JPS6212136A - Manufacture of silicon nitride thin film - Google Patents

Manufacture of silicon nitride thin film

Info

Publication number
JPS6212136A
JPS6212136A JP15074885A JP15074885A JPS6212136A JP S6212136 A JPS6212136 A JP S6212136A JP 15074885 A JP15074885 A JP 15074885A JP 15074885 A JP15074885 A JP 15074885A JP S6212136 A JPS6212136 A JP S6212136A
Authority
JP
Japan
Prior art keywords
plasma
silicon nitride
thin film
film
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15074885A
Other languages
Japanese (ja)
Other versions
JPH0640546B2 (en
Inventor
Tsuneo Mitsuyu
常男 三露
Yoshio Manabe
由雄 真鍋
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15074885A priority Critical patent/JPH0640546B2/en
Publication of JPS6212136A publication Critical patent/JPS6212136A/en
Publication of JPH0640546B2 publication Critical patent/JPH0640546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent mixture of impurity during formation of film to a substrate by preventing sputter vaporization of internal wall substance by covering a silicon nitride film to the internal wall of plasma-generating chamber. CONSTITUTION:Prior to formation of a film, the discharge plasma is generated by applying the microwave and magnetic field while the silane gas and nitrogen gas are supplied to a plasma-generating chamber 1. As a result, silane and nitrogen are decomposed and react within the plasma-generating chamber, and thereby a silicon nitride film is formed at the internal wall. After a film of the sufficient thickness is formed, discharge is once stopped and a film is formed, as is scheduled, by setting a substrate 7. In this case, the internal wall of plasma-generating chamber also receives impact of the ion in the nitrogen plasma, but the substance to be vaporized by sputtering is not influenced because such substance is silicon or nitrogen. Accordingly, high quality silicon nitride containing no impurity can also be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 、・′4″8″′110“(7)ffliMIKJID
“669・1       化シリコン薄膜の製造方法
に関するものである。
[Detailed description of the invention] Industrial application field, ・'4''8'''110'' (7) ffliMIKJID
“This article relates to a method for manufacturing a silicon 669.1 oxide thin film.

従来の技術 窒化シリコン薄膜の製造方法として、放電プラズマによ
る原料ガスの分解・反応を利用したプラズマ化学気相成
長法(以下、プラズマCVD法と呼ぶ)が従来からよく
用いられている。最近、このプラズマ01iD法の一種
として、電子サイクロトロン共鳴(以下、KCRと呼ぶ
)を利用したものが考案され、窒化シリコン膜の製造方
法として注目されている。
BACKGROUND OF THE INVENTION As a method for manufacturing silicon nitride thin films, plasma chemical vapor deposition (hereinafter referred to as plasma CVD), which utilizes decomposition and reaction of source gas by discharge plasma, has been commonly used. Recently, a method using electron cyclotron resonance (hereinafter referred to as KCR) has been devised as a type of plasma 01iD method, and is attracting attention as a method for manufacturing silicon nitride films.

図は本方法に用いられるECRプラズマCYD装置の概
略を示す断面図である。同図において、1はプラズマ発
生室であり、マイクロ波発振器3に接続されると共に、
ECR条件を満たすような磁界を発生するソレノイドコ
イル4で囲まれており、ここで高密度のプラズマが発生
する。また2は薄膜形成室であり、プラズマ発生室から
流入したプラズマの作用によシ、基板7の表面に薄膜が
形成される。本装置を用いて窒化シリコン薄膜を形成す
る場合、従来はプラズマ発生室1にガス導入口6を通し
て窒素ガス(N2)を導入し、また薄膜形成室2にガス
導入口6を通してシランガス(SiH4)を導入して膜
形成を行なっていた(例えば、「応用物理」 、第62
巻、2月号(昭和58年)。
The figure is a cross-sectional view schematically showing an ECR plasma CYD apparatus used in this method. In the figure, 1 is a plasma generation chamber, which is connected to a microwave oscillator 3, and
It is surrounded by a solenoid coil 4 that generates a magnetic field that satisfies ECR conditions, and high-density plasma is generated here. Reference numeral 2 denotes a thin film forming chamber, in which a thin film is formed on the surface of the substrate 7 by the action of plasma flowing from the plasma generating chamber. When forming a silicon nitride thin film using this apparatus, conventionally, nitrogen gas (N2) was introduced into the plasma generation chamber 1 through the gas inlet 6, and silane gas (SiH4) was introduced into the thin film forming chamber 2 through the gas inlet 6. (For example, "Applied Physics", No. 62)
Volume, February issue (1981).

