JPS62123061A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPS62123061A
JPS62123061A JP60247433A JP24743385A JPS62123061A JP S62123061 A JPS62123061 A JP S62123061A JP 60247433 A JP60247433 A JP 60247433A JP 24743385 A JP24743385 A JP 24743385A JP S62123061 A JPS62123061 A JP S62123061A
Authority
JP
Japan
Prior art keywords
composition
dielectric ceramic
fired
ceramic composition
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60247433A
Other languages
Japanese (ja)
Other versions
JPH0324427B2 (en
Inventor
横谷 洋一郎
純一 加藤
宏 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60247433A priority Critical patent/JPS62123061A/en
Priority to US06/917,673 priority patent/US4751209A/en
Publication of JPS62123061A publication Critical patent/JPS62123061A/en
Publication of JPH0324427B2 publication Critical patent/JPH0324427B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は1100℃以下で焼成される高誘電率系誘電体
磁器組成物に関し、特に低酸素分圧雰囲気で焼成でき高
い抵抗率の得られる組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high dielectric constant dielectric ceramic composition that is fired at a temperature of 1100°C or lower, and in particular a composition that can be fired in a low oxygen partial pressure atmosphere and has a high resistivity. Regarding.

従来の技術 近年セラミックコンデンサにおいては素子の小型化、大
容量化への要求からI、W型セラミックコンデンサが急
速に普及しつつある。積層型セラミックコンデンサは内
部電極とセラミックを一体焼成する工程によって通常製
造される。従来より高誘電率系のセラミックコンデンサ
材料にはチタン酸バリウム系の材料が用いられてきたが
、焼成温度が1300℃程度と高いため、内部電極材料
としてはPt、Pdなどの高価な金属を用いる必要があ
った。
BACKGROUND OF THE INVENTION In recent years, I- and W-type ceramic capacitors are rapidly becoming popular due to the demand for smaller elements and larger capacitance in ceramic capacitors. Multilayer ceramic capacitors are typically manufactured by a process of integrally firing internal electrodes and ceramics. Barium titanate-based materials have traditionally been used for high-permittivity ceramic capacitor materials, but because the firing temperature is as high as 1,300°C, expensive metals such as Pt and Pd are used as internal electrode materials. There was a need.

これに対し空気中1000℃以下で焼成でき内部電極と
して安価なAg系材料を用いることができる鉛複合ペロ
ブスカイト系材料や、低酸素分圧雰囲気中で焼成できN
iなとの卑金属材料を内部電極として使用できるチタン
酸バリウム系材料が開発されている。前者については発
明者らはすでにPbTi03−Pb(Mgs、3Nbq
t3)Os  Pb(N i 1/2 Wl/2 ) 
Osを含む誘電体磁器組成物を提案している。後者につ
いては特公昭56−46641号公報に記載の材料など
が知られている。
On the other hand, there are lead composite perovskite materials that can be fired in air at temperatures below 1000°C and inexpensive Ag-based materials can be used as internal electrodes, and N-based composite materials that can be fired in a low oxygen partial pressure atmosphere.
Barium titanate-based materials have been developed that allow use of base metal materials as internal electrodes. Regarding the former, the inventors have already developed PbTi03-Pb(Mgs, 3Nbq
t3) Os Pb (N i 1/2 Wl/2 )
A dielectric ceramic composition containing Os is proposed. Regarding the latter, materials such as those described in Japanese Patent Publication No. 56-46641 are known.

PbTiO3−Pb(Mgt/s Nb2ts )0+
 −Pb(Nisz2Wl/2 )0+系固溶体は低温
で焼成でき、誘電率の温度変化率が同程度のチタン酸バ
リウム系材料に比べ高い誘電率が得られる。従ってこの
誘電体磁器組成物とAg系内部電極からなる積層コンデ
ンサは、素子の大容量、小型化、低コスト化が図れる利
点を有している。しかし近年さらに内部電極材料の低コ
スト化が図れるCuなどの卑金属を内部電極として用い
ることが求められている。このため、同時焼成したとき
Cuなどの金属が酸化しないような低酸素分圧雰囲気で
焼成したとき誘電体磁器の抵抗率が低下しない材料が必
要とされている。
PbTiO3-Pb(Mgt/s Nb2ts)0+
The -Pb(Nisz2Wl/2)0+-based solid solution can be fired at a low temperature and has a higher dielectric constant than a barium titanate-based material with a similar rate of change in dielectric constant with temperature. Therefore, a multilayer capacitor made of this dielectric ceramic composition and an Ag-based internal electrode has the advantage that the device can have a large capacity, be small in size, and low in cost. However, in recent years, there has been a demand for using base metals such as Cu as internal electrodes, which can further reduce the cost of internal electrode materials. Therefore, there is a need for a material that does not reduce the resistivity of dielectric ceramics when fired in a low oxygen partial pressure atmosphere that does not oxidize metals such as Cu when fired simultaneously.

