JPS62126677A - Thin film transistor array - Google Patents

Thin film transistor array

Info

Publication number
JPS62126677A
JPS62126677A JP60270355A JP27035585A JPS62126677A JP S62126677 A JPS62126677 A JP S62126677A JP 60270355 A JP60270355 A JP 60270355A JP 27035585 A JP27035585 A JP 27035585A JP S62126677 A JPS62126677 A JP S62126677A
Authority
JP
Japan
Prior art keywords
source
gate
wiring
layer
tft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60270355A
Other languages
Japanese (ja)
Inventor
Hirohisa Tanaka
田仲 広久
Kohei Kishi
岸 幸平
Hiroaki Kato
博章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60270355A priority Critical patent/JPS62126677A/en
Priority to GB8628172A priority patent/GB2185622B/en
Priority to DE19863640174 priority patent/DE3640174A1/en
Publication of JPS62126677A publication Critical patent/JPS62126677A/en
Priority to US07/267,680 priority patent/US4935792A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4825Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body for devices consisting of semiconductor layers on insulating or semi-insulating substrates, e.g. silicon on sapphire devices, i.e. SOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve insulation of an intersection part between a gate wiring and a source siring, to suppress yield of leakage between a gate and source and to improve the yield rate of a TFT array, by providing two insulating layers, which hold a semiconductor layer that is a constituting film of the TFT, at the overlapped part of the source wiring and the gate wiring. CONSTITUTION:A gate electrode 102 and a source electrode 107 of a thin film transistor (TFT) are provided on a substrate 101. A gate wiring 103 and a source wiring 108, which commonly link the electrodes 102 and 107, are intersected at a overlapping region. Both insulating layers 104 and 106, which hold a semiconductor layer that is a constituting film of the TFT, are provided at the overlapped region. For example, a TFT array is formed on the supporting substrate such as the glass substrate 101 and arranged in correspondence with the intersection of the gate wiring 103 and the source wiring 108. An SiNx film, which is a second insulating layer 106, is deposited on an a-Si layer 105, which is the semiconductor layer of the TFT. Then, one end part of the layer 106 is extended to the upper part of the source wiring 108 along the gate wiring 103. The second insulating layer 106 is provided at the intersecting part of the gate wiring 103 and the source wiring 108.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、製造の歩留りの向上を図った構造を有する薄
膜トランジスタ(以下T P Tと略す)アレイに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film transistor (hereinafter abbreviated as TPT) array having a structure designed to improve manufacturing yield.