P、117)。P, 117).

発明が解決しようとする問題点 上述のような従来の方法では、プラズマ発生室1に生じ
た窒素プラズマ中のイオンが、プラズマ発生室の内壁(
通常ステンレス鋼製)を衝撃し、。
Problems to be Solved by the Invention In the conventional method as described above, ions in the nitrogen plasma generated in the plasma generation chamber 1 penetrate the inner wall of the plasma generation chamber (
impact (usually made of stainless steel).

スパッタ蒸発せしめる現象が生じる。スパッタ蒸発した
内壁物質の一部は薄膜形成室2に流入し、形成される膜
中に不純物として混入することになる。その結果、得ら
れた窒化シリコン膜の特性が劣化する。すなわち、絶縁
性が低下したり、界面準位が増加する等の問題点が生じ
る場合があった。
A phenomenon of sputter evaporation occurs. A part of the sputter-evaporated inner wall material flows into the thin film forming chamber 2 and becomes mixed into the formed film as an impurity. As a result, the properties of the obtained silicon nitride film deteriorate. That is, problems such as a decrease in insulation and an increase in interface states may occur.

本発明はかかる点に鑑みてなされたもので、簡易な手段
により、不純物の混入のない良質の窒化シリコン薄膜を
製造する方法を提供することを目的としている。
The present invention has been made in view of the above, and an object of the present invention is to provide a method of manufacturing a high-quality silicon nitride thin film without contamination with impurities by a simple means.

問題点を解決するための手段 本発明は上記問題点を解決するため、上述のE(Rプラ
ズマCVD法において、本来の膜形成に先立って、プラ
ズマ発生室中にシランガスと窒素ガスの両者を導入して
プラズマを発生させる工程を付加するものである。
Means for Solving the Problems The present invention solves the above problems by introducing both silane gas and nitrogen gas into the plasma generation chamber prior to the actual film formation in the above-mentioned E(R plasma CVD method). This method adds a step of generating plasma.

作用 本発明は上記の手段により、プラズマ発生室の内壁を窒
化シリコン膜で覆い、内壁物質のスパッタ蒸発を防止し
て、基板への膜形成時における不純物混入を防ぐという
作用にもとづくものである0実施例 ・ 本発明の実施例で用いられるECRプラズマcvn装置
は、構造的には図に示したものと同様である。
Operation The present invention is based on the operation of covering the inner wall of the plasma generation chamber with a silicon nitride film by the above-mentioned means to prevent sputter evaporation of the inner wall material and prevent contamination of impurities during film formation on the substrate. Embodiments - The ECR plasma CVN apparatus used in the embodiments of the present invention is structurally similar to that shown in the figures.

ただし本実施例においては、プラズマ発生室1へのガス
導入口6に、シランガス及び窒素ガスの両者を適宜供給
できるようにしておく必要がある。
However, in this embodiment, it is necessary to be able to appropriately supply both silane gas and nitrogen gas to the gas inlet 6 to the plasma generation chamber 1.

