JPS6212704Y2 - - Google Patents

Info

Publication number
JPS6212704Y2
JPS6212704Y2 JP3027681U JP3027681U JPS6212704Y2 JP S6212704 Y2 JPS6212704 Y2 JP S6212704Y2 JP 3027681 U JP3027681 U JP 3027681U JP 3027681 U JP3027681 U JP 3027681U JP S6212704 Y2 JPS6212704 Y2 JP S6212704Y2
Authority
JP
Japan
Prior art keywords
rail
iron core
power receiving
receiving device
signal current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3027681U
Other languages
Japanese (ja)
Other versions
JPS57143966U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3027681U priority Critical patent/JPS6212704Y2/ja
Publication of JPS57143966U publication Critical patent/JPS57143966U/ja
Application granted granted Critical
Publication of JPS6212704Y2 publication Critical patent/JPS6212704Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【考案の詳細な説明】 本考案は鉄道信号保安装置の列車検知に使用さ
れる受電装置に係り、特に軌道のレールを利用し
て信号電流を検出する受電装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power receiving device used for train detection in a railway signal safety system, and more particularly to a power receiving device that detects a signal current using the rails of a track.

軌道を走行する列車を決められた閉塞区間で検
出する手段として従来から可聴周波数(以下、
AFと略称する)を利用した軌道回路が用いられ
てきた。
Traditionally, audio frequency (hereinafter referred to as
Track circuits using AF (abbreviated as AF) have been used.

従来のこの種の軌道回路における受電装置の一
例を第1図に示し説明すると、図において、RL
はレール、TNは列車、TはAF送信器、R1はAF
送信器Tから距離S1はなれたところに設置された
ループコイルl1を有するAF受信器、R2はAF送信
器Tから距離S2はなれたところに設置されたルー
プコイルl2を有するAF受信器、ZBは短絡インピ
ーダンス、RZは軌道絶縁である。
An example of a conventional power receiving device in this type of track circuit is shown in Fig. 1. In the figure, RL
is rail, TN is train, T is AF transmitter, R 1 is AF
AF receiver with loop coil l 1 installed at a distance S 1 from the transmitter T, R 2 an AF receiver with loop coil l 2 installed at a distance S 2 from the AF transmitter T , Z B is the short-circuit impedance, and R Z is the track insulation.

このように構成された受電装置において、AF
送信器Tから送信されるAF送信電流iは短絡イ
ンピーダンスZBを通つて矢印の方向に流れ、ル
ープコイルl1およびループコイルl2に誘起電圧が
発生し、AF受信器R1およびAF受信器R2をそれ
ぞれ動作させ、このAF受信器R1,R2に接続され
た図示しない軌道リレーを励磁する。
In the power receiving device configured in this way, AF
The AF transmission current i transmitted from the transmitter T flows in the direction of the arrow through the short circuit impedance Z B , and an induced voltage is generated in the loop coil l 1 and the loop coil l 2 , and the AF receiver R 1 and the AF receiver R 2 is operated, respectively, and orbital relays (not shown) connected to the AF receivers R 1 and R 2 are energized.

そして、列車TNが矢印の方向に進行し、距離
S1の区間に進入すると、AF送信電流iは殆んど
列車TNの車軸に流れてしまい、ループコイルl1
およびループコイルl2には誘起電圧を発生せず
AF受信器R1およびAF受信器R2もまた動作せ
ず、したがつて、軌動リレーも励磁されず、列車
TNが距離S1の区間に進入したことが検知され
る。さらに、列車TNが進行して列車TNの最後尾
がループコイルl1を通過し終ると、ループコイル
l1に並行するレールRLにAF送信電流iが流れて
AF受信器R1は動作し、軌道リレーも励磁されて
列車TNが距離S1の区間を通過し終つたことが検
知される。そして、さらに列車TNが進行してル
ープコイルl2を通過し終ると、ループコイルl2
並行するレールRLにAF送信電流iが流れてAF
受信器R2は動作し、軌道リレーも励磁されて列
車TNが距離S2の区間を通過し終つたことが検知
される。
Then, the train TN moves in the direction of the arrow and the distance
When entering the section S 1 , most of the AF transmission current i flows to the axle of the train TN, and the loop coil l 1
and no induced voltage is generated in loop coil l 2
AF receiver R 1 and AF receiver R 2 are also inoperative and therefore the track relay is also not energized and the train
It is detected that the TN has entered the section of distance S1 . Furthermore, when the train TN advances and the tail end of the train TN finishes passing through the loop coil l1 , the loop coil
AF transmission current i flows through rail RL parallel to l 1.
The AF receiver R1 operates, the track relay is also energized, and it is detected that the train TN has passed through the section of distance S1 . Then, when the train TN further advances and passes through the loop coil l2 , the AF transmission current i flows through the rail RL parallel to the loop coil l2 , causing the AF
The receiver R 2 is activated, the track relay is also energized, and it is detected that the train TN has passed through the section of distance S 2 .