(従来技術) 近年、液晶のアクティブマ) IJクス表示において、
絶縁性基板−ににT P Tをマトリクス状に形成し2
’lアクテイブ・マトリクス基板の研究が活発に行なわ
れている。TFTに用いられる半導体材料としては、ポ
リSi、 a(アモルファス)−81、′r’e 、 
CdSe等がある0a−siを用いたTFTの構造の一
例を第7図の部分断面図及び第8図の部分平面図に示す
。第7図は、第8図のA−A線での断面を示す。ガラス
基板lの上に、ゲート電極2.2. を連結するゲート
配線3を膜厚2,000〜3.000λのTa、Mo、
Ti、A/=等の金属により形成する。ガラス基板1及
びゲート電極2上に堆積されるゲート絶縁膜4げ、プラ
ズマCVD法によって形成した膜厚j、000〜2,0
00只の窒化シリコン(以下SiNxと略す)膜である
(第8図においては、図示しない。)。TFTの半導体
層としてゲート絶縁膜4−にに堆積されるa−8i層5
は、プラズマCVr)法にヨDffl厚1 o oX 
〜3.oooXtc形rvする。a−8i層5上には第
2の絶縁膜6として2.000〜3,0OOAのSiN
x膜がプラズマcvD法により形成される。ソース電極
7及びソース電極7を連結するソース配線8げゲート配
線3に直交して形成される。ソース配線8にはソース電
極7と接続される分枝部8aが1定ピッチで並設され、
T F Tは分枝部8aを中心に形成される。ソース電
極7とドレイン電極9とは、ともに膜厚2,000〜1
0,0OOAのTa、Mo、Ti、A7等の金属により
形成する。なお、ソース電極7及びドレイン電極9とa
−5i膜5の間に、P(リン)をドープしたBU’J5
00〜2,0OOX(7)a−5i膜1oを介在サセる
と、ソース電極7、ドレイン電極9とa−5i層5のオ
ーミックコンタクトがとれ、好ましい。このようにし7
て、ゲート配線3とソース配線8との交点毎にT P 
Tがアレイ状に形成される。さらに、各T P Tに対
応し7て、酸化インジウム等の透明導電膜から成る絵素
電極11がドレイン電極9に接1−7で形成される。
(Prior art) In recent years, liquid crystal activema) In IJ display,
Forming TPT in a matrix on an insulating substrate 2
Active matrix substrate research is being actively conducted. Semiconductor materials used for TFTs include poly-Si, a (amorphous)-81, 'r'e,
An example of the structure of a TFT using Oa-si containing CdSe or the like is shown in the partial cross-sectional view of FIG. 7 and the partial plan view of FIG. 8. FIG. 7 shows a cross section taken along line A-A in FIG. 8. On the glass substrate l, gate electrodes 2.2. The gate wiring 3 connecting the
It is formed from a metal such as Ti or A/=. The gate insulating film 4 deposited on the glass substrate 1 and the gate electrode 2 has a film thickness j, 000 to 2,0, formed by plasma CVD method.
This is a silicon nitride (hereinafter abbreviated as SiNx) film of 0.00 mm (not shown in FIG. 8). The a-8i layer 5 is deposited on the gate insulating film 4 as a semiconductor layer of the TFT.
For plasma CVr) method, Dffl thickness 1 o oX
~3. oooXtc type rv. On the a-8i layer 5, a SiN film of 2.000 to 3.0 OOA is formed as a second insulating film 6.
The x film is formed by plasma CVD method. A source electrode 7 and a source line 8 connecting the source electrodes 7 are formed perpendicularly to the gate line 3 . Branch portions 8a connected to the source electrode 7 are arranged in parallel at a constant pitch on the source wiring 8,
T F T is formed around the branch portion 8a. Both the source electrode 7 and the drain electrode 9 have a film thickness of 2,000 to 1
It is formed from a metal such as Ta, Mo, Ti, A7, etc. of 0.0OOA. Note that the source electrode 7 and the drain electrode 9 and a
-BU'J5 doped with P (phosphorus) between the -5i films 5
00 to 2,0OOX (7) If the a-5i film 1o is interposed, ohmic contact can be established between the source electrode 7, the drain electrode 9, and the a-5i layer 5, which is preferable. In this way 7
T P at each intersection between the gate wiring 3 and the source wiring 8
T is formed in an array. Further, a picture element electrode 11 made of a transparent conductive film such as indium oxide is formed at 1-7 corresponding to each TPT in contact with the drain electrode 9.

(発明が解決しようとする問題点) TFTアレイを用いたアクティブ・マトリクス基板にお
いては、マトリクスの各配線ごとに共通のゲート配線か
らシグナル信号を入力し、共通のソース配線からデータ
信号を入力する。ゲート配線占ソース配線との交点は多
数であり、例えは250X250マトリクスにおいては
、62,500ケ所存在する。この多数の交点のうち1
ケ所でもゲート・ソース間にリークが生じると必然的に
該当するゲート配線とソース配線で表示に際1、て十字
型のライン欠陥が発生し、実用に耐えない表示となり、
アクティブ・マトリクス基板の歩留りはゼロとなる。こ
のため、ゲート配線とソース配線の数が増すにつれてゲ
ート・ソース間の絶縁の確実性かより一層要求されるこ
ととなる。
(Problems to be Solved by the Invention) In an active matrix substrate using a TFT array, a signal signal is inputted from a common gate wiring for each wiring of the matrix, and a data signal is inputted from a common source wiring. There are many intersections between the gate line and the source line, for example, in a 250x250 matrix, there are 62,500 points. One of these many intersections
If leakage occurs between the gate and source at any point, a cross-shaped line defect will inevitably occur in the corresponding gate wiring and source wiring, resulting in a display that is not suitable for practical use.
The yield of active matrix substrates is zero. Therefore, as the number of gate wirings and source wirings increases, the reliability of insulation between the gate and the source becomes even more required.