発明が解決しようとする問題点 PbTiC)+  −Pb(Mg+/3 Nb2ts 
 )Os  −Pb(N i t t si W 1 
/ 2 ) Os系固溶体は低酸素分圧雰囲気で焼成す
るとチ密に焼結せず、また抵抗率が小さくなる傾向があ
る。
Problems to be solved by the invention PbTiC)+ -Pb(Mg+/3 Nb2ts
) Os −Pb(N it t si W 1
/2) When an Os-based solid solution is fired in a low oxygen partial pressure atmosphere, it does not sinter densely and tends to have a low resistivity.

本発明はPbTi03−Pb(Mgtz3NE12zs
 )03−Pb(NitzQWl/2 )03系のもつ
高い誘電率と低温焼結性をそこなわず、低酸素分圧雰囲
気で焼成したとき抵抗値が高い誘電体磁器組成物を提供
することを目的としている。
The present invention uses PbTi03-Pb (Mgtz3NE12zs
)03-Pb(NitzQWl/2) The purpose is to provide a dielectric ceramic composition that does not impair the high dielectric constant and low-temperature sinterability of the 03 series and has a high resistance value when fired in a low oxygen partial pressure atmosphere. It is said that

問題点を解決するための手段 本発明の誘電体磁器組成物は、(P ba Bab )
(Mgsz* Nb2z3)xTiz(Nitz2Wl
/2 )02+、+1゜で表され(ただしx+y+z=
1)、0.001≦ b ≦0.250,1.000≦
a+b≦1.200の範囲の組成である。
Means for Solving the Problems The dielectric ceramic composition of the present invention has (P ba Bab )
(Mgsz* Nb2z3)xTiz(Nitz2Wl
/2 )02+, +1° (however, x+y+z=
1), 0.001≦ b ≦0.250, 1.000≦
The composition is in the range of a+b≦1.200.

作用 本発明の組成物においては、低酸素分圧雰囲気、110
0℃以下の焼成温度でチ密な焼成物が得られ、高い抵抗
率を有する信頼性の高い素子がえられる。
Operation In the composition of the present invention, a low oxygen partial pressure atmosphere, 110
A dense fired product can be obtained at a firing temperature of 0° C. or lower, and a highly reliable device with high resistivity can be obtained.

実施例 出発原料には化学的に高純度なPbO,MgO。Example The starting materials are chemically highly pure PbO and MgO.

