JPS62117536A - Judgement of tissue properties in ultrasonic diagnostic apparatus - Google Patents

Judgement of tissue properties in ultrasonic diagnostic apparatus

Info

Publication number
JPS62117536A
JPS62117536A JP25914785A JP25914785A JPS62117536A JP S62117536 A JPS62117536 A JP S62117536A JP 25914785 A JP25914785 A JP 25914785A JP 25914785 A JP25914785 A JP 25914785A JP S62117536 A JPS62117536 A JP S62117536A
Authority
JP
Japan
Prior art keywords
regions
tissue properties
frequency
ultrasound
echo signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25914785A
Other languages
Japanese (ja)
Other versions
JP2825091B2 (en
Inventor
金森 宏司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60259147A priority Critical patent/JP2825091B2/en
Publication of JPS62117536A publication Critical patent/JPS62117536A/en
Application granted granted Critical
Publication of JP2825091B2 publication Critical patent/JP2825091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8952Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using discrete, multiple frequencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、超音波診断装置における組織性状の判定方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for determining tissue properties in an ultrasonic diagnostic apparatus.

(ロ)従来技術とその問題点 一般に、超音波診断装置では、トランスジューサから超
音波を生体内に放射し、生体内の各部の音響インピーダ
ンスの差に応じて反射されたそのエコーを再びトランス
ジューサで受波し、受波して得られるエコー信号を輝度
変調することにより断層像をCRT等に表示する。
(b) Prior art and its problems In general, in an ultrasound diagnostic device, a transducer emits ultrasonic waves into a living body, and the transducer receives the reflected echoes according to the differences in acoustic impedance of various parts of the living body. A tomographic image is displayed on a CRT or the like by modulating the luminance of the echo signal obtained by transmitting and receiving waves.

ところで、従来の組織性状の判定は、専らSTC調整後
の断層像の濃淡を観察することによって、医師が行なっ
ている。生体内に放射された超音波は、生体内の深さ方
向の距離とその組織性状に応じた吸収減衰を受ける。生
体内の距離による超音波の吸収減衰の影響は、近距離で
はエコー信号のゲインを低くし、遠距離では深さに応じ
てゲインを高くする、いわゆるS T C(S ens
itivity  T ime Control)によ
り補正することができる。したがって、STCi1m]
整後のエコー信号強度に対応した断層像の輝度の違いを
観察することによっである程度の組織性状の判定が可能
である。
By the way, conventional tissue properties are determined by a doctor solely by observing the shading of a tomographic image after STC adjustment. Ultrasonic waves emitted into a living body undergo absorption attenuation depending on the depth of the living body and its tissue properties. The effect of absorption and attenuation of ultrasound due to distance within a living body is the so-called STC (Sens
This can be corrected using the Activity Time Control). Therefore, STCi1m]
By observing the difference in brightness of tomographic images corresponding to the echo signal intensity after adjustment, it is possible to determine the tissue properties to some extent.

しかしながら、このような判定は、専門的に高度な知識
と経験を必要とし、また、定1的な評価を行なうことが
できない。しかも、最終的には組織を切り取ってその良
否を確定する必要が生じるなど、患者に負担を強いるば
かりでなく、不要な労力を伴なっていた。
However, such a determination requires a high level of professional knowledge and experience, and it is not possible to perform a fixed evaluation. Moreover, in the end, it becomes necessary to cut out the tissue and determine its quality, which not only imposes a burden on the patient but also involves unnecessary labor.

上述のごとく、生体内に放射された超音波は、その組織
性状に応じた吸収減衰を受けるが、その吸収減衰の程度
は送受波される超音波の周波数に依存する。すなわち、
同じ組織でも超音波の周波数によって吸収減衰する程度
が異なってくる。したがって、生体内の超音波の吸収最
の周波数依存性を調べることによって、組織性状を診断
することができる。
As described above, ultrasonic waves emitted into a living body undergo absorption attenuation depending on the tissue properties thereof, and the degree of absorption attenuation depends on the frequency of the transmitted and received ultrasonic waves. That is,
Even in the same tissue, the degree of absorption and attenuation differs depending on the ultrasound frequency. Therefore, tissue properties can be diagnosed by examining the frequency dependence of ultrasound absorption in vivo.