(問題点を解決するだめの手段) 本発明者らは、ゲート・ソース間のリーク箇所を種々の
方法によって調べた結果、ゲート・ソース間のリークが
、ゲートのエツジ(縁部)とソース七が交差する部分(
第5図における胴線部分)において特に多発することを
見い出し7た。この原因汀、ゲート絶縁膜の膜厚がゲー
ト電極の膜厚より大きいか又は同じ程度であるゆえに、
ゲート配線のエツジの部分の膜厚が薄くなって耐圧が低
下し2、さらに、ゲート絶縁膜の膜質が平坦な部分と段
差部分とで異なり、段差部分の方が絶縁性の面で劣るた
めと考えられる。
(Means for solving the problem) As a result of investigating the leakage points between the gate and the source using various methods, the present inventors found that the leakage between the gate and the source is caused by the edges of the gate and the source. The part where (
It has been found that this phenomenon occurs particularly frequently in the body line area in Fig. 5). The reason for this is that the thickness of the gate insulating film is greater than or approximately the same as that of the gate electrode.
This is because the film thickness at the edges of the gate wiring becomes thinner and the breakdown voltage decreases2.Furthermore, the film quality of the gate insulating film is different between flat parts and stepped parts, and the stepped parts are inferior in terms of insulation. Conceivable.

本発明の目的は、TFTアレイの製造の歩留りを向」ニ
ジ得るTFTアレイ構造を提供することにある。即ち、
本発明の゛rFTアレイは絶縁性基板−ににゲート電極
、ゲート絶縁膜、半導体膜、第2の絶縁膜、ソース電極
、ドレイン電極を順次積層してアレイ状に形成、される
゛「FT槽構造おいて、ソース配線とゲート配線の重畳
部にも第2の絶縁膜を介在させたことを特徴とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a TFT array structure that can improve the manufacturing yield of TFT arrays. That is,
The FT array of the present invention is formed by sequentially stacking a gate electrode, a gate insulating film, a semiconductor film, a second insulating film, a source electrode, and a drain electrode on an insulating substrate in an array shape. The structure is characterized in that a second insulating film is also interposed in the overlapping portion of the source wiring and the gate wiring.

(発明の効果) 土肥構我とするこ吉により、本発明においては、ゲート
配線とソース配線間の交差部の絶縁性を向−1−させ、
ゲート・ソース間のリークの発生を抑制御−て゛rFT
アレイの歩留りを向」ニさせている。従ってこの’「F
 Tアレイ基板を用いた液晶表示装置の製作が容易とな
り信頼性が高くなる。
(Effects of the Invention) According to Doi Kaga and Toru Kokichi, in the present invention, the insulation of the intersection between the gate wiring and the source wiring is improved.
Controls the occurrence of leakage between the gate and source.
This is driving the yield of arrays forward. Therefore, this 'F
A liquid crystal display device using a T-array substrate can be manufactured easily and has high reliability.

〈実施例1〉 第1図は、本発明の1実施例を示すT F Tアレイ基
板の部分平面図である。第2図は、第1図のB−B線断
面図(ゲート配線103とソース配線108の交差部の
部分断面図)である。T F ′rアレイはガラス基板
101等の支持基板−ヒに形成され、ゲート配線+08
とソース配線108の交点に対応して配置される。本実
施例では第2の絶縁層+06であるSiNx膜をT F
 Tの半導体層であるa−5i層105」―に堆積した
後、その片縁部をゲート配m103に沿ってソース配線
108の上方捷で延在さぜ、ゲート配線+03とソース
配線108の交差する部分に第2の絶縁層106を介挿
することにより、ゲート・ソース間のリークを大幅に減
少させている。ソース配線+08の分枝部にはTFTの
ソース電極が連結さね一1TFTのドレイン電極109
には絵素電極110が連結さねでいる。尚、ゲート配線
103とソース配線108の交差部VCさらに半導体層
であるa−8i層105を介在させるとゲート・ソース
間のリークをより減少させることができる。
<Embodiment 1> FIG. 1 is a partial plan view of a TFT array substrate showing one embodiment of the present invention. FIG. 2 is a sectional view taken along the line BB in FIG. 1 (a partial sectional view of the intersection of the gate wiring 103 and the source wiring 108). The T F'r array is formed on a support substrate such as the glass substrate 101, and the gate wiring +08
and the source wiring 108. In this example, the SiNx film which is the second insulating layer +06 is T F
After depositing on the a-5i layer 105'' which is a semiconductor layer of T, one edge thereof is extended along the gate wiring m103 at the upper part of the source wiring 108, and the gate wiring +03 and the source wiring 108 intersect. By interposing the second insulating layer 106 in the portion where the gate is connected, leakage between the gate and the source is significantly reduced. The source electrode of the TFT is connected to the branch part of the source wiring +08.
A pixel electrode 110 is connected to the pixel electrode 110 . Note that by interposing the a-8i layer 105, which is a semiconductor layer, at the intersection VC between the gate wiring 103 and the source wiring 108, leakage between the gate and the source can be further reduced.

