JPS62126339A - Method and apparatus for detecting internal flaw - Google Patents

Method and apparatus for detecting internal flaw

Info

Publication number
JPS62126339A
JPS62126339A JP26765985A JP26765985A JPS62126339A JP S62126339 A JPS62126339 A JP S62126339A JP 26765985 A JP26765985 A JP 26765985A JP 26765985 A JP26765985 A JP 26765985A JP S62126339 A JPS62126339 A JP S62126339A
Authority
JP
Japan
Prior art keywords
measured
temperature
data
temp
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26765985A
Other languages
Japanese (ja)
Inventor
Koichi Shimazu
島津 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP26765985A priority Critical patent/JPS62126339A/en
Publication of JPS62126339A publication Critical patent/JPS62126339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To simply perform internal flaw detection at a high speed, by detecting the change in the surface temp. at each part of an article to be measured with respect to quantity of applied heat and detecting an internal flaw from the change degree of said temp. CONSTITUTION:An article 1 to be measured is arranged on a table and moves to an X-direction by every predetermined quantity. A laser apparatus 2 is controlled by a laser controller 5 and outputs beam reciprocally moving to a Y- direction at a high speed to raise the temp. of the article 1 to be measured. The optical scanning system 3a of an infrared camera 3 is synchronous to the signal from a camera controller 6 to scan the same line as a beam irradiation line and an infrared detector 3b detects emitted infrared red rays to output the same to the controller 6 through an amplifier 7, a linearizer 8 and an A/D converter 9. A signal processor 11 cumulates the temp. data of the same line to add the same to a second memory 13. The normal temp. data of the article 1 to be measured is stored in a first memory 12. A data processor 14 performs the subtraction of the temp. data of the memories 12, 13 and displays a flaw state on a monitor 16 using a flaw converting parameter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被測定物の内部欠陥の検出方法および装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for detecting internal defects in a workpiece.

〔従来の技術〕[Conventional technology]

従来、材料や構造物などの被測定物の内部欠陥を、その
被測定物を破壊せずに検出する方法としては、被測定物
の&面に写真フィルムをセットし、その表面から放射線
(X線あるいぽγ線など)を照射し、前記写真フィルム
に写った映像のコントラストの違いKよって欠陥を検出
する放射透過法および超音波を振動子によって被測定物
内に入射し、その反射波形をブラウン管上等で観察して
欠陥を検出する超音波探傷法などがある。
Conventionally, a method for detecting internal defects in a material or structure without destroying the object is to set a photographic film on the surface of the object and emit radiation (X) from the surface. The radiation transmission method detects defects based on the contrast difference K of the images captured on the photographic film by irradiating the object with rays, rays, gamma rays, etc.; There is an ultrasonic flaw detection method that detects defects by observing them on a cathode ray tube or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

放射線透過法は、透過量および撮影条件の設定、フィル
ムのセツティング、さらには結果の解析などから欠陥を
制別するまで時間がかかり、また透過させる放射線は人
体に有害であり、しかも装置の操作に専用の資格が必要
となる。
The radiation transmission method takes time to determine the defects from setting the amount of transmission and imaging conditions, setting the film, and analyzing the results.Also, the radiation transmitted is harmful to the human body, and it is difficult to operate the equipment. requires special qualifications.

一方、Ni音彼深傷法は、接触法であるため表面状態に
よってはある程度の表面仕上を必要とし、さらには?イ
ンドの探鴎のため広範囲の検査を行なうには相当の労力
を必要とし、また検査洩れによる欠陥の見落しなどの問
題がある。
On the other hand, since the Ni-on-he deep wound method is a contact method, it requires a certain degree of surface finishing depending on the surface condition. Carrying out wide-ranging inspections in India requires a considerable amount of effort, and there are problems such as defects being overlooked due to omissions in inspections.

本発明はこのような従来の内部欠陥検査方法の問題点、
欠点を一挙に解決することができる新規な被測定物の内
部欠陥の検出方法および装置を提供することを目的とす
る。
The present invention addresses the problems of such conventional internal defect inspection methods,
It is an object of the present invention to provide a novel method and apparatus for detecting internal defects in an object to be measured, which can solve the defects all at once.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、被測定物の表面に印加された所定の熱
〕iに対して当該被測定物の表面若しくは裏面の各部位
における温度変化を検出し、この検出した温度変化の度
合いに基づいて前記被測定物の内部欠陥を検出するよう
にしている。
According to the present invention, a temperature change at each part of the front or back surface of the object to be measured is detected with respect to a predetermined heat [i] applied to the surface of the object to be measured, and based on the degree of the detected temperature change, Internal defects in the object to be measured are detected using the above-mentioned method.

