JPS6212823A - Gas turbine flame detector - Google Patents

Gas turbine flame detector

Info

Publication number
JPS6212823A
JPS6212823A JP15024585A JP15024585A JPS6212823A JP S6212823 A JPS6212823 A JP S6212823A JP 15024585 A JP15024585 A JP 15024585A JP 15024585 A JP15024585 A JP 15024585A JP S6212823 A JPS6212823 A JP S6212823A
Authority
JP
Japan
Prior art keywords
flame
signal
detector
control
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15024585A
Other languages
Japanese (ja)
Inventor
Tokuji Nakamura
中村 徳治
Nobuyuki Iizuka
飯塚 信之
Masatsugu Kunihiro
国広 昌嗣
Tsuneyuki Tai
泰 恒之
Isao Sato
勲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15024585A priority Critical patent/JPS6212823A/en
Publication of JPS6212823A publication Critical patent/JPS6212823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Combustion (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To increase the reliability in combustion control of a unit by performing the monitor control of multiple flame with a simple substance detector by adjusting the direction of the flame detecting angle. CONSTITUTION:The monitoring direction and angle of a flame detector 1 are arranged so as to enable to monitor a primary flame through secondary flame position. The light 11 made incident on the detector 1 is then amplified with the signal by an amplification and respond adjuster 21, also its waveform is shaped and inputted to a comparison computing element 38. This input signal is detected by AND by the mutual signals of the signal on flame presence level set by a setting reference standard 30 and the output signal of A/D convertor 32 and inputted into the computing element 38 with some delay time. The comparison of each input signal is performed there and in case of beyond the set value the combustion is in a normal state and there is a flame there. In case of the under the value the force of flame means to spend and a detection is performed as an abnormality deciding value signal 33 because of the generated unburnt gas being flowed inside the turbine and it is utilized for the control in the unit stoppage, etc.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービン等において、その個有設備で有る
燃焼器に複数個の燃料ノズルを設けた多重燃焼方式にお
ける燃焼器内の火炎検知装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a flame detection device in a combustor in a multiple combustion system in which a plurality of fuel nozzles are provided in the combustor, which is an individual equipment, in a gas turbine or the like. .

〔発明の背景〕[Background of the invention]

第11図は、一般的なガスタービンの燃焼状態を示した
概略図である。
FIG. 11 is a schematic diagram showing the combustion state of a typical gas turbine.

図において、ガスタービンの圧縮機8で圧縮された空気
は高圧、高温の圧縮空気6となシ燃焼器2へ流入する。
In the figure, air compressed by a compressor 8 of a gas turbine flows into a combustor 2 as high-pressure, high-temperature compressed air 6.

ここで燃料ノズル3よシ注入噴霧された燃料4は混合拡
散されて燃焼する。この燃焼した高温の燃焼ガス7の保
有する熱エネルギはタービン部9を経てタービンに回転
運動に与える仕事をした後、排ガス10となって大気へ
放出される。
Here, the fuel 4 injected and sprayed through the fuel nozzle 3 is mixed and diffused and combusted. Thermal energy possessed by this burned high-temperature combustion gas 7 passes through the turbine section 9 and performs work to provide rotational motion to the turbine, and then becomes exhaust gas 10 and is released into the atmosphere.

又、燃焼器内で燃焼する時、燃料の保有するエネルギの
一部は光エネルギとなり強い光を火炎5として発生させ
る。この火炎よシ発生した、ある波長範囲の光は火炎検
知器1によシ検知され、火炎の有無を確認して制御等に
利用していた。
Further, when the fuel is burned in the combustor, a part of the energy possessed by the fuel becomes light energy and generates strong light as the flame 5. The light in a certain wavelength range generated by the flame is detected by the flame detector 1, and the presence or absence of flame is confirmed and used for control, etc.