第1図r(示した構造を有するTFTアレイは例えば第
3図(A)〜(D)に示すように製造される。第3図(
A)〜(D) t、c示すT P T製造工程の部分断
面図は第1図のT P TにおいてはC−C線の断面図
を示す。
A TFT array having the structure shown in FIG. 1r is manufactured, for example, as shown in FIGS.
A) to (D) t and c are partial cross-sectional views of the TPT manufacturing process shown in FIG.

まず、ガラス基& I 0 +−+:Vc2,000λ
厚のTa(タンタル)層をスパッタリングにより全面に
被着し、ホトエツチングによって第1図に示すようなゲ
ート配線103の形にパターン化して、第3図(A)に
示すようにゲート電極102を形成する。このゲート電
極M121−に後述する如く半導体層が堆積され、TF
Tの動作部が形成される。次に第3図(B)に示すよう
に、プラズマCVD法によりゲート絶縁膜104となる
g、o o o X厚のSiNx膜、半導体層となる1
500久層のa−5i層105及び第2の絶縁膜106
である2、000 X厚のSiNx膜を全面にわをって
連続的に被着し、ホトエツチングにより−1一部SiN
x膜を第1図に示す第2の絶縁膜106の形にパターン
化する。即ち、第2の絶縁膜106はゲート配線l0B
K沿ってソース配線108との交差部分の直」−丑で延
設される。さらに第3図(C)に示すようにa−5i層
105もホトエツチングにより第1図に示すa−8i層
105の形にパターン化する。このa−5i層+05も
上記第2の絶縁膜106と同様にソース配線108との
交差部まで延設される。次に第3図(D) K示すよう
に、プラズマCVD法によりP(リン)をドープしたa
−5i層を+、oooX引き続きスパッタリングにより
Ti(−F−夕y)層を1,0OOX 、 Mo (モ
IJブデン)層を2,0OOX連続して三層に堆積し、
ホトエツチングにより第1図に示すソース配線108及
びドレイン電極109の形にパターン化してa−5i層
、Ti層及びMo層の三層構造ソース電極107及びド
レイン電極109とすることによりTFTが形成される
。最後にスパッタリングにより3.o o o Xの酸
化インジウム膜を堆積した後、ホトエツチングによりパ
ターン化して絵素電極110を形成する。
First, glass group & I 0 +-+: Vc2,000λ
A thick Ta (tantalum) layer is deposited over the entire surface by sputtering, and patterned by photoetching into the shape of a gate wiring 103 as shown in FIG. 1 to form a gate electrode 102 as shown in FIG. 3(A). do. A semiconductor layer is deposited on this gate electrode M121- as described later, and the TF
A working part of T is formed. Next, as shown in FIG. 3(B), a SiNx film with a thickness of g, o o o x, which will become the gate insulating film 104, and 1, which will become the semiconductor layer, are formed by plasma CVD.
500 layers of a-5i layer 105 and second insulating film 106
A SiNx film with a thickness of 2,000X was deposited continuously over the entire surface, and a -1 part SiNx film was photo-etched.
The x film is patterned into the shape of the second insulating film 106 shown in FIG. That is, the second insulating film 106 is connected to the gate wiring l0B.
It is extended along the line K directly at the intersection with the source line 108. Furthermore, as shown in FIG. 3(C), the a-5i layer 105 is also patterned into the shape of the a-8i layer 105 shown in FIG. 1 by photoetching. This a-5i layer +05 also extends to the intersection with the source wiring 108, similarly to the second insulating film 106. Next, as shown in FIG. 3(D), a
-5i layer +, oooX followed by sputtering to deposit a Ti (-F-Y) layer of 1,000X and a Mo (MoIJ Budden) layer of 2,000X in three consecutive layers.
A TFT is formed by patterning the source wiring 108 and drain electrode 109 shown in FIG. 1 by photoetching to form a three-layer structure source electrode 107 and drain electrode 109 of an a-5i layer, a Ti layer, and a Mo layer. . Finally, by sputtering 3. After depositing an indium oxide film of o o o x, it is patterned by photoetching to form a picture element electrode 110.