〔作用〕[Effect]

被測定物の表面を加熱又は冷却した場合、正常な部分と
内部欠陥を有する部分とでは、その表面又は裏面の温度
上昇あるいは降下の度合いが異なる。したがって、被測
定物の表面に印加された所定の熱量に対して当該被測定
物の表面若しくは裏面の各部位における温度変化を検出
し、その温度変化の度合いが大きい部位には内部欠陥が
あると推足される。
When the surface of the object to be measured is heated or cooled, the degree of temperature rise or fall on the front or back surface is different between a normal part and a part with an internal defect. Therefore, the temperature change at each part of the front or back surface of the object to be measured is detected for a predetermined amount of heat applied to the surface of the object to be measured, and the area with a large degree of temperature change is determined to have an internal defect. Recommended.

〔実施例〕〔Example〕

以下、本発明を添付図面を参照して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

まず、本発明を第2図(a)〜(d)を用いて原理的に
説明する。内部に欠陥が存在する被測定物の表面を加熱
または冷却したところ、下記の現象を見出した。
First, the present invention will be explained in principle using FIGS. 2(a) to 2(d). When we heated or cooled the surface of an object to be measured that had internal defects, we discovered the following phenomenon.

■ 加熱した場合の表面温度は、正常部よりも欠陥部の
方が早く昇温し、その表面上で温度差が生じる(第2図
(、)参照)。
■ When heated, the surface temperature of the defective area rises faster than that of the normal area, and a temperature difference occurs on the surface (see Figure 2 (, )).

■ 冷却した場合の表面温度は、正常部よりも欠陥部の
方が早く降温し、その表面上で温度差が生じる(第2図
(b)参照)。
(2) When cooled, the surface temperature of the defective area decreases faster than that of the normal area, and a temperature difference occurs on the surface (see Figure 2(b)).

■ 加熱した場合の裏面温度は、欠陥部よりも正常部の
方が早く昇温し、その裏面上で温度差が生じる(第2図
(c)鎚J)@)。
■ When heated, the temperature of the back surface increases faster in the normal part than in the defective part, and a temperature difference occurs on the back surface (Fig. 2 (c) Hammer J)@).

■ 冷却した場合の裏面R4度は、欠陥部よりも正常部
の方が早く降温し、その裏面上で温度差が生じる(第2
図(d)参照)。
■ When the back surface R4 degrees is cooled, the temperature of the normal part drops faster than that of the defective part, and a temperature difference occurs on the back surface (the second
(See figure (d)).

すなわち、第2図(、)〜(d)に示すように被測定物
の表面を所定の時間加熱または冷却を行なうと、正常部
と欠陥部とでは微小な温度差が生じる。
That is, when the surface of the object to be measured is heated or cooled for a predetermined period of time as shown in FIGS. 2(,) to (d), a minute temperature difference occurs between the normal part and the defective part.

これは、正常部では熱は規則的に被測定物体内に伝わる
のに対し、欠陥部では欠陥がある大きさ以上になるとこ
の部分が熱抵抗となり、欠陥内で蓄熱されることに起因
する。また、加熱または冷却した面の裏側(裏面)では
、熱量が表面から裏面に移動する際、上述のように正常
部と欠陥部では熱の移動状態が異なり、正常部では規則
的に熱が通過するが、ある大きさ以上の欠陥が内部に存
在する場合では欠陥部から裏面に熱が通過する際、熱抵
抗があるため、その抵抗により熱の移動が不規則となる
ことに起因して温度差が生じる。
This is because in a normal part, heat is regularly transmitted into the object to be measured, whereas in a defective part, if the defect exceeds a certain size, this part becomes a thermal resistance and heat is accumulated within the defect. In addition, when the amount of heat moves from the front side to the back side of the heated or cooled surface, the state of heat transfer is different between the normal part and the defective part, as described above, and the heat passes regularly in the normal part. However, if there is a defect of a certain size or more inside, there is thermal resistance when heat passes from the defect to the back surface, and this resistance causes irregular heat transfer, causing the temperature to drop. It makes a difference.

