JPS6212604A - Synthesis of ditungsten monocarbide - Google Patents

Synthesis of ditungsten monocarbide

Info

Publication number
JPS6212604A
JPS6212604A JP60150166A JP15016685A JPS6212604A JP S6212604 A JPS6212604 A JP S6212604A JP 60150166 A JP60150166 A JP 60150166A JP 15016685 A JP15016685 A JP 15016685A JP S6212604 A JPS6212604 A JP S6212604A
Authority
JP
Japan
Prior art keywords
ditungsten
monocarbide
raw material
tungsten oxide
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60150166A
Other languages
Japanese (ja)
Inventor
Hiroshi Okamoto
岡本 博司
Takeshi Kawamura
剛 川村
Akira Ishikawa
晃 石川
Tetsuichi Kudo
徹一 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60150166A priority Critical patent/JPS6212604A/en
Publication of JPS6212604A publication Critical patent/JPS6212604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To synthesize ditungsten monocarbide efficiently at a relatively low temperature, by mixing tungsten oxide with an alkali metal compound in a specific proportion and reacting the resultant mixture with carbon monoxide at a specific temperature. CONSTITUTION:Tungsten oxide (tungstic acid) is mixed with an alkali metal compound (potassium hydroxide) at 0.01-10atom ratio to the tungsten. The resultant mixture is then reacted with carbon monoxide within 750-900 deg.C temperature range to synthesize a product consisting essentially of ditungsten monocarbide. Thereby, the aimed ditungsten monocarbide having about 1mu particle diameter is obtained at a relatively low temperature.

Description

【発明の詳細な説明】 〔発明の利用分用〕 本発明は、−炭化二タングステン(WZC)の合成法に
係り、特にその粉体を得るのに好適な方法である。
DETAILED DESCRIPTION OF THE INVENTION [Uses of the Invention] The present invention relates to a method for synthesizing tungsten carbide (WZC), and is particularly a method suitable for obtaining powder thereof.

〔発明の背景〕[Background of the invention]

従来のW20合成法は、タングステン金属粉とカーボン
ブラックを2:1に混合したものを1400〜1700
℃で固相反応させるもので、高温を必要とした。低温で
合成するには酸化タングステン粉を約700℃でCOに
よって炭化する方法が考えられるが、この方法では、W
Cが主として生成され、反応を中間のW2Cで止めるこ
とは困難であった。
The conventional W20 synthesis method uses a mixture of tungsten metal powder and carbon black at a ratio of 1,400 to 1,700
The solid phase reaction was carried out at ℃ and required high temperatures. One possible method for synthesis at low temperatures is to carbonize tungsten oxide powder at about 700°C with CO;
C was mainly produced, and it was difficult to stop the reaction at intermediate W2C.

なお関連する文献に英国特許1347534がある。A related document is British Patent No. 1347534.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、900℃以下のような低温で粒径約1
μmのW2C粉を提供することにある。
The object of the present invention is to obtain particles with a particle size of about 1 at low temperatures, such as below 900°C.
Our objective is to provide μm W2C powder.

〔発明の概要〕[Summary of the invention]

粒径1μm以下のタングステンカーバイド(wC)粉の
合成法は公知もある(英国特許翫1347534.19
70.6.4)、これはタングステン酸化物を700℃
以下でCOで炭化する方法であるが、この方法ではW、
Cはきわめてわずかしか生成しない。本発明は原料のタ
ングステン酸化物にアルカリ金属塩を加えることによっ
て生成物の主成分をW、Cとするものである。
There is a known method for synthesizing tungsten carbide (wC) powder with a particle size of 1 μm or less (UK Patent No. 1347534.19).
70.6.4), which means that tungsten oxide is heated to 700°C.
The following is a method of carbonizing with CO, but in this method W,
C produces very little. In the present invention, the main components of the product are W and C by adding an alkali metal salt to tungsten oxide as a raw material.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を述べる。 Examples of the present invention will be described below.