しかし、単体の燃焼器内で複数の燃料ノズルにより多重
燃焼を行う場合の複雑な燃焼では、従来のような燃焼器
内火炎のある点のみを検知する火炎有無判別では正確に
各火炎の燃焼状態を検知制御する事が不可能であった。
However, in complex combustion cases where multiple combustions are performed using multiple fuel nozzles within a single combustor, conventional flame presence/absence detection that detects only a certain point of flame within the combustor cannot accurately determine the combustion state of each flame. It was impossible to detect and control the

まず、火炎が一次火炎、二次火炎等の複数火炎となった
場合、各火炎別の判別が出来ず必要とする火炎の有無確
認制御が不可能である。このため、各ノズルよシ燃料が
燃焼器内へ注入噴霧されている時、万一、ある燃料ノズ
ルからの火炎喪失が生じた場合、多量の燃料が未燃焼状
態でタービン部を経て煙道等へ流入してしまう。この未
燃焼ガスに万一再着火があった場合、爆発等の重大事故
となる危険性があった。
First, when a flame consists of multiple flames, such as a primary flame and a secondary flame, it is impossible to distinguish between each flame, making it impossible to carry out necessary control to check the presence or absence of flames. For this reason, when fuel is injected and sprayed into the combustor through each nozzle, in the unlikely event that a flame is lost from a certain fuel nozzle, a large amount of unburned fuel will pass through the turbine section and into the flue. It flows into. If this unburned gas were to ignite again, there was a risk of a serious accident such as an explosion.

第二に、もし、前述のような問題を解決するには、複数
火炎に応じた検知器を設け、各火炎毎に検知制御する必
要がある。しかし、この場合、検知器数が多数必要とな
シ、設備が複雑となり、火炎検知器設備の全体価格が病
くなシ問題である。
Second, if the above-mentioned problems are to be solved, it is necessary to provide detectors corresponding to multiple flames and perform detection control for each flame. However, in this case, a large number of detectors are required, the equipment becomes complicated, and the overall cost of the flame detector equipment becomes a problem.

又、設備が複雑化した事により、定期的な保守点検作業
が困難となる。又、設備の複雑化は運転上操作性が悪く
誤操作となる可能性がある。一方、構造的に取付場所が
ガスタービンの構造上限定されるため、複数の検知器を
設置不可となることが考えられ、又、複雑な構成となっ
た場合にガスタービンの運転条件である、高温、高振動
等の悪条件に対し耐久性を確保する事が技術的に困難で
あった。
Furthermore, as the equipment has become more complex, regular maintenance and inspection work has become difficult. Moreover, the complexity of the equipment may lead to poor operability and erroneous operation. On the other hand, since the mounting location is structurally limited due to the structure of the gas turbine, it may be impossible to install multiple detectors, and if the configuration is complicated, the operating conditions of the gas turbine may It was technically difficult to ensure durability against adverse conditions such as high temperature and high vibration.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、多重燃焼方式の火炎検知を可能とし、
高温、高圧、及び振動等に対し充分に耐えるものとし、
燃焼器内の火炎位置変化による検知距離の遠近差による
火炎の強弱、又は、負荷に対応した燃料増減変化による
火炎の強弱を検出し、燃焼状態及び負荷が燃料制御に合
っている事を演算器で算出し、火炎状態を制御・監視し
、ユニットの燃焼制御の信頼性向上を図った火炎検知器
を提供する事にある。
An object of the present invention is to enable multiple combustion type flame detection;
It shall be sufficiently resistant to high temperature, high pressure, vibration, etc.
A computer detects the strength of the flame due to the distance difference in the detection distance due to changes in the flame position in the combustor, or the strength and weakness of the flame due to changes in fuel increase/decrease corresponding to the load, and determines whether the combustion state and load match the fuel control. The purpose of the present invention is to provide a flame detector that calculates flame conditions, controls and monitors flame conditions, and improves the reliability of unit combustion control.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明を採用した場合の火炎検知器火炎も複
数個ある場合には、従来の考えでは、各火炎に対応した
火炎検知器を必要とするが、本発明方式を採用すれば、
−次火炎5a、二次火炎5bを従来と同様に一本の火炎
検知器1で検知可能となる。
Figure 1 shows the flame detector when the present invention is adopted.When there are multiple flames, according to the conventional idea, a flame detector corresponding to each flame is required, but if the present invention is adopted, ,
- It becomes possible to detect the secondary flame 5a and the secondary flame 5b with a single flame detector 1 as in the conventional case.

