JPS62118004A - Moving blade for steam turbine and manufacture thereof - Google Patents

Moving blade for steam turbine and manufacture thereof

Info

Publication number
JPS62118004A
JPS62118004A JP25793385A JP25793385A JPS62118004A JP S62118004 A JPS62118004 A JP S62118004A JP 25793385 A JP25793385 A JP 25793385A JP 25793385 A JP25793385 A JP 25793385A JP S62118004 A JPS62118004 A JP S62118004A
Authority
JP
Japan
Prior art keywords
steam turbine
ceramic
blade body
turbine rotor
rotor blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25793385A
Other languages
Japanese (ja)
Inventor
Masako Nakabashi
中橋 昌子
Hiromitsu Takeda
博光 竹田
Makoto Shirokane
白兼 誠
Kazuaki Ikeda
池田 一昭
Osamu Watanabe
修 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25793385A priority Critical patent/JPS62118004A/en
Publication of JPS62118004A publication Critical patent/JPS62118004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To aim at improvement in cavitation-erosion resistance, by installing a ceramic in a tip front edge part of a blade body. CONSTITUTION:An erosion shield 3 made of silicon nitride is welded to a cutting part of a tip front end part of a blade body via a low temperature solder. This erosion shield 3 is made up of welding an oxygen-free-copper sheet 6 to one side of a plate 4 made of silicon nitride via active brazing metal 5. With this constitution, cavitation erosion resistance is improvable.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸気タービンの低圧最終段に用いられる動翼
及びその製造方法に関し、特にエロージョンシールドを
備えた動翼及びその製造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a rotor blade used in the low-pressure final stage of a steam turbine and a method for manufacturing the same, and particularly to a rotor blade equipped with an erosion shield and a method for manufacturing the same.

〔発明の技術的背景) 蒸気タービンの最終段動翼は、蒸気中に含まれる凝縮水
滴の高速衝突によってキャビテーションエロージョン損
耗を生じる。このため、従来では12Cr合金製の翼本
体の最もキャビテーションエロージョンを受は易い先端
前縁部に耐キヤビテーシヨンエロージヨン特性の優れた
Coを約50%含む通称ステライトと呼ばれる合金を銀
ろうもしくは溶接により接合して保護している。
[Technical Background of the Invention] The final stage rotor blades of a steam turbine suffer cavitation erosion damage due to high-speed collisions of condensed water droplets contained in steam. For this reason, conventionally, an alloy called stellite, which contains approximately 50% Co, which has excellent cavitation erosion resistance, was applied to the leading edge of the blade body made of 12Cr alloy, which is most susceptible to cavitation erosion. They are joined and protected by welding.

〔背景技術の問題点〕[Problems with background technology]

上記ステライトは、翼本体を構成する12Cr合金に比
べて耐キヤビテーシヨンエロージヨン特性の優れている
ものの、完全なものではなく、定期的な補修や交換を必
要とするため、更に効果的なエロージョンシールド材の
出現が要望されている。
Although Stellite has better cavitation erosion resistance than the 12Cr alloy that makes up the blade body, it is not perfect and requires periodic repair or replacement, so it is more effective. There is a demand for the emergence of erosion shielding materials.

〔発明の目的〕[Purpose of the invention]

本発明は、耐キャビテーションエロージョン性の優れた
エロージョンシールドを備えた蒸気タービン動翼及びそ
の製造方法を提供しようとするものである。
The present invention aims to provide a steam turbine rotor blade equipped with an erosion shield having excellent cavitation erosion resistance, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明者らは、蒸気タービン動翼の耐キャビチーエロー
ジヨン性に優れたエロージョンシールドについて鋭意研
究を重ねた結果、翼本体の少なくとも先端前縁部に耐キ
ャビチーエロージヨン性に優れたセラミックスを設ける
ことによって、効果的にエロージョンシールド特性の優
れた蒸気タービン動翼が得られることを見出した。
As a result of extensive research into erosion shields for steam turbine rotor blades that have excellent cavity erosion resistance, the present inventors have found that ceramics that have excellent cavity erosion resistance are used at least at the leading edge of the tip of the blade body. It has been found that by providing this, a steam turbine rotor blade with excellent erosion shielding properties can be effectively obtained.