このように、AF送信電流iにより発生する磁
界とリンクするループコイルや要部を抽出して示
した説明図である第2図に示す受電器Recはレー
ルRLに流れるAF送信電流iに与える影響が殆ん
どないので、第1図に示すようにループコイルを
l1,l2……と設置することによつて1台のAF送信
器Tで複数の受電が可能で、踏切制御の用途では
極めて有効な受電装置である。また、列車最後尾
が受電点を通過後、比較的短い距離で誘起電圧が
復帰し、分解能が良好である。
In this way, the power receiver Rec shown in Figure 2, which is an explanatory diagram that extracts and shows the loop coil and important parts linked to the magnetic field generated by the AF transmitting current i, has an effect on the AF transmitting current i flowing to the rail RL. Since there is almost no loop coil, as shown in Figure 1,
By installing l 1 , l 2 , etc., one AF transmitter T can receive multiple powers, making it an extremely effective power receiving device for use in level crossing control. Furthermore, after the last train passes the power receiving point, the induced voltage returns within a relatively short distance, resulting in good resolution.

しかしながら、最近の鉄道車両の近代化に伴い
電気車の駆動制御装置にサイリスタチヨツパ装置
が導入されてきた。そして、このサイリスタチヨ
ツパはその性質上大電流のオン・オフを繰り返す
ので、サイリスタチヨツパの電気回路およびその
周辺機器からパルス性ノイズ電磁界(以下、ノイ
ズ電磁界と呼称する)を放射している場合が多
い。特に、電気車の構造上、サイリスタチヨツパ
装置は車両床下に設置される場合が多く、軌道に
極めて接近する状態となつている。したがつて、
サイリスタチヨツパ装置が放射するノイズ電磁界
のレール面に介在する成分は上記AF軌道回路の
ループコイルや受電器に直接誘起され、サイリス
タチヨツパ装置のノイズ電磁界の高調波はAF軌
道回路の受信器の信号波に混入し、受信器を不正
動作に至らしめるという危険がある。
However, with the recent modernization of railway vehicles, thyristor control devices have been introduced into drive control devices for electric vehicles. Since this thyristor chip repeatedly turns on and off a large current due to its nature, a pulsed noise electromagnetic field (hereinafter referred to as a noise electromagnetic field) is emitted from the electrical circuit of the thyristor chip and its peripheral equipment. in many cases. In particular, due to the structure of electric cars, the thyristor stopper device is often installed under the floor of the car, so it is very close to the tracks. Therefore,
The components of the noise electromagnetic field emitted by the thyristor stopper device that are present on the rail surface are directly induced in the loop coil and power receiver of the AF track circuit, and the harmonics of the noise electromagnetic field of the thyristor stopper device are directly induced in the AF track circuit. There is a danger that the signal wave of the receiver may be mixed with the signal wave of the receiver, causing the receiver to malfunction.

前述のように、AF送信電流iによつて発生す
るAF電磁界を利用して誘起電圧を得るループコ
イルや受電器のような在来の受電装置では同時に
サイリスタチヨツパ装置が放射するノイズ電磁界
を受信し易い構造となつており、新しく発生した
上記問題点の解決が要望されるにいたつた。
As mentioned above, conventional power receiving devices such as loop coils and power receivers that obtain induced voltage using the AF electromagnetic field generated by the AF transmitting current i simultaneously generate noise electromagnetic noise emitted by the thyristor chopper device. It has a structure that makes it easy to receive radio waves, and there has been a demand for a solution to the above-mentioned newly occurring problem.