以−1−の製造工程を介して製作されるTFTはガラス
基板+01上にマトリックス状に配列されたゲート配線
+03とソース配線108の各交点に対応して配置され
、TFTアレイ基板となる。ゲート配線103にシグナ
ル信号、ソース配線108にデータ信号を入力すること
によりTFTがマトリクス駆動される。即ち、ゲート配
線■03のシグナル信号はゲート電極+02より各ライ
ン毎に’f’ F Tにゲート電圧として印加され、ソ
ース配線108のデータ信号は分枝部を介して三層構造
ソース電極107より各ライン毎にT P Tにデータ
電圧として印加される。このデータ電圧がa−5i層+
05を介してシグナル信号で同期制御を受け、三層構造
ドレイン電極+09より絵素電極110に印加される。
The TFTs manufactured through the manufacturing process described in -1- below are arranged corresponding to each intersection of the gate wiring +03 and the source wiring 108 arranged in a matrix on the glass substrate +01, thereby forming a TFT array substrate. By inputting a signal signal to the gate wiring 103 and a data signal to the source wiring 108, the TFTs are driven in a matrix. That is, the signal signal of the gate wiring 03 is applied as a gate voltage to 'f' F T for each line from the gate electrode +02, and the data signal of the source wiring 108 is applied from the three-layer structure source electrode 107 via the branch part. A data voltage is applied to TPT for each line. This data voltage is the a-5i layer +
The signal is synchronously controlled via signal signal 05, and is applied to the picture element electrode 110 from the three-layer structure drain electrode +09.

ソース電極107及びドレイン電極10・9のa−3i
層はTFT半導体層であるa−5i ffi l 05
とオーミックコンタクトを形成し、Ti層は密着性及び
電極の機械的強度を向−1−させる。
a-3i of source electrode 107 and drain electrodes 10 and 9
The layer is a TFT semiconductor layer a-5i ffil 05
The Ti layer improves adhesion and mechanical strength of the electrode.

〈実施例2〉 第4図は、本発明の他の実施例を示すT F Tアレイ
基板の部分平面図である。第5図は第4図のD−D線断
面図(ゲート配線203とソース配線208の交差部の
部分断面図)である。実施例1同様に第2の絶縁層20
6をパターン化する際にこれを2分割し、TFT側に位
置する絶縁層206aとソース配線208−t:に位置
する絶縁層206bとする。即ち、ゲート配線203と
ソース配線208の交差する部分に第2の絶縁層206
)+を残存させる。本実施例では第2の絶縁層206を
5i02(酸化シリコン)膜で形成しており、ゲート・
ソース間のリークを大幅に減少させている。
<Embodiment 2> FIG. 4 is a partial plan view of a TFT array substrate showing another embodiment of the present invention. FIG. 5 is a sectional view taken along the line DD in FIG. 4 (a partial sectional view of the intersection of the gate wiring 203 and the source wiring 208). As in Example 1, the second insulating layer 20
When patterning 6, it is divided into two to form an insulating layer 206a located on the TFT side and an insulating layer 206b located on the source wiring 208-t:. That is, the second insulating layer 206 is formed at the intersection of the gate wiring 203 and the source wiring 208.
) + remains. In this embodiment, the second insulating layer 206 is formed of a 5i02 (silicon oxide) film, and the gate and
Leakage between sources has been significantly reduced.