即ち、本gtの第1の発明は翼本体の少なくとも先端前
縁部に、所定形状をなす耐キャビテーションエロージョ
ン性に優れたセラミックスを設けたことを特徴とする蒸
気タービン動翼である。
That is, the first invention of the present invention is a steam turbine rotor blade characterized in that a ceramic having a predetermined shape and having excellent cavitation erosion resistance is provided on at least the leading edge of the blade body.

本願用2の発明は、所定形状をなす耐キャビテーション
エロージョン性に優れたセラミックスの一面に活性金属
を含むろう材を介して銅!!i!薄板を接合する工程と
、このセラミックスの銅製薄板を翼本体の少なくとも先
端前縁部に低温ろうを介在させて接合する工程とを具備
したことを特徴とする蒸気タービン動翼の製造方法であ
る。
The invention of the second aspect of the present invention is a ceramic having a predetermined shape and having excellent cavitation erosion resistance. ! i! This method of manufacturing a steam turbine rotor blade comprises the steps of joining thin plates, and joining the ceramic copper thin plate to at least the leading edge of the blade body with a low-temperature solder.

上記翼本体は、例えば12Cr合金又はTi−A ff
1−V合金、T i −MO−Z r−3n合金などの
Ti合金等から形成されている。
The wing body is made of, for example, 12Cr alloy or Ti-A ff
It is formed from a Ti alloy such as a 1-V alloy or a Ti-MO-Zr-3n alloy.

上記セラミックスとしては、例えば窒化ケイ素等を挙げ
ることができる。こうしたセラミックスは、通常、翼本
体に埋め込みにより設けられる。
Examples of the ceramics include silicon nitride. Such ceramics are usually embedded in the wing body.

かかる場合には、セラミックスと翼本体との境界部を含
む翼本体全面に耐食コーティング膜を施すことが望まし
い。
In such a case, it is desirable to apply a corrosion-resistant coating film to the entire surface of the blade body, including the boundary between the ceramic and the blade body.

上記方法に使用される活性金属を含むろう材としては、
例えばTi−ACIJ、Ti−Agろう、T i −A
Q−Cu、 T i −Cu等を挙ケルコトカできる。
The brazing material containing active metal used in the above method is:
For example, Ti-ACIJ, Ti-Ag wax, Ti-A
Q-Cu, Ti-Cu, etc. can be mentioned.

上記方法に使用される銅製薄板は、合金からなる翼本体
とセラミックスと間の熱膨張係数の差による熱応力を緩
和する応力緩和層として働くものである。例えば、熱膨
張係数が3.2X10−87℃の窒化ケイ素と12X1
0− ” /”Cの12Cr14とを接合させて500
℃の温度差を与えた場合、単純に計算しても130Kg
/s+2以上の熱応力が発生するが、前記銅製薄板をセ
ラミックスと翼本体間に介在させることによって、既述
の如くそれらの間に発生する熱応力を緩和できる。
The thin copper plate used in the above method functions as a stress relaxation layer that relieves thermal stress due to the difference in coefficient of thermal expansion between the blade body made of an alloy and the ceramic. For example, silicon nitride with a thermal expansion coefficient of 3.2X10-87℃ and 12X1
500 by joining with 12Cr14 of 0-”/”C
If you give a temperature difference of ℃, even if you simply calculate it, it will be 130 kg.
A thermal stress of /s+2 or more is generated, but by interposing the thin copper plate between the ceramic and the blade body, the thermal stress generated between them can be alleviated as described above.

こうした銅製薄板の厚さは、0.1〜10履程度にする
ことが望ましい。
The thickness of such a thin copper plate is preferably about 0.1 to 10 mm.