実施例1 タングステン酸46.4 gを15%のアンモニア水溶
液250mΩに、50〜70℃の温度において完全に溶
解させた。不溶の不純物をろ過にて除いた液を蒸発乾固
したものをカリウム(K)なしの原料粉ということにす
る。一方、上記と同様の液に1.2g の水酸化カリウ
ムを溶かした液を蒸発乾固したものをカリウム(K)あ
りの原料粉ということにする。なお、KとWとの原子比
は0.1 である。
Example 1 46.4 g of tungstic acid was completely dissolved in 250 mΩ of a 15% aqueous ammonia solution at a temperature of 50 to 70°C. The liquid from which insoluble impurities have been removed by filtration is evaporated to dryness and is referred to as potassium (K)-free raw material powder. On the other hand, a solution obtained by dissolving 1.2 g of potassium hydroxide in the same solution as above and evaporating it to dryness is referred to as a raw material powder containing potassium (K). Note that the atomic ratio between K and W is 0.1.

上記2種の原料粉をそれぞれ1gとって、800℃毎分
100mQのCOの条件で0.5,1.2時間と反応時
間を変えて反応させた結果、表1が得られた。Kなし原
料粉を用いて0.5 時間で炭化させたものは、結晶性
が悪く、種々のW酸化物を金弟1表、生成物の組成、(
)内の数値は生成比率んでいた。表から、次のようなこ
とがわかる。1gの原料粉を800℃で炭化させたとき
、Kなしの原料粉からはW2Cが収率よく得られないの
に対し、Kありの原料粉からは、W2Cのような中間生
成物が収率よく得られる。また、炭化時間にも最適値が
存在し、1.0時間のときにW2Cの生成比率が80%
にも達する。表面積から、粒径を推測すると約1.0 
μmであった。
Table 1 was obtained as a result of taking 1 g of each of the above two types of raw material powders and reacting them at 800° C. with CO at 100 mQ/min for 0.5 and 1.2 hours. The product carbonized for 0.5 hours using K-free raw material powder had poor crystallinity, and various W oxides were
) is the production ratio. From the table, we can see the following: When 1 g of raw material powder is carbonized at 800°C, W2C cannot be obtained in good yield from raw material powder without K, whereas intermediate products such as W2C are obtained from raw material powder with K in good yield. well obtained. In addition, there is an optimum value for carbonization time, and at 1.0 hours, the W2C generation ratio is 80%.
reach even. Estimating the particle size from the surface area is approximately 1.0
It was μm.

実施例2 実施例1にて記したKありの原料粉を用いて700℃か
ら1000℃の炭化温度で合成した。その結果、700
℃では2時間反応させてもWO□が主成分であり、さら
に長時間反応させるとWC成分が増加した。1000℃
ではWCが主成分となった。
Example 2 Synthesis was carried out using the K-containing raw material powder described in Example 1 at a carbonization temperature of 700°C to 1000°C. As a result, 700
At C., WO□ was the main component even after 2 hours of reaction, and when the reaction was continued for a longer time, the WC component increased. 1000℃
In this case, WC was the main component.

900℃では反応時間を短かくすることによってW2C
の生成比率を60%とすることができた。
At 900℃, by shortening the reaction time, W2C
The production ratio of 60% was achieved.

したがって炭化反応温度は750〜900℃にするのが
適当である。
Therefore, it is appropriate that the carbonization reaction temperature be 750 to 900°C.

実施例3 に含有率(Wに対するKの原子比率)の異なる原料粉を
実施例1と同様に調製した。K含有率は0.005.0
.01.0.1.1.0.10.20  トした。
Example 3 Raw material powders having different contents (atomic ratio of K to W) were prepared in the same manner as in Example 1. K content is 0.005.0
.. 01.0.1.1.0.10.20

その結果、K含有率0.01,0.1,1.0.IQ(
7)原料粉から炭化した場合にのみ、W2C生成に有利
に働いていることが見出された。
As a result, the K content was 0.01, 0.1, 1.0. IQ(
7) It was found that only when carbonization is performed from raw material powder, it works favorably for W2C production.

実施例4 実施例1においてKありの原料粉を作る際に、水酸化カ
リウムのかわりに、炭酸カリウム(Kz c O3) 
、塩化カリウム(KCQ)、または塩化ナトリウム(N
aCfl)を用いても実施例1と同様の効果があった。
Example 4 When making the raw material powder containing K in Example 1, potassium carbonate (Kz c O3) was used instead of potassium hydroxide.
, potassium chloride (KCQ), or sodium chloride (N
aCfl) had the same effect as in Example 1.