本考案は以上の点に鑑み、このような問題を解
決すべくなされたもので、その目的はサイリスタ
チヨツパ装置の放射するノイズ電磁界の影響を逓
減させ、このノイズ電磁界の影響を受けにくい構
造とし高能率で信号電流を検出することができる
受電装置を提供することにある。
In view of the above points, the present invention was devised to solve such problems.The purpose is to reduce the influence of the noise electromagnetic field emitted by the thyristor chopper device, and to reduce the influence of the noise electromagnetic field. An object of the present invention is to provide a power receiving device that has a difficult structure and can detect a signal current with high efficiency.

このような目的を達成するために、本考案は軌
道のレールに通ずる信号電流を検出する受電装置
において、一方のレールに通ずる信号電流により
生ずる磁束の方向へ磁路を構成する中央部を一方
のレールとほぼ一致させこのレールの両側方にわ
たりかつ垂直方向に沿つて設けた環状の鉄心と、
この鉄心の両側方へ各個に巻回され各々に生ずる
誘起電圧が加算されるように接続された第1の1
次および2次巻線と、他方のレールに設けた前記
鉄心と同様の鉄心へ第1の各巻線と同様に巻回さ
れると共に相互が接続されかつ第1の各巻線によ
る誘起電圧と自己の誘起電圧とが加算されるよう
に接続された第2の1次および2次巻線とを備
え、各レールの信号電流に比例した誘起電圧を第
1および第2の各巻線による誘起電圧の和として
受電するようにしたものであり、以下、図面に基
づき本考案の実施例を詳細に説明する。
In order to achieve such an objective, the present invention provides a power receiving device that detects a signal current flowing through the rails of a track. an annular iron core substantially aligned with the rail, extending along both sides of the rail and along the vertical direction;
A first coil is wound on both sides of the iron core and connected so that the induced voltages generated in each coil are added.
The next and secondary windings are wound in the same manner as the first windings on an iron core similar to the above-mentioned iron core provided on the other rail, and are connected to each other so that the induced voltage due to the first windings and the self The second primary and secondary windings are connected so that the induced voltage is added to the induced voltage, and the induced voltage proportional to the signal current of each rail is the sum of the induced voltages of the first and second windings. Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第3図は本考案による受電装置の一実施例の概
略を示す構成図で、説明に必要な部分のみを示
す。第3図aにおいて、RL1,RL2は軌動のレー
ル、iは信号電流で、この信号電流iの受電端に
おいてp1点のレールRL1に取付けた受電器をP1
p2点のレールRL2に取付けた受電器をP2とする。
FIG. 3 is a block diagram schematically showing an embodiment of the power receiving device according to the present invention, and only the parts necessary for explanation are shown. In Fig. 3a, RL 1 and RL 2 are orbital rails, i is a signal current, and the power receiver attached to the rail RL 1 at point p 1 at the receiving end of this signal current i is P 1 ,
Let P 2 be the power receiver installed on rail RL 2 at point p 2 .

本考案の受電装置における受電器の取付けにお
いては、列車走行に支障のない部分、例えばレー
ルRL1,RL2の本体に小径の透孔を水平に穿設の
うえ、これへ環状の鉄心を挿通し、この鉄心によ
る磁路がレールRL1,RL2に通ずる信号電流iに
より生ずる磁束の方向へ構成されるようにする。
そして、第3図bに示すように、鉄心C1,C2
中央部をレールRL1,RL2とほゞ一致させ、この
レールRL1,RL2の両側方にわたり、かつ、垂直
方向に沿つて鉄心C1,C2を設け、鉄心C1,C2
レールRL1,RL2に対する両側方には、それぞれ
第1および第2の1次巻線L11,L21ならびに2次
巻線L12,L22を同一巻回数として巻回し、第3図
aに示す信号電流iによる誘起電圧E11,E12
E21,E22が加算されるように接続する。さた、受
電器P1および受電器P2より引き出された受電線
は、これらの誘起電圧E11〜E22の和が受電電圧E
となるように接続する。
When installing the power receiving device in the power receiving device of the present invention, small diameter through holes are horizontally drilled in parts that do not interfere with train running, such as the main bodies of rails RL 1 and RL 2 , and an annular iron core is inserted into these holes. However, the magnetic path by this iron core is constructed in the direction of the magnetic flux generated by the signal current i flowing through the rails RL 1 and RL 2 .
Then, as shown in Fig. 3b, the central portions of the iron cores C 1 and C 2 are made to almost coincide with the rails RL 1 and RL 2 , and the cores are placed on both sides of the rails RL 1 and RL 2 and in the vertical direction. Iron cores C 1 and C 2 are provided along the rails, and first and second primary windings L 11 and L 21 and secondary windings are provided on both sides of the iron cores C 1 and C 2 with respect to the rails RL 1 and RL 2, respectively. When the wires L 12 and L 22 are wound with the same number of turns, the induced voltages E 11 , E 12 ,
Connect so that E 21 and E 22 are added. Furthermore, the power receiving lines drawn out from the power receiver P 1 and the power receiver P 2 have a power receiving voltage E, which is the sum of these induced voltages E 11 to E 22 .
Connect so that

