JPS6212843A - Continuous analysis of molten iron component by laser emission spectrochemical analysis - Google Patents

Continuous analysis of molten iron component by laser emission spectrochemical analysis

Info

Publication number
JPS6212843A
JPS6212843A JP14991285A JP14991285A JPS6212843A JP S6212843 A JPS6212843 A JP S6212843A JP 14991285 A JP14991285 A JP 14991285A JP 14991285 A JP14991285 A JP 14991285A JP S6212843 A JPS6212843 A JP S6212843A
Authority
JP
Japan
Prior art keywords
molten iron
laser
light
analysis
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14991285A
Other languages
Japanese (ja)
Inventor
Wataru Tanimoto
亘 谷本
Kozo Sumiyama
角山 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14991285A priority Critical patent/JPS6212843A/en
Publication of JPS6212843A publication Critical patent/JPS6212843A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To continuously analyze molten iron components with good accuracy by irradiating laser light to a molten iron and spectrally analyzing the light emitted therefrom. CONSTITUTION:A laser oscillation control part 13 instructed by a timing control part 15 feeds a high voltage to a laser oscillator 1 so that the laser light is emitted therefrom. The laser light is bent 90 deg. downward by a prism 2 and is condensed by a condenser lens 3 onto the surface of the molten iron 17. The light pumped and emitted by the irradiation of the laser forms the image to an incident slit 5 via a concave mirror 7 and plane mirrors 8a, 8b. The pumping light introduced into a spectroscope is dispersed to spectra. The respective element spectral intensities are converted to electric signal intensities by a photoelectron amplifier 6. The intensities are then amplified 12. The amplified signals are integrated by cutting white noise in accordance with the signal from the control part 15 in a signal processing part 14 and the result thereof is transferred to a computer 16. The computer 16 calculates the respective element concns. by the calibration curve preliminarily formed from a standard sample. The components of the molten iron under tapping are thus continuously analyzed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高炉から出銑される溶銑中のSi。[Detailed description of the invention] [Industrial application field] The present invention relates to Si in hot metal tapped from a blast furnace.

P 、 S 、 M o 、 M n 、 T i等の
含有率を出銑の途中でレーザ発光分光分析により迅速か
つ連続的に分析する方法に関する。
The present invention relates to a method for quickly and continuously analyzing the content of P, S, Mo, Mn, Ti, etc. during tapping by laser emission spectrometry.

〔従来の技術〕[Conventional technology]

以下、溶銑中のSi含有率の分析を主体にして説明する
The following explanation will focus on analysis of the Si content in hot metal.

最近溶銑中のSi濃度を低下させる目的で高炉の出銑樋
内の溶銑に鉄鉱石などの脱珪剤を投入し、溶銑の脱珪を
行なっている。この脱珪剤の量を決定するのに、溶銑中
のSi濃度を目安にするわけであるが、従来、炉熱制御
モデルから推定した炉内溶銑中のSi濃度を目安にして
いる。また、現在、出銑している。溶銑中のSi濃度を
知る場合でも従来では、出銑樋を流れている溶銑を柄杓
ですくい金型に鋳込んで冷却、凝固したものを試料とし
て、分析を行ない、Si濃度を求めている。このため試
料採取から分析値がわかるまでに時間がかかり、脱珪時
の目安にできない。
Recently, in order to reduce the Si concentration in the hot metal, a desiliconizing agent such as iron ore has been introduced into the hot metal in the tap trough of a blast furnace to desiliconize the hot metal. To determine the amount of the desiliconizing agent, the Si concentration in the hot metal is used as a guideline, and conventionally, the Si concentration in the hot metal in the furnace estimated from a furnace heat control model is used as a guideline. In addition, iron is currently being tapped. Conventionally, when determining the Si concentration in hot metal, the hot metal flowing through the tap hole is scooped with a ladle, poured into a mold, cooled and solidified, and then analyzed as a sample to determine the Si concentration. For this reason, it takes time to obtain the analytical value after sample collection, and it cannot be used as a guideline for desiliconization.

°また。脱珪後のSi濃度も迅速に求めることができな
い。
°Also. The Si concentration after desiliconization cannot also be determined quickly.

溶銑成分の測定については、特開昭59−51350号
公報に、出銑樋にバイパス樋を設けてアーク放電による
分光分析を行う方法が開示されているが、湯面変動をな
くすためバイパス設置が必要であり、またアーク放電で
は精度が悪く。
Regarding the measurement of hot metal components, Japanese Patent Application Laid-Open No. 59-51350 discloses a method of installing a bypass gutter in the tap gutter and performing spectroscopic analysis using arc discharge. This is necessary, and arc discharge has poor accuracy.