そして、諸条件を種々変えて実験を行ない検討を重ねた
結果、欠陥部と正常部の表面温度差は、欠陥の大きさ及
び位置に比例関係にあることが判明した。すなわち、第
3図および第4図に示すように欠陥の大きさaが大きい
程、また表面から欠陥までの探さtが浅い程、上記温度
差ΔTが大きくなることが実験により確認された。
As a result of repeated experiments and studies under various conditions, it was found that the difference in surface temperature between the defective part and the normal part is proportional to the size and position of the defect. That is, as shown in FIGS. 3 and 4, it has been experimentally confirmed that the larger the defect size a and the shallower the distance t from the surface to the defect, the larger the temperature difference ΔT becomes.

このような関係から、被gill定物の表面を加熱また
は冷却し、その表面または裏面の温度変化状態を検出す
れば、内部欠陥を検知することができる。
Based on this relationship, internal defects can be detected by heating or cooling the surface of the target object and detecting the state of temperature change on the front or back surface.

なお、上記温度差は非常に微弱であり、さらに加熱また
は冷却を続けると熱の拡散あるいは周囲からの熱の流入
があるため、この温度差が判別できなくなることが実験
により確認された。
It has been experimentally confirmed that the above-mentioned temperature difference is very weak, and if heating or cooling is continued, heat will diffuse or heat will flow in from the surroundings, making it impossible to distinguish this temperature difference.

次に、本発明の実施例を第1図を参照して説明する。Next, an embodiment of the present invention will be described with reference to FIG.

第1図は被測定物1の表面をレーザー装置2によって加
熱し、その表面温度を赤外線カメラ3によって検出する
場合に関して示している。
FIG. 1 shows a case where the surface of an object to be measured 1 is heated by a laser device 2 and the surface temperature is detected by an infrared camera 3. In FIG.

被測定物lはX方向に移動するテーブル(図示せず)に
設置され、前記テーブルはシステムコントローラ4から
加えられる測定物移動信号(第5図優))によって所定
量づつ移動する。この移動量は欠陥部の検出分解能によ
って定められる。
The object to be measured 1 is placed on a table (not shown) that moves in the X direction, and the table is moved by a predetermined amount in response to an object movement signal (see FIG. 5) applied from the system controller 4. This amount of movement is determined by the defect detection resolution.

レーザー装置2は、システムコーントローラ4からスタ
ート信号(第5図弾))を受入するレーザーコントロー
ラ5によって制御され、スタート信号が出力されると、
Y方向に高速に往復移動するレーザービームを出力する
(第5図(b))。なお、このレーザービームは被測定
物1を昇温させるが。
The laser device 2 is controlled by a laser controller 5 that receives a start signal (see Figure 5) from the system cone controller 4, and when the start signal is output,
It outputs a laser beam that moves back and forth at high speed in the Y direction (Fig. 5(b)). Note that this laser beam raises the temperature of the object to be measured 1.

その材質を変化させない程度のものである。This is to the extent that the material does not change.

赤外線カメラ3は光学走査系3aと赤外線検知器3bと
からなり、光学走査系3aはカメラコントローラ6から
の光学系同期信号(第5図(d))に同期して前記レー
ザービームの照射ラインド同一ラインを走査し、赤外線
検知器3bはそのライン上から放射される温度に対応し
た赤外線を検出し、これをアンf7、リニアライプ8お
よびA / D変換器9を介してカメラコントローラ6
に出力する。
The infrared camera 3 consists of an optical scanning system 3a and an infrared detector 3b, and the optical scanning system 3a synchronizes with the optical system synchronization signal (FIG. 5(d)) from the camera controller 6 so that the irradiation line of the laser beam is the same. The line is scanned, the infrared detector 3b detects infrared rays corresponding to the temperature emitted from the line, and the infrared rays are sent to the camera controller 6 via the amplifier 7, linear line 8, and A/D converter 9.
Output to.

なお、赤外線カメラ3にレーザー装置2の反射熱が直接
入射しないように、両者の設置角度は適宜設定されてい
る。
Note that the installation angles of both are appropriately set so that the reflected heat of the laser device 2 does not directly enter the infrared camera 3.