第1図及び第2図から判るように火炎検知器の監視方向
、“角度を二次火炎5b位置を通し、−次火炎5aを監
視出来るように配置しておく。又、この逆に1第3図の
ように火炎検知器1の取付場所、方向を変えて一次火炎
5aを近くに置き、二次火炎5bを遠くに配置して火炎
検知を行なうことも可能であシ同様な効果が得られる。
As can be seen from FIGS. 1 and 2, the flame detector is placed in such a way that it can pass through the secondary flame 5b and monitor the negative flame 5a. As shown in Fig. 3, it is also possible to change the installation location and direction of the flame detector 1 and perform flame detection by placing the primary flame 5a nearby and placing the secondary flame 5b far away, and the same effect can be obtained. It will be done.

この状態で、第4図のように、燃焼器内へ流入する燃料
流量が負荷に応じて増えていった場合、ある負荷点から
一次燃料4aのみでは燃料ノズルからの噴射流量が特性
上飽和状態となったり、又、燃焼温度の調節の必要性等
によシ、二次燃料4bによる燃焼が必要となシ、図示の
ように、−次燃料4aと二次燃料4bが同時に燃焼器内
へ合成流量19となシ、流れ込み負荷に応じて燃焼され
、−次火炎5aと二次火炎5bに別れた燃焼状態となる
In this state, as shown in Fig. 4, if the fuel flow rate flowing into the combustor increases in accordance with the load, from a certain load point onwards, if only the primary fuel 4a is used, the injection flow rate from the fuel nozzle is characteristically saturated. Or, due to the need to adjust the combustion temperature, etc., combustion with the secondary fuel 4b is required.As shown in the figure, the secondary fuel 4a and the secondary fuel 4b enter the combustor at the same time. With the combined flow rate 19, combustion occurs according to the inflow load, resulting in a combustion state in which the secondary flame 5a and the secondary flame 5b are separated.

この時、火炎検知器1へ照射される、火炎からの光度は
燃料流量の増加に伴って高くなる。又、二次燃料の流入
時には二次火炎が一次火炎に比べて火炎検知器側に近い
位置にあるため、その分高光度となって照射され、図の
ようなある変化をもった光度出力16となる。
At this time, the luminous intensity of the flame irradiated onto the flame detector 1 increases as the fuel flow rate increases. Also, when the secondary fuel flows in, the secondary flame is located closer to the flame detector than the primary flame, so it is irradiated with a higher luminous intensity, resulting in a luminous intensity output 16 with a certain change as shown in the figure. becomes.

第5図は、前述の光度出力16をユニット制御に使った
場合の一例である。
FIG. 5 is an example of the case where the above-mentioned luminous intensity output 16 is used for unit control.

又、第6図は、この時の制御特性曲線を表わし九−例で
ある。(第6図で横軸は一例として燃焼流量を示してい
るが、負荷、タービン速度、或いは、それらの組合せ等
によっても同様な特性となる。) 第5図で、火炎検知器1に入光した光11は増幅、応答
調節器21によシ信号増幅され、又、波形整形されて、
比較演算器38へ入力される。又、″この入力信号は設
定基準器30で設定されたある\−火炎有・無レベルの
信号と一次燃料4a及び二次燃料4bの有・無の確認の
ために設けたA/D変換器32の相互の信号によりAN
Dで検知され、ある遅れ時間をもって比較演算器38に
入力される。ここで各入力信号の比較を行ない、設定値
以上の場合は、燃焼が正常状態にあシ火炎がある事にな
る。又、設定値以下の場合には火炎の火勢が衰えている
事になり、未燃焼ガスが発生しタービン内へ流入してい
るので異常判定値信号33として検知し、ユニット停止
等の制御に利用する。
Further, FIG. 6 shows a control characteristic curve at this time and is an example. (In Fig. 6, the horizontal axis shows the combustion flow rate as an example, but the characteristics will be similar depending on the load, turbine speed, or a combination thereof.) In Fig. 5, light entering the flame detector 1 The generated light 11 is amplified, the signal is amplified by the response regulator 21, and the waveform is shaped.
It is input to the comparison calculator 38. In addition, this input signal is a flame presence/absence level signal set by the setting reference device 30 and an A/D converter provided to confirm the presence/absence of the primary fuel 4a and secondary fuel 4b. AN by 32 mutual signals
D is detected and input to the comparator 38 with a certain delay time. Here, each input signal is compared, and if it is greater than the set value, combustion is in a normal state and there is a reed flame. If the value is below the set value, it means that the flame intensity is weakening, and unburned gas is generated and flowing into the turbine, so it is detected as an abnormality judgment value signal 33 and used for control such as stopping the unit. do.