本発明は、生体の組織性状が超音波周波数に依存すると
いうその特異性に着目し、超音波の吸収虫と周波数との
関係を求めることにより、生体内の組織性状をin v
ivoで的確に判定できるようにすることを目的とする
The present invention focuses on the peculiarity that the tissue properties of a living body depend on the ultrasonic frequency, and by determining the relationship between the ultrasonic absorption insects and the frequency, the tissue properties in the living body can be investigated in vitro.
The purpose is to enable accurate judgment using ivo.

(ハ)問題点を解決するための手段 本発明は、」二足の目的を達成するために、超音波診断
装置における組織性状の判定方法として、超音波を送受
波して得られるエコー信号を互いに周波数帯域の毘なる
複数のフィルタをそflぞれ通過させて、各周波数ごと
のエコー信号に基づく断層像を得、次いでこれらの各断
層像について、その深さ方向に2つの領域を設定し5、
両領域のエコー信号強度の輝度の平均値が等(、くなる
ようにSTCを調整した後、各領域におIJるゲイン設
定値をそれぞれ読み取り、読み取ったこイ]らの各ゲイ
ン設定値と両領域間の距離から両領域間の超音波の吸収
係数を算出し、面記エコー信号の周波数と吸収係数との
関係を求めるようにしている。
(c) Means for Solving the Problems In order to achieve the two objectives, the present invention uses echo signals obtained by transmitting and receiving ultrasound as a method for determining tissue properties in an ultrasound diagnostic device. A tomographic image based on the echo signal of each frequency is obtained by passing each filter through a plurality of filters in different frequency bands, and then two regions are set in the depth direction for each of these tomographic images. 5,
After adjusting the STC so that the average value of the luminance of the echo signal intensity in both regions is equal (, read the gain setting values for each region respectively, The absorption coefficient of ultrasound between the two regions is calculated from the distance between the regions, and the relationship between the frequency of the surface echo signal and the absorption coefficient is determined.

(ニ)実施例 第1図は、本発明方法を適用するための超音波診断装置
のブロック図である。この超音波診断装置1により組織
性状を判定するには、まず、その前段階として、トラン
スジューサ2から生体内に超音波を放射し、生体内から
反射されたそのエコーをトランスジューサ2で受波する
。トランスジューサ2からは、受波した超音波エコーに
対応したエコー信号が出力されるので、このエコー信号
を送受波回路4で増幅、検波し、次いで、マルチプレク
サ6で互いに周波数帯域が異なる複数(本例では・1つ
)のバンドパスフィルタ83〜8dの内の一つ、たとえ
ば第1バンドパスフイルタ8aを選択し、選択した第1
バンドパスフイルタ8aで所定の周波数帯域のエコー信
号のみを通過させる。
(D) Embodiment FIG. 1 is a block diagram of an ultrasonic diagnostic apparatus to which the method of the present invention is applied. In order to determine tissue properties using this ultrasonic diagnostic apparatus 1, first, as a preliminary step, the transducer 2 emits ultrasonic waves into the living body, and the transducer 2 receives the echoes reflected from the living body. Since the transducer 2 outputs an echo signal corresponding to the received ultrasound echo, this echo signal is amplified and detected by the wave transmitting/receiving circuit 4, and then the multiplexer 6 outputs a plurality of echo signals having different frequency bands (in this example). Then, one of the bandpass filters 83 to 8d, for example, the first bandpass filter 8a, is selected, and the selected first
A bandpass filter 8a passes only echo signals in a predetermined frequency band.

そして、第1バンドパスフイルタ8aを通過したエコー
信号のゲインをSTC凋整回路10によって超音波の深
さ方向の距離に対応させて調整した後、このエコー信号
を次段のA/DコンバータI2でデジタル化しごデジタ
ルスキャンコンバータ部14のメモリに画像データとし
て格納する。
After the gain of the echo signal that has passed through the first bandpass filter 8a is adjusted by the STC adjustment circuit 10 in accordance with the distance in the depth direction of the ultrasonic wave, this echo signal is sent to the next A/D converter I2. Then, the image is digitized and stored in the memory of the digital scan converter section 14 as image data.

こうしてデジタルスキャンコンバータ部14に画像デー
タを格納すると、次に、演算制御部16によりこれらの
画像データをTV走査速度に同期して読み出し、この画
像データをI) / Aコンバータ18でアナログ化し
た後、CRT 20に断層像として表示する。
When the image data is stored in the digital scan converter section 14 in this way, the arithmetic control section 16 reads out the image data in synchronization with the TV scanning speed, and after converting this image data into analog data using the I/A converter 18. , and displayed as a tomographic image on the CRT 20.