上記方法に使用される低温ろうは、翼本体とセラミック
スを低温(例えば700℃以下)で接合することを可能
とする。かかる低温ろつとしては、例えばA S T 
M規洛BACI−1(45%AQ−15%Cu−16%
Zn−24%cd)、同規格BAQ−4(40%AQ−
30%Cu−28%Zn−2%N1)、同規格BAQ−
7(56%AQ−22%Cu−17%Zn−5%Sn)
又は同規格BAg−8(72%Aに1−28%CLJ)
〔いずれも%は重量%である〕等を挙げることができる
The low-temperature solder used in the above method makes it possible to join the blade body and ceramics at low temperatures (for example, below 700° C.). Examples of such low-temperature filtration include AST
Mikilo BACI-1 (45%AQ-15%Cu-16%
Zn-24%cd), same standard BAQ-4 (40%AQ-
30%Cu-28%Zn-2%N1), same standard BAQ-
7 (56%AQ-22%Cu-17%Zn-5%Sn)
Or the same standard BAg-8 (72% A and 1-28% CLJ)
[In all cases, % is weight %].

以上のように本発明に方法によれば、予め耐キャビテー
ションエロージョン性に優れたセラミックスの一面に銅
製薄板を活性金属を含むろう材を介して接合し、この後
該銅製薄板を翼本体の少なくとも先端前縁部に低温ろう
を介して接合することによって、翼本体とセラミックス
とを高温の熱影響が翼本体に加わることなく、接合でき
ると共に、接合後の熱影響による翼本体のセラミックス
との間の熱応力の発生を銅製薄板により緩和し、エロー
ジョンシールド特性に浸れ、かつ信頼性の高い蒸気ター
ビン動翼を製造できる。
As described above, according to the method of the present invention, a thin copper plate is bonded in advance to one surface of a ceramic having excellent cavitation erosion resistance via a brazing material containing an active metal, and then the thin copper plate is bonded to at least the tip of the wing body. By joining the leading edge with a low-temperature solder, the blade body and the ceramic can be joined without applying high-temperature heat effects to the blade body, and at the same time, it is possible to bond the blade body and the ceramics without applying high-temperature heat effects to the blade body. It is possible to manufacture highly reliable steam turbine rotor blades by alleviating the occurrence of thermal stress by using copper thin plates, providing erosion shielding properties.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図及び第2図を参照して説
明する まず、外寸法250111II+、幅30mの所定形状
をなすSi3N+板の片面に、該片面と同一面形状の厚
さ5μmのTi箔、厚さ10μmのAgろう箔及び厚さ
0.8s+の無酸素銅製薄板を順次積層した後、該薄板
に1 Kg / cdの荷重を加えながら、3X10う
torrの真空中で880℃に加熱し、この状態を6分
間保持した。これにより、片面に厚さ0.8mの無酸素
銅製薄板が接合されたSi3N+エロージヨンシールド
を作製した。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. First, a Si3N+ plate having a predetermined shape with external dimensions of 250111II+ and a width of 30 m is coated with a thickness of 5 μm on one side of the same surface shape. After sequentially laminating a Ti foil with a thickness of 10 μm, an Ag brazing foil with a thickness of 10 μm, and a thin oxygen-free copper plate with a thickness of 0.8 s+, the thin plates were heated at 880°C in a vacuum of 3×10 Torr while applying a load of 1 Kg/cd to the thin plates. This state was maintained for 6 minutes. As a result, a Si3N+ erosion shield having a thin oxygen-free copper plate having a thickness of 0.8 m bonded to one side was produced.

次いで、先端前縁部に前記エロージョンシールドと同一
形状に切削されているT1−6%Affi−4%■から
なる翼本体を用意し、この翼本体の切削部に厚さ30μ
mのASTM規格BAQ−1(45%Aa−15%Cu
−16%Zn−24%Cd)ろうを介して前記Si3N
+エロージヨンシールドの銅製薄板側を設置した。つづ
いて、これらを水素炉内に装填し、650℃まで昇温し
て10分間保持した後、炉冷することによって、第1図
及び第2図に示すように翼本体1の先端前縁部の切削部
に低温ろう2を介して5f3N+エロージヨンシールド
3が接合された動翼を製造した。
Next, a blade body made of T1-6% Affi-4%■ is prepared, and the leading edge of the tip is cut into the same shape as the erosion shield.
m ASTM standard BAQ-1 (45%Aa-15%Cu
-16%Zn-24%Cd)
+ Installed the copper thin plate side of the erosion shield. Next, these were loaded into a hydrogen furnace, heated to 650°C, held for 10 minutes, and then cooled in the furnace. A rotor blade was manufactured in which a 5f3N+erosion shield 3 was joined to the cut portion of the blade through a low-temperature solder 2.