第7図は、光度出力16をアナログ信号としてとらえ、
ユニット制御に使った場合の一例である。
Fig. 7 shows that the luminous intensity output 16 is taken as an analog signal,
This is an example when used for unit control.

又、第8図は、この時の制御特性曲線を示した表である
。(第8図で、横軸は°−例として燃料流量で示してい
るが、負荷、タービン速度、或いは、それらの組合せ等
によっても同様な特性となる。)第7図において、火炎
検知器1に入光した光11は電気信号となり、増幅、応
答調節器21により整形増幅されて、波形比較演算器2
3へ入力・、される。
Moreover, FIG. 8 is a table showing the control characteristic curve at this time. (In Fig. 8, the horizontal axis shows the fuel flow rate as an example, but similar characteristics can be obtained depending on the load, turbine speed, or a combination thereof.) In Fig. 7, the flame detector 1 The incident light 11 becomes an electrical signal, is shaped and amplified by the amplification/response controller 21, and is passed to the waveform comparison calculator 2.
Input to 3.

又、−次燃料4a及び二次燃料4bは、燃料流量演算器
25により加算された電気信号となシ、燃料流量出力2
0とな多出力される。この信号は基準波形、許容偏差演
算器26に入力され、ここで、ユニット負荷大気温度、
圧力等の燃焼条件44により補正計算されある許容偏差
が吟味されて基準波形29として出力される。
Further, the secondary fuel 4a and the secondary fuel 4b are electrical signals added by the fuel flow rate calculator 25, and the fuel flow rate output 2
Many outputs such as 0 are output. This signal is input to the reference waveform and tolerance calculator 26, where the unit load atmospheric temperature,
A correction is calculated based on combustion conditions 44 such as pressure, a certain allowable deviation is examined, and the result is output as a reference waveform 29.

ここで波形比較演算器23に入力された各信号は比較さ
れて、第8図に示すように、基準波形29に対し、ある
レベル以下となった場合、火炎異常を検知し、警報信号
27、及び、非常信号28として出力し、ユニットを制
御する。
Here, each signal inputted to the waveform comparison calculator 23 is compared, and as shown in FIG. Then, it is output as an emergency signal 28 to control the unit.

一方、異常信号を基準波形29の上限に設定することも
でき、前述と同様に、ユニット制御が可能である。
On the other hand, the abnormal signal can also be set to the upper limit of the reference waveform 29, and unit control is possible in the same way as described above.

第9図は、火炎検知をよシ正確に行なうために、燃焼に
必要な条件によシ、火炎検知器の集魚調整を行なった場
合の一例である。集魚演算器42に入力された各条件に
より、最適な集魚距離を計算し集魚調整信号41によシ
集点距離調整器40で火炎検知器へ入光する火炎の光を
調整する。これによる検知器出力信号は前述の制御方式
と同じ方法によシュニット制御として利用することがで
きる。第10図は更に他の実施例である。
FIG. 9 is an example of a case where the flame detector is adjusted to attract fish according to the conditions necessary for combustion in order to perform flame detection more accurately. The optimal fish gathering distance is calculated based on each condition inputted to the fish gathering calculator 42, and the flame light incident on the flame detector is adjusted by the gathering point distance adjuster 40 according to the fish gathering adjustment signal 41. The resulting detector output signal can be used for Schnitt control in the same manner as the control method described above. FIG. 10 shows yet another embodiment.