操作部22から断層像をフリーズさせる指令信号を人力
すると、演算制御部16は、第1バンドパスフイルタ8
aを通過した一画面分の断層像を表示する画像データが
デジタルスキャンコンバータ部14に洛納される。
When a command signal to freeze the tomographic image is manually input from the operation unit 22, the arithmetic control unit 16 controls the first bandpass filter 8.
The image data displaying one screen's worth of tomographic images that has passed through a is delivered to the digital scan converter section 14.

次に、演算制御部16からの制御信号により、マルチプ
レクサ6を切り換えて次の第2バンドパスフイルタ8b
を選択し、上記と同じく断層像をフリーズさせてエコー
信号の周波数が異なる他の一画面分の画像データをデジ
タルスキャンコンバータ部I4に格納する。このように
して、第11<ンドパスフィルタ8aから第4バンドパ
スフイルタ8dをそれぞれ通過したエコー信号に基づく
画像データをそれぞれフリーズしてデジタルスキャンコ
ンバータ部14のメモリにすべて洛納する。
Next, the multiplexer 6 is switched by the control signal from the arithmetic control section 16 to select the next second bandpass filter 8b.
is selected, the tomographic image is frozen in the same manner as above, and another screen worth of image data having a different echo signal frequency is stored in the digital scan converter section I4. In this way, the image data based on the echo signals that have passed through the 11th bandpass filter 8a to the 4th bandpass filter 8d are each frozen and stored in the memory of the digital scan converter section 14.

超音波周波数の異なるエコー信号に基づく断層像が得ら
れると、次に、これらの各断層像について、それぞれm
位距離当たりの吸収係数を求める。
Once tomographic images based on echo signals with different ultrasonic frequencies are obtained, next, for each of these tomographic images, m
Find the absorption coefficient per position distance.

これには、まず、第2図に示すように、第1バンドパス
フイルタ8aを通過して得られた一つの断層像F1をC
RT 20に表示し、その断層像F、の深さ方向に2つ
の領域I、■を設定する。これには、操作部22を操作
して演算制御部16に領域指定信号を与え、CRT 2
0に領域I、■指定用のフレームを表示するとともに、
そのフレームの大きさを各対象部位に応じて適宜拡大、
縮小するなどして調整される。
To do this, first, as shown in FIG. 2, one tomographic image F1 obtained by passing through the first bandpass filter 8a is
RT 20, and two regions I and ■ are set in the depth direction of the tomographic image F. To do this, operate the operation section 22 to give an area designation signal to the arithmetic control section 16.
Area I is displayed at 0, and a frame for specifying is displayed.
The size of the frame is enlarged appropriately according to each target area,
It is adjusted by reducing the size.

次に、両頭域I、■のエコー信号強度の輝度の平均値を
測定する。これには、デジタルスキャンコンバータ部1
4に格納されている画像データについて、演算制御部1
6により、設定した各領域I、■内に存在するエコー信
号の強度値をピクセルごとに読み出してその領域内の強
度の平均値を算出することにより行なう。そして、両頭
域■、Hの輝度の平均値を比較し、輝度の平均値が等し
くない場合には、再度、第1バンドパスフイルタ8aを
通過したエコー信号について、演算制御部I6から5T
(Jl整回路lOに制御信号を与えることによりゲイン
を制御し、一画面分の画像データの各領域1.ITにお
ける輝度が等しくなるように調整した後、この画像デー
タをフリーズする。
Next, the average value of the luminance of the echo signal intensity in both head regions I and (2) is measured. This includes the digital scan converter section 1.
Regarding the image data stored in 4, the arithmetic control unit 1
6, the intensity value of the echo signal existing in each of the set regions I and 3 is read out for each pixel, and the average value of the intensity within that region is calculated. Then, the average values of the brightness of both head regions (■) and H are compared, and if the average values of brightness are not equal, the echo signal that has passed through the first bandpass filter 8a is again transmitted from the calculation control unit I6 to the 5T.
(The gain is controlled by giving a control signal to the Jl adjustment circuit IO, and the brightness in each area 1.IT of one screen of image data is adjusted to be equal, and then this image data is frozen.

