子をイオン化する装置(以下イオン
化装置)、4はイオン化分子線を偏向せしめる装置(以
下偏向装置)、6は結晶基板、6は原料である。分子線
源1より発生した分子線2は強い指向性を有しているが
、分子のほとんどはイオン化されていない。分子線2は
イオン化装置3を通過するときそのほとんどがイオン化
され、イオン化と同時に偏向装置4で本来有していた放
射方向から偏向される。したがってイオン化装置3、偏
向装置4を通過した分子線2は基板結晶全面に平均的に
均一に堆積する。このため膜厚の均一性が高い成長膜が
得られる。
In Fig. 2, 1 is the molecular beam source 1 as in Fig. 1.
2 is a molecular beam, 3 is a device for ionizing molecules (hereinafter referred to as an ionization device), 4 is a device for deflecting the ionized molecular beam (hereinafter referred to as a deflection device), 6 is a crystal substrate, and 6 is a raw material. Although the molecular beam 2 generated by the molecular beam source 1 has strong directivity, most of the molecules are not ionized. When the molecular beam 2 passes through the ionization device 3, most of it is ionized, and simultaneously with the ionization, it is deflected from its original radiation direction by the deflection device 4. Therefore, the molecular beam 2 that has passed through the ionization device 3 and the deflection device 4 is deposited evenly and uniformly over the entire surface of the substrate crystal. Therefore, a grown film with high uniformity in film thickness can be obtained.

第3図は本発明による第2の実施例装置で、1はG&分
子線源で、2はGa分子線、23は高周波電磁界を利用
したイオン化装置で、24は交流磁界を利用した偏向装
置である。この場合も同様に高周波電磁界でイオン化さ
れたGa分子線2は磁界により偏向され、G&ムS基板
結晶上で平均的に均一になる様に査走される。その結果
、第1の実施例と同様に、膜厚の均一性の良いGaAs
分子線エピタキシー成長層を得た。
FIG. 3 shows a second embodiment of the present invention, in which 1 is a G & molecular beam source, 2 is a Ga molecular beam, 23 is an ionization device using a high-frequency electromagnetic field, and 24 is a deflection device using an alternating current magnetic field. It is. In this case as well, the Ga molecular beam 2 ionized by the high-frequency electromagnetic field is deflected by the magnetic field and scanned uniformly on the G&M S substrate crystal. As a result, as in the first embodiment, GaAs film with good film thickness uniformity was obtained.
A molecular beam epitaxy grown layer was obtained.

第1の実施例および第2の実施例では、加熱体を利用し
たイオン化装置と交流電界を利用した偏向装置を組み合
せた例と、高周波電磁界を利用したイオン化装置と交流
磁界を利用した偏向装置を組み合せた例をそれぞれ示し
たがこれらの組み合せに限らず、他の組み合せ、即ち加
熱体を利用したイオン化装置と交流磁界を利用した偏向
装置を組み合せた場合、あるいは高周波電磁界を利用し
たイオン化装置と交流電界を利用した偏向装置を組み合
せた場合においても同様の効果が得られる。
In the first and second embodiments, an example in which an ionization device using a heating body and a deflection device using an alternating current electric field are combined, and an ionization device using a high frequency electromagnetic field and a deflection device using an alternating current magnetic field are described. We have shown examples of combinations of the above, but other combinations are possible, such as combinations of an ionization device using a heating element and a deflection device using an alternating magnetic field, or an ionization device using a high-frequency electromagnetic field. A similar effect can be obtained even when a deflection device using an alternating current electric field is combined.

本実施例ではGaAs結晶の場合を例に説明したが、他
の結晶5例えばシリコン(Si)  、インジウムリン
(InP) 、 )y’ルマニウム(G6)  、アル
ミニウムひ素(ム5As)結晶などの場合においても本
発明はまったく同様に実施することができる。
In this example, the case of GaAs crystal was explained as an example, but other crystals such as silicon (Si), indium phosphide (InP), )y'rumanium (G6), aluminum arsenide (As) crystal, etc. The present invention can also be implemented in exactly the same way.