BaCO3、Nb2O5,TiO2,Ni○、WO2を
用いた。これらを純度補正をおこなったうえで所定量を
秤量し、メノウ製玉石を用い純水を溶媒としボールミル
で17時時間式混合した。これを吸引ろ過して水分の大
半を分離した後乾燥し、その後ライカイ機で充分解砕し
た後粉体量の5 w t%の水分を加え、直径60nm
+高さ約50mmの円柱状に成形圧力500kg/CI
l+2  で成形した。これをアルミナルツボ中に入れ
同質のフタをし、750℃〜880℃で多時間仮焼した
。次に仮焼物をアルミナ乳鉢で粗砕し、さらにメノウ製
玉石を用い純水を溶媒としてボールミルで17時間粉砕
し、これを吸引ろ過し水分の大半を分離した後乾燥した
。 以上の仮焼、粉砕、乾燥を数回くりかえした後この
粉末にポリビニルアルコール6wt%水溶液を粉体量の
6wt%加え、32メツシユふるいを通して造粒し、成
形圧力1000kg/cm2で直径13mm高さ約5酬
の円柱状に成形した。成形物は空気中で700℃まで昇
温し1時間保持しポリビルアルコール分をバーンアウト
した。これを上述の仮焼粉を体積の1/3程度敷きつめ
た上に200メツシユZrO2粉を約1 mm敷いたマ
・グネシャ磁器容器に移し、同質のフタをし、管状電気
炉の炉心管内に挿入し、炉心管内をロータリーポンプで
脱気したのちN2−H2混合ガスで置換し、酸素分圧(
PO2)が1. Ox 100−8atになるようN2
とH2ガスの混合比を調節しながら混合ガスを流し所定
温度まで400°C/hrで昇温し2時間保持後400
℃/hrで降温した。炉心管内のPo2は挿入した安定
化ジルコニア酸素センサーにより測定した。第2図に焼
成時のマグネシャ磁器容器の構造を、第3図に炉心管内
部をそれぞれ断面図で示す。
BaCO3, Nb2O5, TiO2, Ni○, and WO2 were used. After correcting the purity of these, a predetermined amount was weighed, and mixed using an agate cobblestone and pure water as a solvent in a ball mill for 17 hours. This was filtered by suction to remove most of the water, then dried, and then thoroughly crushed using a Raikai machine. After adding 5 wt% of water to the powder amount, it was made into a powder with a diameter of 60 nm.
+ Molding pressure 500kg/CI into a cylindrical shape with a height of about 50mm
It was molded at l+2. This was placed in an alumina crucible, covered with a homogeneous lid, and calcined at 750°C to 880°C for many hours. Next, the calcined product was roughly crushed in an alumina mortar, and further crushed in a ball mill using agate cobblestones and pure water as a solvent for 17 hours, filtered under suction to remove most of the moisture, and then dried. After repeating the above calcining, crushing, and drying several times, 6 wt % of a 6 wt % aqueous solution of polyvinyl alcohol was added to the powder, and the powder was granulated through a 32-mesh sieve to a diameter of 13 mm in height at a compacting pressure of 1000 kg/cm2. It was molded into a cylindrical shape with 5 positions. The molded product was heated to 700° C. in air and held for 1 hour to burn out the polyvinyl alcohol content. This was transferred to a Ma-Gnesha porcelain container in which about 1/3 of the volume of the calcined powder was spread, and 200 mesh ZrO2 powder was spread to a thickness of about 1 mm, covered with a homogeneous lid, and inserted into the core tube of a tubular electric furnace. After degassing the inside of the reactor core tube with a rotary pump, the atmosphere was replaced with N2-H2 mixed gas, and the oxygen partial pressure (
PO2) is 1. N2 to make Ox 100-8at
The mixed gas was flowed while adjusting the mixing ratio of H2 gas and the temperature was raised to the specified temperature at 400°C/hr, and after holding for 2 hours,
The temperature was lowered at a rate of °C/hr. Po2 in the reactor core tube was measured by an inserted stabilized zirconia oxygen sensor. FIG. 2 shows the structure of the Magnesia porcelain container during firing, and FIG. 3 shows a cross-sectional view of the inside of the furnace tube.

第2図において1はマグネシア容器であり、その上部は
マグネシア容器蓋2で封じた。マグネシア容器1の下部
には仮焼粉3を配置し、その上にジルコニア紛4を配置
した。さらにその上に試料5を配置した。
In FIG. 2, 1 is a magnesia container, the upper part of which is sealed with a magnesia container lid 2. Calcined powder 3 was placed at the bottom of magnesia container 1, and zirconia powder 4 was placed on top of it. Further, sample 5 was placed on top of it.

第2図のように準備されたマグネシア容器1を第3図の
ように炉心管6内に配置した。7は安定化ジルコニア酸
素センサーである。
The magnesia container 1 prepared as shown in FIG. 2 was placed in the furnace core tube 6 as shown in FIG. 7 is a stabilized zirconia oxygen sensor.

焼成物は厚さ1 mmの円板状に切断し、両面にCr−
Auを蒸着し、誘電率、tanδを1kHzIV/mm
の電界下で測定した。また抵抗率は1 k V / m
mの電圧を印加後1分値から求めた。
The fired product was cut into a disk shape with a thickness of 1 mm, and both sides were coated with Cr-
Au was deposited, and the dielectric constant and tan δ were set to 1kHzIV/mm.
Measured under an electric field of Also, the resistivity is 1 kV/m
The voltage of m was determined from the value 1 minute after application.

なお焼成温度は焼成物の密度がもっとも大きくなる温度
とした。
The firing temperature was set to the temperature at which the density of the fired product was the highest.