またKなしの原料粉に炭酸カリウムを機械的に混合した
ものでも同様の効果があった。したがってタングステン
酸化物にアルカリ金属化合物を含ませることによって1
w2Cを生成比率よく合成できることになる。
A similar effect was also obtained when potassium carbonate was mechanically mixed with the raw material powder without K. Therefore, by including an alkali metal compound in tungsten oxide, 1
This means that w2C can be synthesized with a good production ratio.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、750〜900℃という比較的低温で
W2C粉が収率よく合成できる効果がある。
According to the present invention, W2C powder can be synthesized in good yield at a relatively low temperature of 750 to 900°C.

Claims (1)

【特許請求の範囲】[Claims] タングステン酸化物にアルカリ金属化合物をタングステ
ンに対する原子比0.01から10の割合で混合したの
ち、温度750〜900℃で一酸化炭素と反応させるこ
とを特徴とする一炭化二タングステンの合成法。
A method for synthesizing ditungsten monocarbide, which comprises mixing tungsten oxide with an alkali metal compound at an atomic ratio of 0.01 to 10 to tungsten, and then reacting the mixture with carbon monoxide at a temperature of 750 to 900°C.
JP60150166A 1985-07-10 1985-07-10 Synthesis of ditungsten monocarbide Pending JPS6212604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150166A JPS6212604A (en) 1985-07-10 1985-07-10 Synthesis of ditungsten monocarbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150166A JPS6212604A (en) 1985-07-10 1985-07-10 Synthesis of ditungsten monocarbide

Publications (1)

Publication Number Publication Date
JPS6212604A true JPS6212604A (en) 1987-01-21

Family

ID=15490947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150166A Pending JPS6212604A (en) 1985-07-10 1985-07-10 Synthesis of ditungsten monocarbide

Country Status (1)

Country Link
JP (1) JPS6212604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976294A (en) * 1988-06-13 1990-12-11 Yazaki Corporation Method and apparatus for making specified-length wires for wire harness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976294A (en) * 1988-06-13 1990-12-11 Yazaki Corporation Method and apparatus for making specified-length wires for wire harness

Similar Documents

Publication Publication Date Title
JP4794620B2 (en) Circulation method for producing lithium metal phosphate by wet chemical method
KR19990021989A (en) Spherical aggregated basic cobalt carbonate (II) and spherical aggregated cobalt hydroxide (II), preparation method thereof and use thereof
CN1796029B (en) Fine tungsten carbide powder
JP3202987B2 (en) Manufacturing method of titanium carbide whisker
Stoyanova et al. Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2
CN110997562A (en) Process for the preparation of vanadium phosphate
JPS6212604A (en) Synthesis of ditungsten monocarbide
JPH11189410A (en) Production of hauyne
JP2502572B2 (en) Solid lactate salt and method for producing the same
DE3781549T2 (en) METHOD FOR PRODUCING CERAMIC POWDER.
JP3867234B2 (en) Slightly soluble condensed melamine phosphate and method for producing the same
US1389862A (en) Manufacture of potassium sulfate
Steigerwalt et al. Preparation of graphitic carbon nanofibers with the use of water-soluble supports
JP2834199B2 (en) Method for producing ultrafine tungsten particles
RU2455377C2 (en) Method to produce metal-boride composite powders of molybdene and tungsten
JPS58213617A (en) Production of titanium carbonitride powder
KR20050013990A (en) Process for manufactruing diamond using a novel method of catalysis and a new method for processing the graphite and catalyst mixture used in synthesis
JP4023711B2 (en) Method for producing high purity fine tungsten carbide powder without the need for a grinding step
JPS61132509A (en) Production of silicon carbide
JPH049732B2 (en)
JPH02271919A (en) Production of fine powder of titanium carbide
US524470A (en) Half to charles y
US1281118A (en) Process for manufacturing oxalates.
Amosov et al. Self-propagating high-temperature synthesis of titanium carbide nanopowder from the granulated charge
JPS58115016A (en) Preparation of fine powdery silicon carbide