また本実施例では電磁界を利用した偏向装置は真空容器
内に設置したが、真空容器外に設置してもイオン化され
た分子線に偏向電磁界を印加せしめることもできる。
Further, in this embodiment, the deflection device using an electromagnetic field is installed inside the vacuum vessel, but it can also be installed outside the vacuum vessel to apply the deflection electromagnetic field to the ionized molecular beam.

さらにまた5本発明による第2の実施例で、イオン化装
置として高周波電磁界を用いた例を示したが、高周波電
磁界の周波数を分子線を構成する原子の固有する電子サ
イクロトロン共鳴の周波数に同調させて、分子線をイオ
ン化することも可能であり、この電子サイクロトロン共
鳴によるイオン化によってイオン化効率を上げることが
できる。
Furthermore, in the second embodiment of the present invention, an example was shown in which a high-frequency electromagnetic field was used as an ionization device, but the frequency of the high-frequency electromagnetic field was tuned to the frequency of electron cyclotron resonance peculiar to the atoms constituting the molecular beam. It is also possible to ionize the molecular beam in this manner, and the ionization efficiency can be increased by ionization by electron cyclotron resonance.

発明の効果 以上のように本発明によれば、結晶基板面内に均一性の
高い成長膜を得ることができる他に5分子線エピタキシ
ー装置から基板回転機構の複雑な機構を取り除くことが
できるため分子線エピタキシー装置の故障を激減できる
。さらに分子線源から放射される分子線の指向性が強い
場合でも分子線量の平均的な均一性を基板結晶上で得る
ことができ、分子線量の最大となる方向で利用できるた
め、源料の有効利用が可能となった。
Effects of the Invention As described above, according to the present invention, not only can a highly uniform grown film be obtained within the plane of a crystal substrate, but also the complicated mechanism of the substrate rotation mechanism can be removed from the five-molecular beam epitaxy apparatus. Breakdowns of molecular beam epitaxy equipment can be drastically reduced. Furthermore, even if the molecular beam emitted from the molecular beam source has strong directionality, it is possible to obtain average uniformity of the molecular beam on the substrate crystal, and the molecular beam can be used in the direction that maximizes the molecular beam, so the source material can be Effective use has become possible.

本発明装置を用いることによってもたらされる故障の激
減と、原料の有効利用によって、分子線エピタキシー装
置の結晶品質を決定する超高真空容器を大気にさらす回
数が激減するために、結晶品質を高く保ち、しかも結晶
成長の量産性が大幅に向上する。
Due to the drastic reduction in failures brought about by using the device of the present invention and the effective use of raw materials, the number of times the ultra-high vacuum container, which determines the crystal quality of the molecular beam epitaxy device, is exposed to the atmosphere is drastically reduced, thereby maintaining high crystal quality. Moreover, the mass productivity of crystal growth is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第へ第♂ヤ第3図は本発明の実施例における分子線エピ
タキシー装置の概略構成図である。 1・・・・・・分子線源、2・・・・・・分子線、3.
23・・・・・・イオン化装置、4.24・・・・・・
偏向装置、6・・・・・・結晶基板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図
FIG. 3 is a schematic diagram of a molecular beam epitaxy apparatus in an embodiment of the present invention. 1... Molecular beam source, 2... Molecular beam, 3.
23... Ionization device, 4.24...
Deflection device, 6...Crystal substrate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 (1)分子線を基板結晶表面に堆積させながらエピタキ
シー結晶成長を行なわせる分子線エピタキシー装置であ
って、分子線源と基板結晶との間に分子線をイオン化す
る装置、および前記イオン化された前記分子線を偏向せ
しめる装置を具備してなる分子線エピタキシー装置。 (2)分子線をイオン化する装置が加熱物体を有し、前
記加熱物体が分子線が通過する領域内に設置されている
特許請求の範囲第1項記載の分子線エピタキシー装置。 (3)分子線をイオン化する装置が高周波の電磁界を発
生させる装置であり、高周波の電磁界が前記分子線が通
過する空間に印加されるべく設置されている特許請求の
範囲第1項記載の分子線エピタキシー装置。 前記分子線に交流電界を印加する装置である特許請求の
範囲第1項記載の分子線エピタキシー装置。 (5)イオン化された分子線を偏向せしめる装置が、前
記分子線に交流磁界を印加する装置である特許請求の範
囲第1項記載の分子線エピタキシー装置。
[Scope of Claims] (1) A molecular beam epitaxy device that performs epitaxial crystal growth while depositing a molecular beam on a substrate crystal surface, the device ionizing the molecular beam between a molecular beam source and the substrate crystal; and a device for deflecting the ionized molecular beam. (2) The molecular beam epitaxy apparatus according to claim 1, wherein the apparatus for ionizing the molecular beam has a heating object, and the heating object is installed in a region through which the molecular beam passes. (3) Claim 1, wherein the device for ionizing the molecular beam is a device for generating a high-frequency electromagnetic field, and the high-frequency electromagnetic field is installed to be applied to a space through which the molecular beam passes. Molecular beam epitaxy equipment. The molecular beam epitaxy apparatus according to claim 1, which is an apparatus for applying an alternating electric field to the molecular beam. (5) The molecular beam epitaxy apparatus according to claim 1, wherein the device for deflecting the ionized molecular beam is a device for applying an alternating magnetic field to the molecular beam.
JP26971185A 1985-11-29 1985-11-29 Molecular-beam epitaxy equipment Pending JPS62128515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26971185A JPS62128515A (en) 1985-11-29 1985-11-29 Molecular-beam epitaxy equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26971185A JPS62128515A (en) 1985-11-29 1985-11-29 Molecular-beam epitaxy equipment