表1に本発明の組成範囲および周辺組成の成分[a、b
、x、y、zは(Pb+ Bab)(Mg1z3Nb2
ts )xTiy(Ni1z2w、、2)z O2+a
+b  と表したときの値1.低酸素分圧雰囲気で焼成
したときの焼成温度、誘電率、誘電率の温度変化率(2
0°Cに対する)、tanδ、抵抗率、密度を示した。
Table 1 shows the composition range of the present invention and the peripheral composition components [a, b
, x, y, z are (Pb+Bab)(Mg1z3Nb2
ts ) x Tiy (Ni1z2w,,2)z O2+a
The value 1 when expressed as +b. Firing temperature, dielectric constant, temperature change rate of dielectric constant (2
), tan δ, resistivity, and density are shown.

第1図は表1に示した各試料を(P b n Ba b
)Ti○2+3+l) 、  (Pb aBa b)(
Mg1z3Nb2tz )Q2+、+b、(Pb a 
Ba b)(Nix/2W12 )02+2+bを端成
分とする三角組成図中に示したもので、斜線の範囲が発
明の範囲である。
Figure 1 shows each sample shown in Table 1 (P b n B a b
)Ti○2+3+l), (Pb aBa b)(
Mg1z3Nb2tz ) Q2+, +b, (Pb a
B a b ) (Nix/2W12 )02+2+b is shown in a triangular composition diagram having end members, and the shaded range is the scope of the invention.

発明範囲外の組成物では、a+bが1.000より小さ
いと低酸素分圧雰囲気で焼成したときチ密な焼結物が得
られない、もしくは抵抗率が低(なる難点を有しており
、1.200より大きくなると誘電率および抵抗率が低
下する難点を有する。またbが0.250より大きいと
誘電率が低下する。x、y、zが限定の範囲外の組成物
はキュリ一点が室温から大きくはずれ誘電率が低くなる
、もしくは誘電率の温度変化率が太きなる難点を有して
いる。発明の範囲内の組成物では前記の問題がいずれも
克服されている。
Compositions outside the scope of the invention have the disadvantage that if a + b is less than 1.000, a dense sintered product cannot be obtained when fired in a low oxygen partial pressure atmosphere, or the resistivity is low. If b is larger than 1.200, the dielectric constant and resistivity will decrease.If b is larger than 0.250, the dielectric constant will decrease.For compositions in which x, y, and z are outside the specified ranges, a single point of Curie However, the compositions within the scope of the present invention overcome all of the above-mentioned problems.

なお焼成雰囲気として選択した低酸素分圧雰囲気PO2
; 1.0xlO−8atn+  は焼成温度におケル
銅の平衡酸素分圧より低く金属はほとんど酸化しないと
考えられる。
Note that the low oxygen partial pressure atmosphere PO2 selected as the firing atmosphere
It is considered that 1.0xlO-8atn+ is lower than the equilibrium oxygen partial pressure of Kel copper at the firing temperature, and the metal is hardly oxidized.

発明の効果 本発明によれば、低酸素分圧雰囲気1100℃以下の焼
成で積層コンデンサ素子として高信頼性を得るためのチ
密で抵抗率の高い焼結体が得られ、内部電極としてCu
などの卑金属材料を用いることか可能になる優れた誘電
体磁器組成物でを実現できる。
Effects of the Invention According to the present invention, a dense and highly resistive sintered body for obtaining high reliability as a multilayer capacitor element can be obtained by firing at 1100°C or lower in a low oxygen partial pressure atmosphere, and Cu is used as the internal electrode.
Excellent dielectric ceramic compositions can be realized by using base metal materials such as.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る磁器組成物の成分組成を示す三角
組成図、第2図は焼成時に磁器を入れるマグネシャ容器
の断面図、第3図は焼成時の炉心管を示す断面図である
。 1;マグネシャ容器、2;マグネシャ容器蓋、3:仮焼
粉、4;ジルコニア粉、5;試料、6;炉心管。 7;安定化ジルコニア酸素センサー。 代理人の氏名 弁理士 中尾敏男 はが1名第1図 (Pba[1abXNi+/2W+/2)02+a+b
    z             (PbaBab
)Ti02+a+b第3図
Fig. 1 is a triangular composition diagram showing the composition of the porcelain composition according to the present invention, Fig. 2 is a cross-sectional view of a magnesia container in which the porcelain is placed during firing, and Fig. 3 is a cross-sectional view showing the furnace tube during firing. . 1: Magnesia container, 2: Magnesia container lid, 3: Calcined powder, 4: Zirconia powder, 5: Sample, 6: Furnace tube. 7; Stabilized zirconia oxygen sensor. Name of agent Patent attorney Toshio Nakao 1 person Figure 1 (Pba[1abXNi+/2W+/2)02+a+b
z (PbaBab
)Ti02+a+bFigure 3