電極の溶は込みによる溶銑の汚染等の問題がある。There are problems such as contamination of hot metal due to melting of the electrode.

また、特開昭58−193307号公報においては、熱
起電力法によってSi含有量を測定する方法が開示され
ているが、この方法は、試料を採取、冷却して研磨を行
う前処理が必要であり1分析値が判るまでに約3分を必
要とする。また、実施例中に示されている溶銑中Si含
有率と起電力との検量線において、Si0.20%で約
±0.1%のばらつきがあり実用的でない。
Furthermore, JP-A-58-193307 discloses a method of measuring Si content by thermoelectromotive force method, but this method requires pretreatment of collecting a sample, cooling it, and polishing it. It takes about 3 minutes to determine one analysis value. Further, in the calibration curve of Si content in hot metal and electromotive force shown in the examples, there is a variation of about ±0.1% at 0.20% Si, which is not practical.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、出銑作業中の環境で迅速的に連続的に溶銑成
分を精度よく分析できる方法を提供することを目的とす
る。
An object of the present invention is to provide a method that can rapidly and continuously analyze hot metal components with high accuracy in an environment during tapping operations.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は溶銑中の成分含有量を連続的に分析するレーザ
発光分光分析による溶銑成分の連続分析方法であって、
溶銑が高炉から出湯されてから混銑車へ移動するまでの
間に溶銑にレーザ光を照射し、その放出光を分光分析す
ることを特徴とする。
The present invention is a continuous analysis method of hot metal components by laser emission spectrometry, which continuously analyzes the component content in hot metal,
It is characterized by irradiating the hot metal with laser light from the time it is tapped from the blast furnace until it is transferred to the pig iron mixing car, and spectroscopically analyzing the emitted light.

〔作用〕[Effect]

レーザ発光分光分析の特徴は湯面に対し非接触で測定で
き、湯面変動にそれほど影響されないことである。従っ
て、出銑樋に別にバイパスを設けることなく移動してい
る溶銑を直接分析できるという優れた特徴をもっている
A feature of laser emission spectrometry is that it can be measured without contacting the hot water surface and is not affected much by fluctuations in the hot water surface. Therefore, it has the excellent feature that the moving hot metal can be directly analyzed without providing a separate bypass in the tap culvert.

本発明者らは溶銑成分の連続分析にレーザ発光分光分析
を応用すべく鋭意研究を重ねてきた。
The present inventors have been conducting extensive research to apply laser emission spectroscopy to the continuous analysis of hot metal components.

その結果、 ■ 試料表面上のエネルギー密度が2.0X109W 
/ m m’以上となるように試料に赤外線パルスレー
ザ光を照射する。
As a result, ■ The energy density on the sample surface is 2.0X109W.
/ mm The sample is irradiated with an infrared pulsed laser beam so that the intensity is greater than or equal to

■ 試料表面から放出される光を不活性ガス雰囲気に保
った通路を介して、光導入系に16度以上の立体角で受
光した後、分光器入口スリットに結像させる。
(2) Light emitted from the sample surface is received by the light introduction system at a solid angle of 16 degrees or more through a passage kept in an inert gas atmosphere, and then imaged at the entrance slit of the spectrometer.

■ レーザ光照射直後に試料表面から放出される光のう
ち、ホワイトノイズの発生する最初の放射光を除き、そ
の後に続く放射光を用いて定量分析する。
■ Of the light emitted from the sample surface immediately after laser beam irradiation, remove the first emitted light that generates white noise and perform quantitative analysis using the subsequent emitted light.

■ 赤外線パルスレーザ光の出力を、ガウス分布状のT
EMooモードに固定する。
■ The output of the infrared pulsed laser beam is
Fixed to EMoo mode.

■ 放射光の通路に501 / m i n以上の不活
性ガスを吹き付ける。
■ Spray an inert gas of 501/min or more into the synchrotron radiation path.

■ レーザ光照射直後に試料表面から放出される光 の
うち最初の1.5ルsec以下の放射光を除き、その後
に続(16g、secまでの放射光を用いて定量分析す
る。
(1) Exclude the first 1.5 sec or less of the light emitted from the sample surface immediately after laser irradiation, and then perform quantitative analysis using the next 16 g/sec of radiated light.