第4図に示した構造を有するTFTアレイは、第6図(
A)〜(D)に示すように製造される。第6図(A)〜
(D)に示すTFT製造工程は、第4図のE−E線断面
に対応している。まず、ガラス基板20 + −1−に
2.oooX厚のMo層をスパッタリングにより全面に
被着し、ホトエツチングにより第4図に示すゲート配線
203の形にパターン化して、第6図(A)に示すよう
なゲート電極+02を形成する。次に、第6図(B) 
K示すように、プラズマCVD法により、ゲート絶縁膜
204である3、000 X厚のSiNx膜及びT F
 Tの半導体膜である1、500λ厚のa−5i層20
5を全面に連続的に被着し、ホトエツチングによりa−
賓層205を第4図に示す半導体層の形にパターン化す
る。このa−5i層205けTjTの部分のみに形成さ
れる。さらに、第6図(C)に示すように、プラズマC
VD法により第247)、1[’3i3i 06 てA
る8、000XIi(7)Si02膜を全面に被着し、
ホトエツチングにより第4図に示す如<TFT側の絶縁
層206aとソース配線208上の絶縁層206 b 
&U分割してパターン化する。次に第6図(D)に示す
ように、プラズマCVD法によりP(リン)をドープし
たa−5i層を1,000λ、At層を2,000 X
連続して被着しホトエツチングにより第4図に示すソー
ス配線208及びドレイン電極209の形にパターン化
してソース電極207及びドレイン電極209とし、T
FTアレイさする。最後にスパンタリングにより3.0
0OAの酸化インジウム膜を形[戊し、ホトエツチング
によりドレイン電極209に片端か重畳された絵素電極
210の形にパターン化することによりTFTアレイ基
板が作製される。本実施例においては第2の絶縁層20
6のみを延設してソース配a208吉ゲート配線203
の間に介挿1−、でいる。
The TFT array having the structure shown in Fig. 4 is shown in Fig. 6 (
It is manufactured as shown in A) to (D). Figure 6 (A) ~
The TFT manufacturing process shown in (D) corresponds to the cross section taken along the line E--E in FIG. 4. First, 2. An oooX thick Mo layer is deposited on the entire surface by sputtering and patterned by photoetching into the shape of the gate wiring 203 shown in FIG. 4 to form a gate electrode +02 as shown in FIG. 6(A). Next, Figure 6 (B)
As shown in K, a SiNx film with a thickness of 3,000× and T F
A-5i layer 20 with a thickness of 1,500λ, which is a semiconductor film of T
5 was continuously deposited on the entire surface and a-
The base layer 205 is patterned into the shape of a semiconductor layer as shown in FIG. This a-5i layer 205 is formed only in the TjT portion. Furthermore, as shown in FIG. 6(C), plasma C
247), 1['3i3i 06 teA by VD method
8,000XIi(7)Si02 film is deposited on the entire surface,
By photo-etching, as shown in FIG.
&U Divide into patterns. Next, as shown in FIG. 6(D), the a-5i layer doped with P (phosphorus) by the plasma CVD method was heated at 1,000λ, and the At layer was doped at 2,000X.
It is successively deposited and patterned by photo-etching into the shape of the source wiring 208 and drain electrode 209 shown in FIG.
Insert FT array. Finally 3.0 by spantering
A TFT array substrate is fabricated by cutting a 0OA indium oxide film and patterning it into a pixel electrode 210 overlapping the drain electrode 209 at one end by photoetching. In this embodiment, the second insulating layer 20
6 is extended and the source wiring a208 and the gate wiring 203 are connected.
Insert 1-, in between.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第4図はそれぞれ本発明の1実施例を示すT
FTアレイ基板の要部平面図である。 第2図及び第5図はそれぞれ第1図及び第4図のB−B
断面及びD−D断面図である。 第3図(A)乃至(D)及び第6図(A)乃至(r))
はそれぞれ第1図及び第4図に示す実施例の製造工程図
である○ 第7図及び第8図はそれぞれ従来のa−5i・TFTア
レイ基板の要部断面図及び要部平面図である。 101.201・絶縁基板、102,202・・ゲート
電極、IO3,203・ゲート配線、104,204・
ゲート絶縁膜、105,205−a−8i層、106,
206・・第2の絶縁層、107,207・・・ソース
電極、108゜208・・ソース配線、109,209
・・ドレイン電極、110.210・・絵素電極。 代理人 弁理士 福 士 愛 彦(他2名)0■ 簗1図 B−B町町図 第2記 (A) 第7′2!
FIG. 1 and FIG. 4 each show an embodiment of the present invention.
FIG. 3 is a plan view of the main parts of the FT array substrate. Figures 2 and 5 are B-B of Figures 1 and 4, respectively.
It is a cross section and a DD sectional view. Figure 3 (A) to (D) and Figure 6 (A) to (r))
are manufacturing process diagrams of the embodiment shown in FIG. 1 and FIG. 4, respectively. ○ FIG. 7 and FIG. 8 are a cross-sectional view and a plan view of a main part of a conventional a-5i TFT array substrate, respectively. . 101.201・Insulating substrate, 102,202・・Gate electrode, IO3,203・Gate wiring, 104,204・
Gate insulating film, 105, 205-a-8i layer, 106,
206...Second insulating layer, 107,207...Source electrode, 108°208...Source wiring, 109,209
...Drain electrode, 110.210...Picture element electrode. Agent Patent Attorney Aihiko Fukushi (and 2 others) 0■ Yan 1 Map B-B Town Map No. 2 (A) No. 7'2!