Claims (1)

【特許請求の範囲】 (Pb_3Ba_b){(Mg_1_/_3Nb_2_
/_3)_xTi_y(Ni_1_/_2W_1_/_
2)_z}O_2_+_a_+_bで表される組成式(
ただし、x+y+z=1)において 0.001≦b≦0.250 1.000≦a+b≦1.200 の範囲にあり、この範囲内の各a、bの値に対し(Pb
_aBa_b)(Mg_1_/_3Nb_2_/_3)
O_2_+_a_+_b、 Pb_aBa_b)TiO_2_+_a_+_b、 (Pb_aBa_b)(Ni_1_/_2W_1_/_
2)O_2_+_a_+_bを頂点とする三角座標にお
いて下記組成点、A、B、C、D、E、を頂点とする五
角形の領域内の組成物からなることを特徴とする誘電体
磁器組成物。 A;x=0.950 y=0.049 z=0.001 B;x=0.750 y=0.249 z=0.001 C;x=0.010 y=0.800 z=0.190 D;x=0.010 y=0.450 z=0.540 E;x=0.900 y=0.050 z=0.050
[Claims] (Pb_3Ba_b) {(Mg_1_/_3Nb_2_
/_3)_xTi_y(Ni_1_/_2W_1_/_
2) Compositional formula represented by _z}O_2_+_a_+_b (
However, at
_aBa_b) (Mg_1_/_3Nb_2_/_3)
O_2_+_a_+_b, Pb_aBa_b) TiO_2_+_a_+_b, (Pb_aBa_b) (Ni_1_/_2W_1_/_
2) A dielectric ceramic composition comprising a composition within a pentagonal region whose vertices are the following composition points A, B, C, D, and E in triangular coordinates whose vertices are O_2_+_a_+_b. A; x=0.950 y=0.049 z=0.001 B; x=0.750 y=0.249 z=0.001 C; x=0.010 y=0.800 z=0. 190 D; x=0.010 y=0.450 z=0.540 E; x=0.900 y=0.050 z=0.050
JP60247433A 1985-10-11 1985-11-05 Dielectric ceramic composition Granted JPS62123061A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60247433A JPS62123061A (en) 1985-11-05 1985-11-05 Dielectric ceramic composition
US06/917,673 US4751209A (en) 1985-10-11 1986-10-10 Dielectric ceramic compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60247433A JPS62123061A (en) 1985-11-05 1985-11-05 Dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS62123061A true JPS62123061A (en) 1987-06-04
JPH0324427B2 JPH0324427B2 (en) 1991-04-03

Family

ID=17163366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60247433A Granted JPS62123061A (en) 1985-10-11 1985-11-05 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS62123061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100051A (en) * 1987-10-12 1989-04-18 Mitsubishi Mining & Cement Co Ltd Dielectric porcelain composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100051A (en) * 1987-10-12 1989-04-18 Mitsubishi Mining & Cement Co Ltd Dielectric porcelain composition

Also Published As

Publication number Publication date
JPH0324427B2 (en) 1991-04-03

Similar Documents

Publication Publication Date Title
JPS62123061A (en) Dielectric ceramic composition
JPS62123064A (en) Dielectric ceramic composition
JPS62117205A (en) Dielectric porcelain compound
JPS62123060A (en) Dielectric ceramic composition
JPS62123063A (en) Dielectric ceramic composition
JPS6287454A (en) Dielectric ceramic composition
JPS6321249A (en) Dielectric ceramic composition
JPS6317253A (en) Dielectric ceramic composition
JPS6296357A (en) Dielectric ceramic composition
JPS62128966A (en) Dielectric ceramic composition
JPS6287455A (en) Dielectric ceramic composition
JPS62123065A (en) Dielectric ceramic composition
JPS6317251A (en) Dielectric ceramic composition
JPS6317252A (en) Dielectric ceramic composition
JPS6317254A (en) Dielectric ceramic composition
JPS62105954A (en) Dielectric ceramic composition
JPS62105953A (en) Dielectric ceramic composition
JPS63239708A (en) Dielectric ceramic composition
JPS62123062A (en) Dielectric ceramic composition
JPS63299006A (en) Dielectric porcelain composition
JPS63239709A (en) Dielectric ceramic composition
JPS63239711A (en) Dielectric ceramic composition
JPS63239710A (en) Dielectric ceramic composition
JPH0195403A (en) Dielectric porcelain composition material
JPS63116308A (en) Dielectric magnetic composition