さて、トリガ回路10がシステムコントローラ4からの
針側指令を受け、トリガ信号(第5図(C))をカメラ
コントローラ6に出力すると、カメラコントローラ6は
その信号の立ち下がりに同期して、A / D変換器9
から順次入力する1ライン分の温度データをシグナルプ
ロセッサ11に出力する。
Now, when the trigger circuit 10 receives a needle side command from the system controller 4 and outputs a trigger signal (FIG. 5(C)) to the camera controller 6, the camera controller 6 synchronizes with the falling edge of the signal. / D converter 9
One line of temperature data sequentially inputted from 1 to 1 is output to the signal processor 11.

シグナルプロセッサ11は、同一ラインにおけるn回分
の温度データを累算しく第5図(、)参照)、これを第
2メモリ13に加える。一方、第1メモリ12には、正
常な被測定物について上記と同一の条件下で検出した温
度データが記憶されており、システムコントローラ4に
よって第2メモリ13に記憶される温度データと同一ラ
インの温度データが読み出されるようになっている。
The signal processor 11 accumulates n times of temperature data on the same line (see FIG. 5(,)) and adds this to the second memory 13. On the other hand, the first memory 12 stores temperature data detected under the same conditions as above for a normal object to be measured, and is on the same line as the temperature data stored in the second memory 13 by the system controller 4. Temperature data is now read out.

データプロセッサ14は、第1メモリ12と第2メモリ
13から加わる温度データの減算を行ない、その減算値
をシステムコントローフ 4 、第3メモリ17等に出
力しく第5図(f))、システムコントローラ4はこの
減算値と、伝熱解析プロセッサ15に入力されている材
質および第3図に示した欠陥変換ノぐラメータ等を用い
て、モニタ16に前記走査ライン断面における欠陥状況
を表示する。
The data processor 14 subtracts the temperature data applied from the first memory 12 and the second memory 13, and outputs the subtracted value to the system controller 4, the third memory 17, etc. (FIG. 5(f)), and the system controller 4 uses this subtracted value, the material input to the heat transfer analysis processor 15, the defect conversion parameter shown in FIG.

また、システムコントロー24はデータ出力後、測定物
移動信号を移動テーブルに出力しく第5図儲))、次の
ラインの計測を上記と同様にして実行させる。
Further, after outputting the data, the system controller 24 outputs a measurement object movement signal to the movement table (see Figure 5)) and executes the measurement of the next line in the same manner as above.

第3メモリ17は、上記のようにしてデータプロセッサ
14から加わる各ライン毎の温度差データを記憶する。
The third memory 17 stores the temperature difference data for each line added from the data processor 14 as described above.

3次元表示演算回路18は、第3メモリ17に全ライン
の温度差データが記憶されると、これらのデータに基づ
いて欠陥状態をモ二り19に3次元で表示させる。なお
、欠陥状態をX−Yの2次元で表示させることもできる
。また、記録装置20には、第3メモリ17の内容が記
録されるようになっており、必要に応じて適宜の被測定
物のデータが読み出せるよう釦なっている。
When the temperature difference data of all the lines is stored in the third memory 17, the three-dimensional display calculation circuit 18 causes the monitor 19 to display the defect state in three dimensions based on these data. Note that the defect state can also be displayed in two dimensions (X-Y). Further, the recording device 20 is configured to record the contents of the third memory 17, and is provided with a button so that data of an appropriate object to be measured can be read out as needed.

上記実施例の場合は、レーザー装置2によって連続的に
加熱するようにしているため、最初の走査ラインと後続
の走査ラインとでは加熱状態が異なってくる。そこで、
第6図のタイミングチャートを用いてレーザー装置2に
よって断続的に被測定物を加熱する場合の他の実施例に
ついて説明する。なお、装置は、第1図のものと同等の
もので達成できる。
In the case of the above embodiment, since heating is performed continuously by the laser device 2, the heating state differs between the first scanning line and the subsequent scanning line. Therefore,
Another embodiment in which the object to be measured is intermittently heated by the laser device 2 will be described using the timing chart of FIG. 6. Note that this can be achieved using a device equivalent to that shown in FIG.