このように構成することにより、p1点およびp2
点でレールRL1およびRL2に流れる信号電流iを
本考案の受電装置により誘起させ、その受電々圧
Eを受信器の入力とする。
By configuring like this, p 1 point and p 2
A signal current i flowing through the rails RL 1 and RL 2 at a point is induced by the power receiving device of the present invention, and the received voltage E is used as an input to the receiver.

つぎに本考案の受電装置による作用効果を第4
図を用いて具体的に説明する。第4図は第3図の
一部を抽出して示した説明図で、第3図に示す実
施例における受電器P1およびP2に係る部分の詳細
を示すものである。
Next, we will discuss the effects of the power receiving device of the present invention in the fourth section.
This will be explained in detail using figures. FIG. 4 is an explanatory diagram that extracts a part of FIG. 3 and shows details of the parts related to the power receivers P 1 and P 2 in the embodiment shown in FIG. 3.

図において、レールRLを走行する電気車が放
射するノイズ電磁界による磁束Φnが図に示すよ
うに、レールRLの上面から垂直な方向として与
えられると、レールRLの透孔Hへ上辺を挿通し
た鉄心Cの両側辺へ各個に巻回された1次および
2次巻線L1,L2には、それぞれノイズ誘起電圧
o1およびeo2がレールRLに対し同方向に生ず
る。
In the figure, when the magnetic flux Φn due to the noise electromagnetic field radiated by the electric car running on the rail RL is given as a direction perpendicular to the top surface of the rail RL, as shown in the figure, the upper side of the rail RL is inserted into the through hole H. Noise-induced voltages e o1 and e o2 are generated in the primary and secondary windings L 1 and L 2 individually wound on both sides of the iron core C, respectively, in the same direction with respect to the rail RL.

しかし、このノイズ誘起電圧eo1およびeo2
と、信号電流i(AF送信電流)による誘起電圧
E1,E2とを合成した受電々圧Eはノイズ誘起電
圧eo1およびeo2が互に相殺されるため、この成
分を殆んど含まず、信号電流iによる誘起電圧
E1とE2との和のみを取り出すことができる。ま
た、このことは前述の第3図の実施例に示す受電
器P1および受電器P2の接続においても同様であ
り、2重のノイズ誘起電圧相殺と信号電流iによ
る誘起電圧の加算効果とを呈する。
However, this noise induced voltage e o1 and e o2
and the induced voltage due to signal current i (AF transmission current)
Since the noise induced voltages e o1 and e o2 cancel each other out, the received voltage E, which is a composite of E 1 and E 2 , contains almost no noise component, and the induced voltage E due to the signal current i.
Only the sum of E 1 and E 2 can be extracted. This also applies to the connection of power receiver P 1 and power receiver P 2 shown in the embodiment shown in FIG. exhibits.