本実施例の場合、本来の膜形成に先立って、プラズマ発
生室1にシランガスと窒素ガスの両者を導入しつつマイ
クロ波と磁界を印加して放電プラズマを発生させる。そ
の結果、プラズマ発生室内でシランと窒素が分解・反応
し、内壁に窒化シリコン膜が形成される。充分な厚さの
膜が形成された後、一旦放電を停止し、基板7を設置し
て本来の膜形成工程を実施する。この工程は従来例と同
様であシ、プラズマ発生室1には窒素ガス、薄膜形成室
2にはシランガスを導入しつつ膜形成を行 ・なう。こ
のとき、プラズマ発生室の内壁はやはり窒素プラズマ中
のイオンによシ衝撃されるが、スパッタ蒸発する物質は
シリコン及び窒素であるため何ら問題はなく、不純物混
入のない良質の窒化シリコン膜を得ることができる。
In the case of this embodiment, prior to the actual film formation, both silane gas and nitrogen gas are introduced into the plasma generation chamber 1, and microwaves and a magnetic field are applied to generate discharge plasma. As a result, silane and nitrogen decompose and react within the plasma generation chamber, forming a silicon nitride film on the inner wall. After a film of sufficient thickness is formed, the discharge is temporarily stopped, the substrate 7 is placed, and the original film forming process is performed. This step is similar to the conventional example, and film formation is performed while introducing nitrogen gas into the plasma generation chamber 1 and silane gas into the thin film formation chamber 2. At this time, the inner wall of the plasma generation chamber is still bombarded by ions in the nitrogen plasma, but since the substances sputtered and evaporated are silicon and nitrogen, there is no problem, and a high-quality silicon nitride film without any impurities is obtained. be able to.

プラズマ発生室内壁を覆う窒化シリコン膜は、スパッタ
蒸発により次第に失なわれていくので、基板への膜形成
中に内壁が露出してしまうことがないよう留意する必要
がある。しかし通常1μm程度の厚さの膜を内壁に形成
しておけば、100μm程度の膜を基板上に問題なく形
成できるので、半導体素子で一般に要求される数μm程
度の膜は数十回程度形成できることになり、プラズマ発
生室内壁への膜形成は毎回性なう必要はない。
Since the silicon nitride film covering the inner wall of the plasma generation chamber is gradually lost due to sputter evaporation, care must be taken not to expose the inner wall during film formation on the substrate. However, if a film with a thickness of about 1 μm is normally formed on the inner wall, a film with a thickness of about 100 μm can be formed on the substrate without any problems, so a film of about several μm, which is generally required for semiconductor devices, can be formed several dozen times. Therefore, it is not necessary to form a film on the inner wall of the plasma generation chamber every time.

発明の効果 以上述べてきたように、本発明によれば、不純物混入の
ない良好な特性を有する窒化シリコン薄膜をRORプラ
ズマCvD法により製造することができ、実用的にきわ
めて有用である。
Effects of the Invention As described above, according to the present invention, a silicon nitride thin film having good characteristics without contamination with impurities can be manufactured by the ROR plasma CvD method, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例及び従来例に共通して用いられる
ICORプラズマCvD装置の概略を示す断面図である
。 1・・・・・・プラズマ発生室、2・・・・・・薄膜形
成室、3・・・・・・マイクロ波発振器、4・・・・・
・ンレノイドコイル、6.6・・・・・・ガス導入口、
7・・・・・・基板、8・・・・・・真空ポンプ。
The figure is a sectional view schematically showing an ICOR plasma CVD apparatus commonly used in an embodiment of the present invention and a conventional example. 1... Plasma generation chamber, 2... Thin film formation chamber, 3... Microwave oscillator, 4...
・Nlenoid coil, 6.6...Gas inlet,
7... Board, 8... Vacuum pump.

Claims (1)

【特許請求の範囲】[Claims] プラズマ発生室と薄膜形成室を備えた電子サイクロトロ
ン共鳴型プラズマ化学気相成長装置を用い、シランガス
(SiH_4)及び窒素ガス(N_2)を前記プラズマ
発生室に導入してプラズマを発生させることによりプラ
ズマ発生室の内壁に窒化シリコン薄膜を形成した後、シ
ランガスを前記薄膜形成室に導入し、かつ窒素ガスを前
記プラズマ発生室に導入してプラズマを発生させること
により前記薄膜形成室に置かれた基板上に窒化シリコン
薄膜を形成することを特徴とする窒化シリコン薄膜の製
造方法。
Plasma is generated by introducing silane gas (SiH_4) and nitrogen gas (N_2) into the plasma generation chamber to generate plasma using an electron cyclotron resonance type plasma chemical vapor deposition apparatus equipped with a plasma generation chamber and a thin film formation chamber. After forming a silicon nitride thin film on the inner wall of the chamber, silane gas is introduced into the thin film forming chamber, and nitrogen gas is introduced into the plasma generating chamber to generate plasma, thereby forming a thin film on the substrate placed in the thin film forming chamber. 1. A method for producing a silicon nitride thin film, comprising forming a silicon nitride thin film on a silicon nitride thin film.
JP15074885A 1985-07-09 1985-07-09 Method for manufacturing silicon nitride thin film Expired - Lifetime JPH0640546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15074885A JPH0640546B2 (en) 1985-07-09 1985-07-09 Method for manufacturing silicon nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15074885A JPH0640546B2 (en) 1985-07-09 1985-07-09 Method for manufacturing silicon nitride thin film