■ スペクトル線の放出されない特定波長の光強度をバ
ックグラウンドとし、スペクトル線強度から差し引く。
■ The light intensity of a specific wavelength in which no spectral line is emitted is used as the background, and is subtracted from the spectral line intensity.

■ 所定のスペクトル線の強度又は所定の一対のスペク
トル線の強度比が一定範囲内にある時のみ、測定元素の
スペクトル線強度から分析値を求める。
(2) Only when the intensity of a predetermined spectral line or the intensity ratio of a predetermined pair of spectral lines is within a certain range, an analytical value is obtained from the spectral line intensity of the measured element.

以上の構成からなるレーザ発光分光分析装置によって溶
銑中のSi濃度などの元素分析が連続的に迅速な分析が
可能となった。
The laser emission spectrometer having the above configuration enables continuous and rapid elemental analysis of the Si concentration in hot metal.

〔実施例〕〔Example〕

次にSi濃度の連続分析方法における装置の好適実施例
である第1図について本発明方法を具体的に説明する。
Next, the method of the present invention will be specifically explained with reference to FIG. 1, which is a preferred embodiment of an apparatus for the continuous analysis method of Si concentration.

(1)分析条件(時間、回数、間隔、)をコンピュータ
16に入力する。
(1) Input analysis conditions (time, number of times, interval, etc.) into the computer 16.

(2)コンピュータ16からタイミング制御部15に設
定条件が送られる。
(2) Setting conditions are sent from the computer 16 to the timing control section 15.

(3)タイミング制御部15はレーザの発振、および信
号処理のタイミング調整を行う。
(3) The timing control unit 15 adjusts the timing of laser oscillation and signal processing.

(4)タイミング制御部15のレーザ発振命令により、
レーザ発振制御部13はレーザ発振器lに高電圧を送り
、レーザ光を放出させる。
(4) According to the laser oscillation command of the timing control unit 15,
The laser oscillation control unit 13 sends a high voltage to the laser oscillator l to cause it to emit laser light.

(5)レーザ発振器lより放出されたレーザ光はプリズ
ム2で90°下向きに曲げられ、集光レンズ3で溶銑1
7表面に集光される。
(5) The laser beam emitted from the laser oscillator 1 is bent downward by 90 degrees by the prism 2, and the molten metal 1 is bent by the condensing lens 3.
7. The light is focused on the surface.

(6)レーザ照射により励起発光した光は凹面鏡7およ
び2枚の平面鏡8a、8bで分光器入射スリット5に、
結像され、分光器4に導入される。
(6) The light excited and emitted by laser irradiation enters the spectrometer entrance slit 5 using the concave mirror 7 and the two plane mirrors 8a and 8b.
It is imaged and introduced into the spectroscope 4.

(7)なお、この光路は不活性ガス導入部9より導入さ
れる不活性ガス雰囲気に保たれており、さらに、ランス
11に設けた不活性ガス追加導入部10より不活性ガス
を導入し、溶銑17表面に吹きつけ、溶銑17表面に浮
遊する不純物の除去、ガス混入による光学系の汚染防止
を行っている。
(7) Note that this optical path is maintained in an inert gas atmosphere introduced from the inert gas introduction part 9, and further, an inert gas is introduced from the inert gas additional introduction part 10 provided in the lance 11, It is blown onto the surface of the hot metal 17 to remove impurities floating on the surface of the hot metal 17 and to prevent contamination of the optical system due to gas contamination.

(8)分光器4に導入された励起光は回折格子等の光分
散素子(図示せず)でスペクトルに分散され、各元素ス
ペクトル位置に設置された光電変換素子、たとえば光電
子増倍管の群6で、各元素スペクトル強度が電気信号強
度に変換され増幅器12で増幅される。
(8) The excitation light introduced into the spectrometer 4 is dispersed into a spectrum by a light dispersion element (not shown) such as a diffraction grating, and a group of photoelectric conversion elements, such as a photomultiplier tube, is installed at each elemental spectral position. At 6, each elemental spectral intensity is converted into an electrical signal intensity and amplified by an amplifier 12.

(9)電気信号に変換された各元素のスペクトル強度は
、信号処理部14でタイミング制御部15からの信号を
基にホワイトノイズをカットして積算され、A/D変換
されコンピュータ16へ転送される。
(9) The spectral intensity of each element converted into an electrical signal is integrated by the signal processing unit 14 by cutting out white noise based on the signal from the timing control unit 15, and then A/D converted and transferred to the computer 16. Ru.