なお、図においてΦは信号電流により受電器P
の鉄心Cに通ずる磁束であり、矢印は磁束Φの方
向を示し、鉄心Cによる磁路の磁気抵抗が小さ
く、信号電流iにより十分な磁束Φが通じ、これ
に応じて大きな誘起電圧E1,E2が生ずる。
In the figure, Φ is the power receiver P due to the signal current.
The arrow indicates the direction of the magnetic flux Φ, the magnetic resistance of the magnetic path by the iron core C is small, and the signal current i allows sufficient magnetic flux Φ to pass through, resulting in a correspondingly large induced voltage E 1 , E 2 occurs.

つぎに、第5図は本考案の効果を明らかにする
ために従来の受電器を用いて原理的に比較して示
した原理説明図である。図において、aは本考案
による受電装置に用いる受電器の原理図を示した
ものであり、bは従来の受電器の原理図を示した
ものである。
Next, FIG. 5 is a principle explanatory diagram showing a comparison using a conventional power receiver in order to clarify the effects of the present invention. In the figure, a shows a principle diagram of a power receiver used in the power receiving device according to the present invention, and b shows a principle diagram of a conventional power receiver.

ここにおいて、導体A,Bに通ずる電流iによ
り生ずる磁界の強度は、導体A,Bとの距離に応
じて定まり、導体A,Bの中心からr(m)の点
では、この点の磁界強度をh(AT/m)とすれ
ば、 h≒i/2πr …(1) により示される。
Here, the strength of the magnetic field generated by the current i flowing through the conductors A and B is determined according to the distance from the conductors A and B, and at a point r (m) from the center of the conductors A and B, the magnetic field strength at this point is Letting h(AT/m) be expressed by h≒i/2πr (1).

なお、距離rの周囲に受電器が存在するとき、
これの巻線に誘起される起電力は、(1)式に比例す
ると共に、巻線の巻回数、形状、および、介在す
る物質の透磁率に応じて定まる。
Note that when there are power receivers around distance r,
The electromotive force induced in this winding is proportional to equation (1) and determined depending on the number of turns and shape of the winding, and the magnetic permeability of the intervening material.

また、bにおいて、導体Aに通ずる電流iによ
り磁界が生ずると共に、導体Aの中心から距離r
の位置に磁路長l1の鉄心CAを有する受電器が存
在し、空間を含む磁路長l2を介して鉄心CAへ磁
束ΦA(Wb)が通ずるとき、電流iがΔt
(sec)の間にΔiの変化を生ずれば、磁束ΦA
ΔΦAの変化を生ずるため、これに応じ鉄心CA
巻回された巻回数nの巻線LAには、次式により
示される起電力eAが誘起される。
Also, at b, a magnetic field is generated by the current i flowing through the conductor A, and at a distance r from the center of the conductor A.
When a power receiver having an iron core C A with a magnetic path length l 1 exists at a position, and a magnetic flux Φ A (Wb) passes to the iron core C A via a magnetic path length l 2 including space, the current i is Δt
If a change in Δi occurs during (sec), the magnetic flux Φ A also changes by ΔΦ A. Accordingly, the winding L A with the number of turns wound around the iron core C A has the following formula: An electromotive force e A is induced.

A=nΔΦ/Δt …(2) 一方、aにおいては、導体Bの中心から距離r
の周囲に環状鉄心CBが存在し、これが磁路長l
の閉磁路を形成しており、前述と同様に電流iが
Δiの変化を生ずれば、鉄心CBに通ずる磁束ΦB
もΔΦBの変化を生ずるものとなり、鉄心CBへ巻
回数nとして巻回された巻線LBには、(2)式と同
様に次式の起電力eBが誘起される。
e A = nΔΦ A /Δt …(2) On the other hand, at a, the distance r from the center of conductor B
There is an annular iron core C B around the magnetic path length l
A closed magnetic path is formed, and if the current i changes by Δi as described above, the magnetic flux Φ B flowing through the iron core C B
also causes a change in ΔΦ B , and an electromotive force e B of the following equation is induced in the winding L B wound around the iron core C B with the number of turns n, similar to equation (2).

B=nΔΦ/Δt …(3) たゞし、各磁束ΦA,ΦBは、(1)式およびこれの
通ずる磁路の透磁率に応じて定まり、これにした
がつて、ΔΦA,ΔΦBも定まる。
e B = nΔΦ B /Δt (3) Therefore, each magnetic flux Φ A and Φ B is determined according to equation (1) and the magnetic permeability of the magnetic path through which they pass, and according to this, ΔΦ A , ΔΦ B is also determined.