第11図は、前述の制御方式を利用し各火炎毎に検知し
た場合の参考例である。
FIG. 11 is a reference example in which each flame is detected using the control method described above.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、火炎検知角度方向を調整することによ
り、単体の検知器によシ多重火炎の監視制御を行ない、
これによシ価格低減を図り、又、保守点検及び操作が簡
単になる。
According to the present invention, multiple flames can be monitored and controlled by a single detector by adjusting the flame detection angle direction,
This reduces the cost and also simplifies maintenance, inspection and operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の火炎検知器取付図、第2
図は、第1図のm−m矢視断面図、第3図は、第1図の
火炎検知器取付場所を移動し検知方向を変えた場合を示
す図、第4図は、本発明による火炎検知器で燃焼器内の
火炎強さを燃料流量と火炎光度によシ示したグラフ、第
5図は、本発明の制御回路の一実施例図、第6図は、第
5図の制御回路によシ制御する設定値を示したグラフ、
を示したグラフ、第9図は、本発明による火炎位置の状
態を集魚距離調整を行なう場合を示した図、第10図は
、検知器を火炎に合せ複数個設け、本発明と同じ制御効
果を得る事ができる事を示した図、第11図は、一般的
なガスタービンの構造図である。
Fig. 1 is an installation diagram of a flame detector according to an embodiment of the present invention;
The figure is a sectional view taken along the line mm in FIG. 1, FIG. 3 is a diagram showing the case where the flame detector installation location in FIG. 1 has been moved and the detection direction has been changed, and FIG. A graph showing the flame intensity in the combustor using a flame detector in terms of fuel flow rate and flame luminosity. FIG. 5 is a diagram of an embodiment of the control circuit of the present invention, and FIG. 6 is a diagram showing the control circuit of FIG. 5. A graph showing the set values controlled by the circuit,
9 is a graph showing the case where the state of the flame position is adjusted to the fish collection distance according to the present invention, and FIG. 10 is a graph showing the case where a plurality of detectors are provided according to the flame, and the same control effect as the present invention is obtained. FIG. 11 is a structural diagram of a typical gas turbine.

Claims (1)

【特許請求の範囲】[Claims] 1、多重燃焼の火炎検出に単体の検知器で検知、制御す
る事を特徴とするガスタービン火炎検知器。
1. A gas turbine flame detector characterized by detecting and controlling multiple combustion flames with a single detector.
JP15024585A 1985-07-10 1985-07-10 Gas turbine flame detector Pending JPS6212823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15024585A JPS6212823A (en) 1985-07-10 1985-07-10 Gas turbine flame detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15024585A JPS6212823A (en) 1985-07-10 1985-07-10 Gas turbine flame detector

Publications (1)

Publication Number Publication Date
JPS6212823A true JPS6212823A (en) 1987-01-21

Family

ID=15492731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15024585A Pending JPS6212823A (en) 1985-07-10 1985-07-10 Gas turbine flame detector

Country Status (1)

Country Link
JP (1) JPS6212823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164296A (en) * 2009-01-15 2010-07-29 General Electric Co <Ge> Optical flame holding and flashback detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164296A (en) * 2009-01-15 2010-07-29 General Electric Co <Ge> Optical flame holding and flashback detection

Similar Documents

Publication Publication Date Title
JP2618448B2 (en) Gas turbine combustor condition monitoring apparatus, monitoring method and control method
US7546741B2 (en) Ignition detecting system and method for gas turbine
US6973791B2 (en) Method and apparatus for reduction of combustor dynamic pressure during operation of gas turbine engines
US5706643A (en) Active gas turbine combustion control to minimize nitrous oxide emissions
US5480298A (en) Combustion control for producing low NOx emissions through use of flame spectroscopy
US4233596A (en) Flare monitoring apparatus
JPS6212823A (en) Gas turbine flame detector
JPH0868537A (en) Gas turbine combustor
JP2519727B2 (en) Gas turbine injection steam control device
EP3109551B1 (en) Control method using vibration control
JP2972236B2 (en) Gas turbine combustor
JPH07208734A (en) Flame detecting system
JPH0627579B2 (en) Boiler automatic combustion controller
JP3368609B2 (en) Combustion control device
JP2543549B2 (en) Gas turbine combustion monitoring method and monitoring device
JPH07119492A (en) Combustion device for gas turbine and control method therefor
JPH01325A (en) Gas turbine injection steam control device
JPH0652056B2 (en) Gas turbine combustion temperature control method
JP3446074B2 (en) Gas turbine combustion monitoring device
JPS63311025A (en) Combustion control method of multistage device and its device
JPH06123239A (en) Gas turbine combustion monitor
JPH03189331A (en) Detector for accidental fire, etc., in gas engine
JP2656494B2 (en) Flame detector
JPH06193866A (en) Combustion monitoring device
JPS624609B2 (en)