Publications (1)

Publication Number Publication Date
JPS62128515A true JPS62128515A (en) 1987-06-10

Family

ID=17476108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26971185A Pending JPS62128515A (en) 1985-11-29 1985-11-29 Molecular-beam epitaxy equipment

Country Status (1)

Country Link
JP (1) JPS62128515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186872A (en) * 1990-06-29 1993-02-16 Konica Corporation Method for generation and collection of ultra fine particles without scatter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186872A (en) * 1990-06-29 1993-02-16 Konica Corporation Method for generation and collection of ultra fine particles without scatter

Similar Documents

Publication Publication Date Title
JPH0672306B2 (en) Plasma processing apparatus and plasma processing method
JP2001520433A (en) Apparatus and method for generating accelerated particles
US4140546A (en) Method of producing a monocrystalline layer on a substrate
JPH0652716B2 (en) Semiconductor crystalline film manufacturing equipment
EP0959151A2 (en) Thin film forming apparatus
JPH0622205B2 (en) Plasma CVD equipment
JP4741060B2 (en) Method and apparatus for epitaxially depositing atoms or molecules from a reaction gas on a deposition surface of a substrate
KR900019219A (en) Beam deposition method and apparatus for performing the same
JPS62128515A (en) Molecular-beam epitaxy equipment
Murayama Structures of GaAs and GaP thin films formed by rf ion‐beam epitaxy
Kim et al. Growth and characterization of GaN on sapphire (0001) using plasma‐assisted ionized source beam epitaxy
Shijun et al. A dual ion beam epitaxy system
JPS6132414A (en) Thin film forming equipment
JPH0266167A (en) Ionization vapor deposition device
JP2661216B2 (en) Method for manufacturing compound semiconductor thin film
JP3355449B2 (en) Organometallic chemical vapor deposition method and apparatus
JPH0786613A (en) Manufacture of quantum effect element
JPS6230315A (en) Electron gun apparatus
JPH1186774A (en) Ion-implanting device and manufacture of semiconductor device using the same
JPH0748477B2 (en) Semiconductor manufacturing equipment
JPS62172714A (en) Manufacture of compound semiconductor thin film
JPS62205618A (en) Plasma cvd unit
JPS60130819A (en) Molecular beam epitaxy device
JPH05229894A (en) Method for growing crystal
JPS62190831A (en) Molecular beam epitaxy apparatus