この透磁率をbの場合μA、aの場合をμBとす
れば、μAは全磁路長l2中に空間が介在し、空気
中の透磁率が小さく、μAも小となるのに対し、
μBは全磁路長lがすべて鉄心CB中であり、当然
にμBは大となり、μA≪μBの関係が成立する。
If this magnetic permeability is μ A for b and μ B for a, then μ A has a space in the total magnetic path length l 2 , the magnetic permeability in air is small, and μ A is also small. In contrast,
The total magnetic path length l of μ B is entirely in the iron core C B , so μ B is naturally large, and the relationship μ A ≪ μ B holds true.

したがつて、本考案の受電器P1,P2は、第5図
aと等価なものとなり、同一の信号電流iおよび
巻回数nであつても、第5図aの場合は同図bに
比し、鉄心CBへ通ずる磁束ΦBがΦAより大とな
り、これに応じて起電力eBもeAに対し大幅に増
大する。
Therefore, the power receivers P 1 and P 2 of the present invention are equivalent to those shown in Fig. 5a, and even if the signal current i and the number of turns n are the same, in the case of Fig. Compared to this, the magnetic flux Φ B flowing to the iron core C B becomes larger than Φ A , and accordingly, the electromotive force e B also increases significantly compared to e A.

このことは、受電器と鎖交する信号電流に基づ
く磁束は、本考案による受電装置の方が従来のも
のよりも大きいことが明らかとなり、この結果お
よび本考案の構成がノイズ電磁界の影響を受け難
いことから、サイリスタチヨツパ装置の放射する
ノイズ電磁界の影響を極めて少なくすることがで
きると共に、高い受電々圧が得られ、受信器の不
正動作を防止することができる。
This shows that the magnetic flux based on the signal current interlinking with the power receiver is larger in the power receiving device according to the present invention than in the conventional one, and this result and the configuration of the present invention reduce the influence of noise electromagnetic fields. Therefore, the influence of the noise electromagnetic field radiated by the thyristor stopper device can be extremely reduced, and a high receiving voltage can be obtained, thereby making it possible to prevent incorrect operation of the receiver.