上記実施例と異なる点は、1ラインの温度σ(り泥中に
レーザー装置の出力がオンからオフに切り替えられる点
と、第1メモリ12に記憶される正常な被測定物につい
て測定した温度データが異なる点である。
The difference from the above embodiment is that the temperature σ of one line (the output of the laser device is switched from on to off during muddying, and the temperature data measured for a normal object to be measured is stored in the first memory 12). is the difference.

このような条件で温度検出され、第1メモリ12および
第2メモリ13からデータプロセッサ14に出力される
同一ラインの累1γされた温度データは、それぞれ第2
図(、)の実線以下の面積および破線以下の面積に相当
するものとなり、両者の温度差データは実線と破線によ
って囲まれる部分の面積に相当する。もち論、被測定物
に欠陥部がなければ、上記温度差データは0若しくはそ
の近傍の値となる。
The temperature data of the same line detected under such conditions and output from the first memory 12 and the second memory 13 to the data processor 14 is stored in the second
This corresponds to the area below the solid line and the area below the broken line in the figure (,), and the temperature difference data between the two corresponds to the area surrounded by the solid line and the broken line. Of course, if there is no defect in the object to be measured, the temperature difference data will be 0 or a value close to 0.

なお、本実施例では赤外線カメラによって被測定物の表
面温度を検出するようKしたが、これに限らず、例えば
熱電対を用いて検出するようにしてもよい。また、加熱
装置もレーザー装置に限らず、温風器等を用いることが
できる。更には、時短の加熱および冷却装置を使用しな
いで、太陽熱などの自然環境を利用してもよい。
In this embodiment, the surface temperature of the object to be measured is detected using an infrared camera, but the present invention is not limited to this, and detection may be performed using a thermocouple, for example. Further, the heating device is not limited to a laser device, and a hot air heater or the like can be used. Furthermore, the natural environment, such as solar heat, may be utilized without using time-saving heating and cooling devices.

また、本実施例では正常な被測定物から参照データを予
め記憶し、これと任意の被測定物で検出した温度データ
との差をとるようにしたが、これに限らず、単に被測定
物の表面温度分布からでも欠陥部を検出することができ
る。
In addition, in this embodiment, reference data from a normal measured object is stored in advance, and the difference between this and temperature data detected from an arbitrary measured object is calculated, but the present invention is not limited to this. Defects can also be detected from the surface temperature distribution.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、簡単かつ高速に被
測定物の内部探傷が可能である。また、本発明はマクロ
検査であり、欠陥分布を定量的【評価でき、ミクロ検査
(例えば超音波探傷法)による探偏洩れが減少するとい
う効果がある。
As explained above, according to the present invention, it is possible to easily and quickly perform internal flaw detection of the object to be measured. Furthermore, the present invention is a macro inspection, which has the effect of being able to quantitatively evaluate the defect distribution and reducing detection deviations caused by micro inspection (for example, ultrasonic flaw detection).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図(
、)〜(d)はそれぞれ本発明の詳細な説明するだめに
用いたグラフ、第3図は欠陥サイズおよび欠陥深さと温
度差との関係を示すグラフ、第4図は第3図の欠陥サイ
ズおよび欠陥深さを説明するために用いた図、第5図お
よび第6図はそれぞれ第1図に示した装置の動作を説明
するために用いたタイミングチャートである。 l・・・被測定物、2・・・レーザー装置、3・・・赤
外線カメラ、4・・・システムコントローラ、5・・・
レーザーコントローラ、6・・・カメラコントローラ、
1゜・・・トリが回路、11・・・シグナルグロセッサ
、12・・・第1メモリ、13・・・第2メモリ、14
・・・データプロセッサ、16.19・・・モニタ、1
7・・・第3メモリ、18・・・3次元表示演算回路。 第2図
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 (
, ) to (d) are graphs used for detailed explanation of the present invention, FIG. 3 is a graph showing the relationship between defect size and defect depth, and temperature difference, and FIG. 4 is a graph showing the defect size in FIG. 3. 5 and 6 are timing charts used to explain the operation of the apparatus shown in FIG. 1, respectively. l...Object to be measured, 2...Laser device, 3...Infrared camera, 4...System controller, 5...
Laser controller, 6... camera controller,
1゜... Tri is a circuit, 11... Signal processor, 12... First memory, 13... Second memory, 14
...Data processor, 16.19...Monitor, 1
7... Third memory, 18... Three-dimensional display calculation circuit. Figure 2

Claims (6)