Claims (1)

【特許請求の範囲】 1、基板上に並設された薄膜トランジスタのゲート電極
とソース電極をそれぞれ共通に連結するゲート配線とソ
ース配線が交差する重畳領域にTFTの構成膜である半
導体層を挾持する絶縁層を2層とも介在させたことを特
徴とする薄膜トランジスタアレイ。 2、特許請求の範囲第1項において、 上記半導体層がアモルファスシリコン薄膜である薄膜ト
ランジスタアレイ。 3、特許請求の範囲第1項において、 上記絶縁層が窒化シリコン膜である薄膜トランジスタア
レイ。 4、特許請求の範囲第1項において、 上記絶縁層が酸化シリコン膜である薄膜トランジスタア
レイ。
[Claims] 1. A semiconductor layer, which is a constituent film of a TFT, is sandwiched in an overlapping region where a gate wiring and a source wiring intersect, which commonly connect the gate electrodes and source electrodes of thin film transistors arranged in parallel on a substrate. A thin film transistor array characterized in that two insulating layers are interposed. 2. The thin film transistor array according to claim 1, wherein the semiconductor layer is an amorphous silicon thin film. 3. The thin film transistor array according to claim 1, wherein the insulating layer is a silicon nitride film. 4. The thin film transistor array according to claim 1, wherein the insulating layer is a silicon oxide film.
JP60270355A 1985-11-27 1985-11-27 Thin film transistor array Pending JPS62126677A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60270355A JPS62126677A (en) 1985-11-27 1985-11-27 Thin film transistor array
GB8628172A GB2185622B (en) 1985-11-27 1986-11-25 Thin film transistor array
DE19863640174 DE3640174A1 (en) 1985-11-27 1986-11-25 THIN FILM TRANSISTOR ARRANGEMENT
US07/267,680 US4935792A (en) 1985-11-27 1988-11-01 Thin film transistor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270355A JPS62126677A (en) 1985-11-27 1985-11-27 Thin film transistor array

Publications (1)

Publication Number Publication Date
JPS62126677A true JPS62126677A (en) 1987-06-08

Family

ID=17485110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270355A Pending JPS62126677A (en) 1985-11-27 1985-11-27 Thin film transistor array

Country Status (1)

Country Link
JP (1) JPS62126677A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276030A (en) * 1987-05-08 1988-11-14 Hitachi Ltd Liquid crystal display device
JPS6410222A (en) * 1987-07-03 1989-01-13 Asahi Glass Co Ltd Substrate for thin film passive element
JPH01217422A (en) * 1988-02-26 1989-08-31 Seikosha Co Ltd Amorphous silicon thin film transistor array substrate
JPH01259565A (en) * 1988-04-11 1989-10-17 Hitachi Ltd Thin film transistor and manufacture of the same
JPH01271727A (en) * 1988-04-25 1989-10-30 Seikosha Co Ltd Amorphous silicon thin film transistor array
JPH0219840A (en) * 1988-07-08 1990-01-23 Hitachi Ltd Manufacture of active matrix panel
JPH03222370A (en) * 1990-01-26 1991-10-01 Mitsubishi Electric Corp Thin film transistor
JPH04190330A (en) * 1990-11-26 1992-07-08 Semiconductor Energy Lab Co Ltd Driving method for display device
US5899547A (en) * 1990-11-26 1999-05-04 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5956105A (en) * 1991-06-14 1999-09-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6013928A (en) * 1991-08-23 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film and method for forming the same
US6195139B1 (en) 1992-03-04 2001-02-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6242758B1 (en) 1994-12-27 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing resinous material, method of fabricating the same and electrooptical device
US6778231B1 (en) 1991-06-14 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device
US6975296B1 (en) 1991-06-14 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US7154147B1 (en) 1990-11-26 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
JP2007304557A (en) * 2006-05-09 2007-11-22 Lg Philips Lcd Co Ltd Liquid crystal display and method of fabricating the same
US7554616B1 (en) 1992-04-28 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
JP2012074596A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Thin-film transistor, image display device having thin-film transistor, method of manufacturing thin-film transistor, and method of manufacturing image display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599941A (en) * 1982-07-08 1984-01-19 Matsushita Electric Ind Co Ltd Thin-film semiconductor device and its manufacture
JPS60261174A (en) * 1984-06-07 1985-12-24 Nippon Soken Inc Matrix array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599941A (en) * 1982-07-08 1984-01-19 Matsushita Electric Ind Co Ltd Thin-film semiconductor device and its manufacture
JPS60261174A (en) * 1984-06-07 1985-12-24 Nippon Soken Inc Matrix array