以上の説明より明らかなように、本考案の受電
装置によれば、複雑な手段を用いることなく簡単
な構成によつて、電気車の放射するサイリスタノ
イズ電磁界の影響をきわめて小さくすることがで
き、また、レールに流れる信号電流の電流成分を
容易に取り出すことができ、受信器の不正動作を
防止することができるため、軌道回路の信頼度を
著しく高める効果を有する。
As is clear from the above explanation, according to the power receiving device of the present invention, the influence of the thyristor noise electromagnetic field radiated by an electric car can be extremely minimized with a simple configuration without using complicated means. Furthermore, since the current component of the signal current flowing through the rail can be easily extracted and the receiver can be prevented from malfunctioning, it has the effect of significantly increasing the reliability of the track circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の受電装置の一例を
示す構成図、第3図は本考案による受電装置の一
実施例の概略を示す構成図、第4図は第3図に示
す実施例における受電器に係る部分を抽出して示
した動作説明図、第5図は本考案の効果を明らか
にするために従来の受電器と比較して示した原理
説明図である。 RL,RL1,RL2……レール、P1,P2……受電
器、l,l1,l2……磁路、L1,L11,L21……1次
巻線、L2,L12,L22……2次巻線、E1,E2
E11,E12,E21,E22……誘起電圧、C,C1,C2
……鉄心。
1 and 2 are block diagrams showing an example of a conventional power receiving device, FIG. 3 is a block diagram schematically showing an embodiment of a power receiving device according to the present invention, and FIG. 4 is an embodiment shown in FIG. 3. FIG. 5 is an explanatory diagram showing the operation of the power receiver, and FIG. 5 is a principle explanatory diagram showing a comparison with a conventional power receiver in order to clarify the effects of the present invention. RL, RL 1 , RL 2 ... Rail, P 1 , P 2 ... Power receiver, l, l 1 , l 2 ... Magnetic path, L 1 , L 11 , L 21 ... Primary winding, L 2 , L 12 , L 22 ... Secondary winding, E 1 , E 2 ,
E 11 , E 12 , E 21 , E 22 ... induced voltage, C, C 1 , C 2
... Iron core.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 軌道のレールに通ずる信号電流を検出する受電
装置において、一方のレールに通ずる信号電流に
より生ずる磁束の方向へ磁路を構成する中央部を
前記レールとほゞ一致させこのレールの両側方に
わたりかつ垂直方向に沿つて設けた環状の鉄心
と、この鉄心の両側方へ各個に巻回され各々に生
ずる誘起電圧が加算されるように接続された第1
の1次および2次巻線と、他方のレールに設けた
前記鉄心と同様の鉄心へ前記第1の各巻線と同様
に巻回されると共に相互が接続されかつ前記第1
の各巻線による誘起電圧と自己の誘起電圧とが加
算されるように接続された第2の1次および2次
巻線とを備え、各レールの信号電流に比例した誘
起電圧を前記第1および第2の各巻線による誘起
電圧の和として受電するようにしたことを特徴と
する受電装置。
In a power receiving device that detects a signal current flowing through the rails of a track, the central part of the magnetic path that constitutes the magnetic flux generated by the signal current flowing through one rail is substantially aligned with the rail, and extends across both sides of this rail and is perpendicular to the rail. An annular iron core provided along the direction, and a first winding wound on both sides of the iron core and connected so that the induced voltages generated in each are added.
The primary and secondary windings of the first and second windings are wound in the same manner as the first windings on an iron core similar to the iron core provided on the other rail, and are connected to each other.
and second primary and secondary windings connected so that the induced voltage by each winding and the own induced voltage are added, and the induced voltage proportional to the signal current of each rail is applied to the first and second primary windings. A power receiving device characterized in that power is received as a sum of induced voltages caused by each second winding.
JP3027681U 1981-03-06 1981-03-06 Expired JPS6212704Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3027681U JPS6212704Y2 (en) 1981-03-06 1981-03-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3027681U JPS6212704Y2 (en) 1981-03-06 1981-03-06

Publications (2)

Publication Number Publication Date
JPS57143966U JPS57143966U (en) 1982-09-09
JPS6212704Y2 true JPS6212704Y2 (en) 1987-04-02

Family

ID=29827797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3027681U Expired JPS6212704Y2 (en) 1981-03-06 1981-03-06

Country Status (1)

Country Link
JP (1) JPS6212704Y2 (en)

Also Published As

Publication number Publication date
JPS57143966U (en) 1982-09-09

Similar Documents

Publication Publication Date Title
US6414578B1 (en) Method and apparatus for transmitting a signal through a power magnetic structure
TWI390560B (en) Transformer
US4746891A (en) High saturation three coil current transformer
Ongayo et al. An overview of single-sided and double-sided winding inductive coupling transformers for wireless electric vehicle charging
US8333350B2 (en) Double impedance bond
JPS6212704Y2 (en)
US3268843A (en) Electric induction apparatus for use in railway signal systems
JPS6212705Y2 (en)
JPS5831732Y2 (en) Power receiving device
US11919550B2 (en) Rail breakage detection device and rail breakage result management system
JP2004067038A (en) Track short-circuit performance checking device
US10923269B2 (en) Arrangement for compensating disturbance voltages induced in a transformer
WO2024105813A1 (en) Power conversion device for railway vehicle
JP2006248421A (en) Train detection apparatus
JP3512101B2 (en) Inductive radio equipment antenna
JP2823071B2 (en) Automatic train stop system
US867448A (en) Signaling system for railways.
Mellitt et al. Input impedance of chopper equipment and its significance in low-frequency track circuits
RU2307363C1 (en) Device for recording alternating component of current in power supply system of vehicle
JPS6031953Y2 (en) Signal power receiving device for track circuit
JPS6026749B2 (en) Signal power transmission and reception method for non-insulated track circuits
US1878764A (en) Electrical translating apparatus
WO2008137252A1 (en) Methods and systems for multi-tuned cab signal pickup coils
JP4658575B2 (en) High frequency induction preventing apparatus and method for railroad crossing controller
RU2088453C1 (en) Railway rolling stock axle counter (design versions)