前記エロージョンシールド3は、既述の如くSi3N+
板4と、該Si3N4板4の片面に活性金属ろう5を介
して接合された無酸素銅製薄板6とから構成されている
。なお、図中の7は前記翼本体1の後端部が埋設される
翼埋込部である。
The erosion shield 3 is made of Si3N+ as described above.
It consists of a plate 4 and a thin oxygen-free copper plate 6 bonded to one side of the Si3N4 plate 4 via an active metal solder 5. Note that 7 in the figure is a blade embedding portion in which the rear end portion of the blade main body 1 is buried.

しかして、前記水素炉から取出した動翼について、その
5iaN+板6及び翼本体1とエロージョンシールド3
の接合界面の状態を観察したところ、亀裂の発生は全く
認められなかった。
Therefore, regarding the rotor blade taken out from the hydrogen reactor, its 5iaN+ plate 6, blade body 1 and erosion shield 3
When the state of the bonded interface was observed, no cracks were observed at all.

また、本実施例の5iaN+板を有するエロージョンシ
ールドが接合された動翼及びステライト製エロージョン
シールドが設けられた動ml(比較例)を夫々キャビチ
ーエロージョン試験に供し、加速試験を行なったところ
、本実施例の動翼は比較例に比べて2.5倍以上の耐キ
ャビチーエロージョン特性を示した。
In addition, the rotor blade to which the erosion shield having the 5iaN+ plate of this example was joined and the rotor blade to which the erosion shield made of Stellite (comparative example) was provided were subjected to a cavity erosion test, and an accelerated test was conducted. The rotor blade of the example exhibited cavity erosion resistance that was 2.5 times or more higher than that of the comparative example.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればエロージョンシール
ド性に優れた耐用寿命の長い蒸気タービン動翼並びにエ
ロージョンシールドを付与するセラミックスの熱応力に
よる亀裂等を招くことな(同蒸気タービン勤買を簡単な
工程により製造し1qる方法を提供できるものである。
As described in detail above, the present invention provides steam turbine rotor blades with excellent erosion shielding properties and a long service life, as well as ceramics that provide erosion shielding without causing cracks or the like due to thermal stress. It is possible to provide a method for producing 1 q by a process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す蒸気タービン動翼の
斜視図、第2図は、第1図の要部拡大斜視図である。 1・・・翼本体、2・・・低温ろう、3・・・エロージ
ョンシールド、4・・・Si3N+板、5・・・活性金
属ろう、6・・・無酸素銅製薄板、7・・・翼埋込部。
FIG. 1 is a perspective view of a steam turbine rotor blade showing one embodiment of the present invention, and FIG. 2 is an enlarged perspective view of the main part of FIG. 1. 1...Blade body, 2...Low temperature solder, 3...Erosion shield, 4...Si3N+ plate, 5...Active metal solder, 6...Oxygen-free copper thin plate, 7...Blade embedded part.

Claims (5)