(10)コンピュータ16はあらかじめ標準試料で作成
しておいた検量線によって各元素濃度を算出する。
(10) The computer 16 calculates the concentration of each element using a calibration curve prepared in advance using standard samples.

(11) 算出された溶銑中の珪素濃度が脱珪剤切出装
置19に転送される。この情報により例えば脱珪剤切出
装置19は出銑量速度、銑中珪素濃度により脱珪剤投入
量を算出し、溶銑に脱珪剤を投入する。
(11) The calculated silicon concentration in the hot metal is transferred to the desiliconizing agent cutting device 19. Based on this information, for example, the desiliconizing agent cutting device 19 calculates the amount of desiliconizing agent to be input based on the tapping rate and the silicon concentration in the pig iron, and injects the desiliconizing agent into the hot metal.

以上の手順により、出湯中の溶銑成分の連続分析が可能
となった。
The above procedure made it possible to continuously analyze the hot metal components in tapped metal.

本発明方法の実施に用いられる装置の他の好適実施例と
してレーザ発振器と受光器を対向式にした例を第2図に
示す。また脱珪装置の前後に配置した例として第3図に
示す、第3図においては1台のレーザ発振器から放出さ
れたレーザ光はビーム・スプリッタで分けて脱珪処理前
後の溶銑に照射し1前後の成分の同時分析ができる。
Another preferred embodiment of the apparatus used to carry out the method of the present invention is shown in FIG. 2, in which a laser oscillator and a light receiver are arranged facing each other. Figure 3 shows an example of a device placed before and after a desiliconization device. Simultaneous analysis of components before and after is possible.

この例による脱珪処理前、後の分析結果の1例を第4図
、第5図に示す、この結果より溶銑中のSi濃度が精度
よく分析された。
An example of the analysis results before and after the desiliconization treatment according to this example is shown in FIGS. 4 and 5. From these results, the Si concentration in the hot metal was analyzed with high accuracy.

また本装置の変化例として混銑車に溶銑を流し落とす過
程でレーザ光を照゛射して分析する方法を第6図に示し
た。
As an example of a modification of this device, FIG. 6 shows a method in which a laser beam is irradiated and analyzed during the process of pouring hot metal into a pig iron mixing car.

〔発明の効果〕〔Effect of the invention〕

本方法により溶銑中の成分を連続的に迅速に精度よく分
析することが可能となった。
This method has made it possible to continuously analyze components in hot metal rapidly and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を好適に実施することのできる実施
例のレーザ発光分光分析装置の説明図、第2図はレーザ
発振器と受光器を分けた装置の斜視図、第3図は脱珪装
置の前後を同時に分析する方法の説明図、第4図は脱珪
前の5ilj:度の分析値を示すグラフ、第5図は脱珪
後のSi濃度の分析値を示すグラフ、第6図は混銑車注
湯中に分析する方法の説明図である。 l・・・レーザ発振器    2・・・プリズム3・・
・集光レンズ     4・・・分光器5・・・入射ス
リット    6・・・光電子増倍管群7・・・凹面鏡
       8a、8b・・・平面鏡9・・・不活性
ガス導入部 lO・・・不活性ガス追加導入部 11・・・ランス      12・・・増幅器13・
・・レーザ発振制御部 14・・・信号処理部15・・
・タイミング制御部 16・・・コンピュータ17・・
・溶鉄       18・・・溶銑樋19・・・脱珪
装置 20・・・ビーム拳スブリ・ンタ 21・・・溶滓       22・・・傾斜樋23・
・・混銑車
FIG. 1 is an explanatory diagram of a laser emission spectrometer according to an embodiment of the present invention that can suitably carry out the method of the present invention, FIG. 2 is a perspective view of the device in which a laser oscillator and a light receiver are separated, and FIG. 3 is a desiliconization An explanatory diagram of a method for simultaneously analyzing the front and rear parts of the device, Fig. 4 is a graph showing the analysis value of 5ilj: degree before desiliconization, Fig. 5 is a graph showing the analysis value of Si concentration after desiliconization, Fig. 6 is an explanatory diagram of a method of analysis during pouring into a mixed pig iron car. l...Laser oscillator 2...Prism 3...
・Condensing lens 4...Spectroscope 5...Incidence slit 6...Photomultiplier tube group 7...Concave mirror 8a, 8b...Plane mirror 9...Inert gas introduction part lO... Inert gas additional introduction section 11...Lance 12...Amplifier 13.
...Laser oscillation control section 14...Signal processing section 15...
・Timing control section 16... Computer 17...
- Molten iron 18...Hot metal gutter 19...Desiliconizing device 20...Beam fist sinter 21...Slag 22...Slope gutter 23.
・・Pig-mixing car