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276030A (en) * 1987-05-08 1988-11-14 Hitachi Ltd Liquid crystal display device
JPS6410222A (en) * 1987-07-03 1989-01-13 Asahi Glass Co Ltd Substrate for thin film passive element
JPH01217422A (en) * 1988-02-26 1989-08-31 Seikosha Co Ltd Amorphous silicon thin film transistor array substrate
JPH01259565A (en) * 1988-04-11 1989-10-17 Hitachi Ltd Thin film transistor and manufacture of the same
JPH01271727A (en) * 1988-04-25 1989-10-30 Seikosha Co Ltd Amorphous silicon thin film transistor array
JPH0219840A (en) * 1988-07-08 1990-01-23 Hitachi Ltd Manufacture of active matrix panel
JPH03222370A (en) * 1990-01-26 1991-10-01 Mitsubishi Electric Corp Thin film transistor
JPH04190330A (en) * 1990-11-26 1992-07-08 Semiconductor Energy Lab Co Ltd Driving method for display device
US5899547A (en) * 1990-11-26 1999-05-04 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US5905555A (en) * 1990-11-26 1999-05-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix type electro-optical device having leveling film
US5946059A (en) * 1990-11-26 1999-08-31 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US7154147B1 (en) 1990-11-26 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
KR100522960B1 (en) * 1990-11-26 2005-10-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 A method of manufacturing a display device
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5963278A (en) * 1991-03-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US6975296B1 (en) 1991-06-14 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US7928946B2 (en) 1991-06-14 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US5956105A (en) * 1991-06-14 1999-09-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6778231B1 (en) 1991-06-14 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device
US6013928A (en) * 1991-08-23 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film and method for forming the same
US7123320B2 (en) 1992-03-04 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6195139B1 (en) 1992-03-04 2001-02-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6618105B2 (en) 1992-03-04 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US8035773B2 (en) 1992-03-04 2011-10-11 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7554616B1 (en) 1992-04-28 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6242758B1 (en) 1994-12-27 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing resinous material, method of fabricating the same and electrooptical device
US6429053B1 (en) 1994-12-27 2002-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device method of fabricating same, and, electrooptical device
JP2007304557A (en) * 2006-05-09 2007-11-22 Lg Philips Lcd Co Ltd Liquid crystal display and method of fabricating the same
US7825413B2 (en) 2006-05-09 2010-11-02 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
JP2012074596A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Thin-film transistor, image display device having thin-film transistor, method of manufacturing thin-film transistor, and method of manufacturing image display device

Similar Documents

Publication Publication Date Title
JPS62126677A (en) Thin film transistor array
US4935792A (en) Thin film transistor array
JP2616160B2 (en) Thin film field effect transistor element array
JP2740813B2 (en) Amorphous silicon thin film transistor array substrate
JP2963529B2 (en) Active matrix display device
JP3475266B2 (en) Liquid crystal display device and manufacturing method thereof
US20020171108A1 (en) Thin film transistor array substrate for liquid cystal display and a method for fabricating the same
US4816885A (en) Thin-film transistor matrix for liquid crystal display
CN100438048C (en) Electrode structure in flat panel display, and fabricating method
KR100931875B1 (en) Thin film transistor and method for manufacturing same
JPH061314B2 (en) Thin film transistor array
JPH08234239A (en) Display device
US4961629A (en) Liquid crystal display device
JPH0720489A (en) Matrix type display device
JPH04313729A (en) Liquid crystal display device
JP2661163B2 (en) TFT panel
JPH0362244B2 (en)
JPH0812539B2 (en) Display device and manufacturing method thereof
JPH0736061A (en) Active matrix type liquid crystal display device
JPH082656Y2 (en) Thin film transistor panel
JPH01227127A (en) Thin-film transistor array
JPH0568708B2 (en)
JP3200638B2 (en) Wiring formation method
JPH0586870B2 (en)
JPH0514521Y2 (en)