【特許請求の範囲】[Claims] (1)被測定物の表面に印加された所定の熱量に対して
当該被測定物の表面若しくは裏面の各部位における温度
変化を検出し、この検出した温度変化の度合いに基づい
て前記被測定物の内部欠陥を検出することを特徴とする
内部欠陥の検出方法。
(1) Detect the temperature change at each part of the front or back surface of the object to be measured with respect to a predetermined amount of heat applied to the surface of the object to be measured, and based on the degree of the detected temperature change, A method for detecting internal defects, the method comprising: detecting internal defects in an internal defect.
(2)前記被測定物の表面は、一定の熱量で加熱若しく
は冷却される特許請求の範囲第(1)項記載の内部欠陥
の検出方法。
(2) The internal defect detection method according to claim (1), wherein the surface of the object to be measured is heated or cooled with a constant amount of heat.
(3)前記被測定物の表面は、自然環境下で加熱若しく
は冷却される特許請求の範囲第(1)項記載の内部欠陥
の検出方法。
(3) The internal defect detection method according to claim (1), wherein the surface of the object to be measured is heated or cooled in a natural environment.
(4)被測定物の表面若しくは裏面の温度を2次元的に
検出する温度検出手段と、正常な被測定物の表面に一定
の熱量が印加されているとき前記温度検出手段によって
検出した温度データを記憶する記憶手段と、前記温度検
出手段によって検出した温度データと前記記憶手段に記
憶された同一位置に対応する温度データとを減算して温
度差データを求める手段と、この求めた温度差データに
基づいてその温度差を可視表示する表示手段とを具えた
内部欠陥の検出装置。
(4) Temperature detection means for two-dimensionally detecting the temperature of the front or back surface of the object to be measured, and temperature data detected by the temperature detection means when a certain amount of heat is applied to the surface of the normal object to be measured. storage means for storing, means for obtaining temperature difference data by subtracting the temperature data detected by the temperature detection means and temperature data corresponding to the same position stored in the storage means; and the obtained temperature difference data. and display means for visually displaying the temperature difference based on the internal defect detection device.
(5)前記温度検出手段は赤外線カメラである特許請求
の範囲第(4)項記載の内部欠陥の検出装置。
(5) The internal defect detection device according to claim (4), wherein the temperature detection means is an infrared camera.
(6)前記被測定物の加熱はレーザー装置のレーザー光
によって行なう特許請求の範囲第(1)項記載の内部欠
陥の検出装置。
(6) The internal defect detection device according to claim (1), wherein the object to be measured is heated by a laser beam from a laser device.
JP26765985A 1985-11-28 1985-11-28 Method and apparatus for detecting internal flaw Pending JPS62126339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26765985A JPS62126339A (en) 1985-11-28 1985-11-28 Method and apparatus for detecting internal flaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26765985A JPS62126339A (en) 1985-11-28 1985-11-28 Method and apparatus for detecting internal flaw

Publications (1)

Publication Number Publication Date
JPS62126339A true JPS62126339A (en) 1987-06-08

Family

ID=17447747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26765985A Pending JPS62126339A (en) 1985-11-28 1985-11-28 Method and apparatus for detecting internal flaw

Country Status (1)