Claims (1)

【特許請求の範囲】 高炉から出銑される溶銑が出湯されてから 混銑車へ移動する間に、該溶銑にレーザ光を照射し、そ
の放出光を連続的に分光分析することを特徴とするレー
ザ発光分光分析による溶銑成分の連続分析方法。
[Claims] The hot metal is tapped from a blast furnace and is irradiated with laser light while the hot metal is being transferred to the pig iron mixing car after being tapped and the emitted light is continuously subjected to spectroscopic analysis. A continuous analysis method for hot metal components using laser emission spectroscopy.
JP14991285A 1985-07-10 1985-07-10 Continuous analysis of molten iron component by laser emission spectrochemical analysis Pending JPS6212843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14991285A JPS6212843A (en) 1985-07-10 1985-07-10 Continuous analysis of molten iron component by laser emission spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14991285A JPS6212843A (en) 1985-07-10 1985-07-10 Continuous analysis of molten iron component by laser emission spectrochemical analysis

Publications (1)

Publication Number Publication Date
JPS6212843A true JPS6212843A (en) 1987-01-21

Family

ID=15485305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14991285A Pending JPS6212843A (en) 1985-07-10 1985-07-10 Continuous analysis of molten iron component by laser emission spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPS6212843A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075346A (en) * 2001-09-05 2003-03-12 Nippon Steel Corp Laser emission spectrophotometer
JP2007315945A (en) * 2006-05-26 2007-12-06 Nippon Steel Corp Component analysis method and apparatus of melted metal within finery
US9850998B2 (en) 2007-01-24 2017-12-26 Torotrak (Development) Limited Powered metal variator components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075346A (en) * 2001-09-05 2003-03-12 Nippon Steel Corp Laser emission spectrophotometer
JP4542291B2 (en) * 2001-09-05 2010-09-08 新日本製鐵株式会社 Laser emission spectrometer
JP2007315945A (en) * 2006-05-26 2007-12-06 Nippon Steel Corp Component analysis method and apparatus of melted metal within finery
JP4625428B2 (en) * 2006-05-26 2011-02-02 新日本製鐵株式会社 Method and apparatus for analyzing component of molten metal in refining furnace
US9850998B2 (en) 2007-01-24 2017-12-26 Torotrak (Development) Limited Powered metal variator components

Similar Documents

Publication Publication Date Title
EP0176625B1 (en) Method of laser emission spectroscopical analysis of steel and apparatus therefor
Eschlböck-Fuchs et al. Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma
HK4596A (en) Metals assay apparatus and method
US4730925A (en) Method of spectroscopically determining the composition of molten iron
GB2154315A (en) Improvements in or relating to the analysis of materials
JP2009288068A (en) Analyzing method and analyzer
EP0184590B1 (en) Method of continuously analyzing fluidized body by laser
JPS6212843A (en) Continuous analysis of molten iron component by laser emission spectrochemical analysis
US4690558A (en) Method of laser emission spectroscopical analysis and apparatus therefor
Hiddemann et al. Simultaneous multi-element analysis of solid samples by laser ablation—microwave-induced plasma optical emission spectrometry
Luque-Garcıa et al. Determination of the major elements in homogeneous and heterogeneous samples by tandem laser-induced breakdown spectroscopy–partial least square regression
JPH0815153A (en) Method and apparatus for laser emission spectroscopic analysis
JP4449188B2 (en) Method and apparatus for analyzing components in molten metal
JP3861480B2 (en) Slag analysis method and apparatus
JP2810790B2 (en) Direct chemical analysis of molten metal
Francois et al. Laser-induced breakdown spectroscopy analysis of the free surface of liquid secondary copper slag
JPH0339631B2 (en)
JP5085594B2 (en) Method and apparatus for continuous monitoring of molten steel
CA1225844A (en) Method of continuously analyzing fluidized body by laser and apparatus therefor
JPH01126526A (en) Apparatus for analyzing molten metal
JPH11108829A (en) Method and device for online analysis of molten metal
JPH02254345A (en) Laser emission spectral analysis method and apparatus for molten metal
JPH0145017B2 (en)
JP3304700B2 (en) Method and apparatus for direct analysis of molten metal
JPH0211097B2 (en)