【特許請求の範囲】[Claims] (1)、翼本体の少なくとも先端前縁部に、所定形状を
なす耐キャビテーションエロージョン性に優れたセラミ
ックスを設けたことを特徴とする蒸気タービン動翼。
(1) A steam turbine rotor blade, characterized in that a ceramic having a predetermined shape and having excellent cavitation erosion resistance is provided on at least the leading edge of the blade body.
(2)、セラミックスが翼本体の少なくとも先端前縁部
に埋め込んで設けられていることを特徴とする特許請求
の範囲第1項記載の蒸気タービン動翼。
(2) The steam turbine rotor blade according to claim 1, wherein ceramic is embedded in at least the leading edge of the blade body.
(3)、セラミックスと翼本体の境界部を含む該翼本体
全面に耐食コーティング膜を施すことを特徴とする特許
請求の範囲第2項記載の蒸気タービン動翼。
(3) The steam turbine rotor blade according to claim 2, characterized in that a corrosion-resistant coating film is applied to the entire surface of the blade body including the boundary between the ceramic and the blade body.
(4)、セラミックスが窒化ケイ素であることを特徴と
する特許請求の範囲第1項乃至第3項いずれか記載の蒸
気タービン動翼。
(4) A steam turbine rotor blade according to any one of claims 1 to 3, wherein the ceramic is silicon nitride.
(5)、所定形状をなす耐キャビテーションエロージョ
ン性に優れたセラミックスの一面に活性金属を含むろう
材を介して銅製薄板を接合する工程と、このセラミック
スの銅製薄板を翼本体の少なくとも先端前縁部に低温ろ
うを介在させて接合する工程とを具備したことを特徴と
する蒸気タービン動翼の製造方法。
(5) A step of bonding a thin copper plate to one surface of a ceramic having a predetermined shape and excellent cavitation erosion resistance via a brazing material containing an active metal, and attaching the thin copper plate of the ceramic to at least the leading edge of the tip of the wing body. 1. A method for manufacturing a steam turbine rotor blade, comprising: a step of joining the blades with a low temperature solder.
JP25793385A 1985-11-18 1985-11-18 Moving blade for steam turbine and manufacture thereof Pending JPS62118004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25793385A JPS62118004A (en) 1985-11-18 1985-11-18 Moving blade for steam turbine and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25793385A JPS62118004A (en) 1985-11-18 1985-11-18 Moving blade for steam turbine and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62118004A true JPS62118004A (en) 1987-05-29

Family

ID=17313212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25793385A Pending JPS62118004A (en) 1985-11-18 1985-11-18 Moving blade for steam turbine and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62118004A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146203A (en) * 1988-11-26 1990-06-05 Ngk Insulators Ltd Blade made of silicon nitride
US5411622A (en) * 1993-01-18 1995-05-02 Citizen Watch Co., Ltd. Method and apparatus for retaping electronic parts
EP1219375A2 (en) * 2000-12-27 2002-07-03 ALSTOM Power N.V. Method for repairing damaged areas on a metallic workpiece

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146203A (en) * 1988-11-26 1990-06-05 Ngk Insulators Ltd Blade made of silicon nitride
US5411622A (en) * 1993-01-18 1995-05-02 Citizen Watch Co., Ltd. Method and apparatus for retaping electronic parts
EP1219375A2 (en) * 2000-12-27 2002-07-03 ALSTOM Power N.V. Method for repairing damaged areas on a metallic workpiece
EP1219375A3 (en) * 2000-12-27 2003-11-05 ALSTOM (Switzerland) Ltd Method for repairing damaged areas on a metallic workpiece

Similar Documents

Publication Publication Date Title
EP1995350B1 (en) High temperature component with thermal barrier coating
CA2823525C (en) Method for producing a metal reinforcement
GB2117799A (en) Composite ceramic metal components
US10787914B2 (en) CMC airfoil with monolithic ceramic core
US6877651B2 (en) Method of joining ceramic or graphite to metal with an alloy having high nickel or cobalt content, alloys for joining the same, and products formed therewith
KR20100091178A (en) Joining and material application method for a workpiece having a workpiece region comprising a titanium aluminide alloy
US6838190B2 (en) Article with intermediate layer and protective layer, and its fabrication
RU2763528C1 (en) Replacing the turbine aerodynamic profile section with metal pre-sintered soldering billet
US20190151974A1 (en) Methods for joining materials, and material composite
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
US10109468B2 (en) Sputtering target
JPS62118004A (en) Moving blade for steam turbine and manufacture thereof
US5129574A (en) Braze bonding of oxidation-resistant foils
US6720086B1 (en) Liquid interface diffusion bonding of nickel-based superalloys
US7578424B2 (en) Method of joining a microwave transparent component to a host component
JPH0478802B2 (en)
US20090011276A1 (en) Silver/aluminum/copper/titanium nickel/brazing alloys for brazing wc-co to titanium and alloys thereof, brazing methods, and brazed articles
JPH0464795B2 (en)
JPS61127674A (en) Structure of bonding ceramic and metal
JPH09195067A (en) Heat resistant parts
JPS62118005A (en) Moving blade for steam turbine
JPH06172993A (en) Diffusion bonded sputtering target assembled body and its production
JPS60259706A (en) Method of repairing turbine blade
JPH10110203A (en) Overlaying sheet for metallic material, and method of overlaying for metallic material
JPH0147277B2 (en)