Country Link
JP (1) JPS62126339A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454242A (en) * 1987-08-25 1989-03-01 Takenaka Komuten Co Detection of peeling for sheath
EP0347641A2 (en) * 1988-06-21 1989-12-27 Hans-Joachim Dipl.-Phys. Sölter Method and apparatus for examining without making contact the surface and the interior of a solid body
JPH03188363A (en) * 1989-12-19 1991-08-16 Shimadzu Corp Film inspecting apparatus
US5052816A (en) * 1989-08-29 1991-10-01 Denyo Kabushiki Kaisha Junction inspection method and apparatus for electronic parts
US5131758A (en) * 1990-05-16 1992-07-21 Administrator Of The National Aeronautics And Space Administration Method of remotely characterizing thermal properties of a sample
US5246291A (en) * 1992-06-01 1993-09-21 Motorola, Inc. Bond inspection technique for a semiconductor chip
JP2005024556A (en) * 2003-06-30 2005-01-27 General Electric Co <Ge> Method of determining depth of defects
JP2009216416A (en) * 2008-03-07 2009-09-24 Toyota Motor Corp Internal flaw inspection method of piston
JP2011527438A (en) * 2008-09-17 2011-10-27 新日本製鐵株式会社 Material defect detection method and system
WO2014199869A1 (en) * 2013-06-12 2014-12-18 株式会社日立ハイテクノロジーズ Infrared inspection device
WO2015045751A1 (en) * 2013-09-26 2015-04-02 株式会社日立ハイテクノロジーズ Infrared inspection device and infrared inspection method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454242A (en) * 1987-08-25 1989-03-01 Takenaka Komuten Co Detection of peeling for sheath
EP0347641A2 (en) * 1988-06-21 1989-12-27 Hans-Joachim Dipl.-Phys. Sölter Method and apparatus for examining without making contact the surface and the interior of a solid body
US5052816A (en) * 1989-08-29 1991-10-01 Denyo Kabushiki Kaisha Junction inspection method and apparatus for electronic parts
JPH03188363A (en) * 1989-12-19 1991-08-16 Shimadzu Corp Film inspecting apparatus
US5131758A (en) * 1990-05-16 1992-07-21 Administrator Of The National Aeronautics And Space Administration Method of remotely characterizing thermal properties of a sample
US5246291A (en) * 1992-06-01 1993-09-21 Motorola, Inc. Bond inspection technique for a semiconductor chip
JP2005024556A (en) * 2003-06-30 2005-01-27 General Electric Co <Ge> Method of determining depth of defects
JP4504117B2 (en) * 2003-06-30 2010-07-14 ゼネラル・エレクトリック・カンパニイ How to determine the depth of a defect
JP2009216416A (en) * 2008-03-07 2009-09-24 Toyota Motor Corp Internal flaw inspection method of piston
JP2011527438A (en) * 2008-09-17 2011-10-27 新日本製鐵株式会社 Material defect detection method and system
US8506159B2 (en) 2008-09-17 2013-08-13 Nippon Steel & Sumitomo Metal Corporation Method for detecting defect in material and system for the method
WO2014199869A1 (en) * 2013-06-12 2014-12-18 株式会社日立ハイテクノロジーズ Infrared inspection device
WO2015045751A1 (en) * 2013-09-26 2015-04-02 株式会社日立ハイテクノロジーズ Infrared inspection device and infrared inspection method

Similar Documents

Publication Publication Date Title
US9905014B2 (en) Method and system for the examination of a sample by means of thermography
US7591583B2 (en) Transient defect detection algorithm
US6239436B1 (en) Method and system for inspecting a low gloss surface of an object at a vision station
Broberg Surface crack detection in welds using thermography
US20020110176A1 (en) Method and apparatus for automated thermal imaging of combustor liners and other products
US5654977A (en) Method and apparatus for real time defect inspection of metal at elevated temperature
JPS62126339A (en) Method and apparatus for detecting internal flaw
US20080317090A1 (en) Method and apparatus for thermographic nondestructive evaluation of an object
JPH10142179A (en) Method for detecting flaw inside object, apparatus for locating the flaw, and display
Shepard Introduction to active thermography for non‐destructive evaluation
EP1360477B1 (en) Thermography method
CA2346265A1 (en) Device for contactless testing of test bodies
US7060991B2 (en) Method and apparatus for the portable identification of material thickness and defects along uneven surfaces using spatially controlled heat application
Thajeel Numerical modeling of infrared thermography techniques via ANSYS
JP2653532B2 (en) Surface defect inspection equipment
Landmann et al. High-speed 3D shape measurement of transparent objects by sequential thermal fringe projection and image acquisition in the long-wave infrared
Turner et al. Application of digital image analysis to strain measurement at elevated temperature
JP2008157852A (en) Noncontact temperature measuring device, sample base, and noncontact temperature measurement method
JP2015132545A (en) Bonding performance inspection method and bonding performance inspection apparatus
JPH0422445B2 (en)
WO2021205041A1 (en) A method and system for detecting and locating buried defects using three dimensional infrared thermography
JP6568691B2 (en) Flaw detection system and flaw detection method for detecting internal defect of flaw detection object
KR102493099B1 (en) sleeve still surface temperature measuring apparatus and measuring method thereof
RU2725695C1 (en) Method for determining thermal conductivity of optically transparent materials
JP2023156886A (en) Method of temperature variation of measurement target