Publications (2)

Publication Number Publication Date
JPS6212136A true JPS6212136A (en) 1987-01-21
JPH0640546B2 JPH0640546B2 (en) 1994-05-25

Family

ID=15503556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15074885A Expired - Lifetime JPH0640546B2 (en) 1985-07-09 1985-07-09 Method for manufacturing silicon nitride thin film

Country Status (1)

Country Link
JP (1) JPH0640546B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004929A3 (en) * 1999-07-09 2001-08-09 Applied Materials Inc A method of forming a film in a chamber
US7465966B2 (en) 2003-03-19 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Film formation method and manufacturing method of semiconductor device
JP2012531045A (en) * 2009-06-22 2012-12-06 アプライド マテリアルズ インコーポレイテッド Boron film interface technology
CN102931072A (en) * 2012-11-12 2013-02-13 上海华力微电子有限公司 Method for manufacturing dual-stress thin film and semiconductor component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004929A3 (en) * 1999-07-09 2001-08-09 Applied Materials Inc A method of forming a film in a chamber
US6530992B1 (en) 1999-07-09 2003-03-11 Applied Materials, Inc. Method of forming a film in a chamber and positioning a substitute in a chamber
US7465966B2 (en) 2003-03-19 2008-12-16 Semiconductor Energy Laboratory Co., Ltd. Film formation method and manufacturing method of semiconductor device
JP2012531045A (en) * 2009-06-22 2012-12-06 アプライド マテリアルズ インコーポレイテッド Boron film interface technology
CN102931072A (en) * 2012-11-12 2013-02-13 上海华力微电子有限公司 Method for manufacturing dual-stress thin film and semiconductor component

Also Published As

Publication number Publication date
JPH0640546B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
US7709063B2 (en) Remote plasma apparatus for processing substrate with two types of gases
US4599135A (en) Thin film deposition
US7041341B2 (en) Process for the fabrication of oxide films
US4948750A (en) Method and apparatus for producing semiconductor layers composed of amorphous silicon-germanium alloys through glow discharge technique, particularly for solar cells
US20060042752A1 (en) Plasma processing apparatuses and methods
EP0042574B1 (en) A method of reactive sputtering and apparatus for carrying out processes of reactive sputtering
JPH07268622A (en) Microwave plasma sticking source
KR20010013723A (en) Metal and metal silicide nitridization in a high density, low pressure plasma reactor
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPS6212136A (en) Manufacture of silicon nitride thin film
JP2001189308A (en) Device and method for plasma treatment
US20120322222A1 (en) Method for improving capacitance uniformity in a mim device
JPH03255622A (en) Method and apparatus for doping semiconductor
JP2703228B2 (en) Method for forming silicon nitride film
KR100665846B1 (en) Thin film forming method for fabricating semiconductor device
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH08222554A (en) Film deposition and film deposition system using plasma
JP3220528B2 (en) Vacuum processing equipment
US11776792B2 (en) Plasma processing apparatus and plasma processing method
JP2895981B2 (en) Silicon oxide film forming method
JPH01246357A (en) Production of cubic boron nitride film
KR0147635B1 (en) Method for manufacturing thin film
JPH04329637A (en) Manufacture of insulating film
JPH0361371A (en) Thin film forming device
JPH0254758A (en) Thin film-forming equipment