こうして、両頭域11 ■の輝度が等しくなるように調
整すると、そのS ’I’ C調整後の両頭域I、Hの
ゲイン設定値を読み取る。そして、読み取った各ゲイン
設定値と両頭域I、1間の距離から領域I、1間の超音
波の吸収係数を算出する6、すなわち、いま両頭域!、
IIの各ゲイン設定値をA、、A7、両頭域I、1間の
距離をLとすると、単位距離当たりの吸収係数μは、次
式の関係で表わされる。
In this way, when the brightness of the double head area 11 (1) is adjusted to be equal, the gain setting values of the double head area I and H after the S'I'C adjustment are read. Then, from each read gain setting value and the distance between the double head region I,1, the absorption coefficient of the ultrasound between the region I,1 is calculated6, that is, now the double head region! ,
Assuming that each gain setting value of II is A, A7, and the distance between the double head areas I and 1 is L, the absorption coefficient μ per unit distance is expressed by the following equation.

+og(A!/ A I) =μL よって、この式から吸収係数μが算出される。+og(A!/AI)=μL Therefore, the absorption coefficient μ is calculated from this equation.

上記動作を他のバンドパスフィルタ8b〜8dを通過し
たエコー信号に基づいて得られる各断層像F、〜F4に
対して行なう。そして、各断層像F。
The above operation is performed for each tomographic image F, -F4 obtained based on the echo signals that have passed through the other bandpass filters 8b-8d. And each tomographic image F.

〜F4の吸収係数μm〜μ4が算出されると、第3図に
示すように、たとえば横軸を各バンドパスフィルタ8a
〜8dを通過したエコー信号の各中心周波数f1〜fい
縦軸を吸収係数μm〜μ4として両者の関係をプロット
すれば、組織性状を反映した特異な特性曲線が得られる
。すなわち、第3図中には一例として、肝臓の組織(実
線)と脂肪の組織(破線)についての周波数と吸収係数
との関係を示したが、このように、組織性状には、超音
波が吸収減衰される程度に特異な周波数依存性があるの
で、この種のデータを蓄積すれば、組織性状を容易に判
定することができる。
When the absorption coefficients μm to μ4 of ~F4 are calculated, as shown in FIG.
If the relationship between the center frequencies f1 to f of the echo signals that have passed through 8d is plotted on the vertical axis as the absorption coefficients μm to μ4, a unique characteristic curve reflecting the tissue properties can be obtained. In other words, as an example, Figure 3 shows the relationship between frequency and absorption coefficient for liver tissue (solid line) and adipose tissue (broken line). Since there is a specific frequency dependence in the degree of absorption and attenuation, tissue properties can be easily determined by accumulating this type of data.

なお、この実施例では4つのバンドパスフィルタ8a〜
8dを設けているが、さらに多数のバンドパスフィルタ
を設ければ第3図の特性曲線が一層連続した曲線として
得られるようになる。
Note that in this embodiment, four bandpass filters 8a to 8a are used.
8d, but if a larger number of bandpass filters are provided, the characteristic curve shown in FIG. 3 can be obtained as a more continuous curve.

(ホ)効果 以上のように本発明によれば、高度な専門的知識がなく
ても比較的簡単に超音波の吸収量と周波数との関係を求
めることができる。したがって、生体内の組織性状を従
来よりも一層的確にin vivOで判定できるように
なる等の優れた効果が発揮される。
(E) Effects As described above, according to the present invention, the relationship between the amount of absorption of ultrasound and the frequency can be determined relatively easily even without advanced specialized knowledge. Therefore, excellent effects such as being able to determine in vivo tissue properties more accurately than before can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を適用するための超音波診断装置に
ブロック図、第2図は本発明方法の説明図、第3図は超
音波の吸収量と周波数との関係を示す組織性状の特性図
である。 1・・・超音波診断装置、I、■ ・領域。
Fig. 1 is a block diagram of an ultrasonic diagnostic apparatus to which the method of the present invention is applied, Fig. 2 is an explanatory diagram of the method of the present invention, and Fig. 3 is a diagram of tissue properties showing the relationship between the amount of ultrasound absorption and frequency. It is a characteristic diagram. 1...Ultrasonic diagnostic equipment, I, ■ area.

Claims (1)

【特許請求の範囲】[Claims] (1)超音波を送受波して得られるエコー信号を互いに
周波数帯域の異なる複数のフィルタをそれぞれ通過させ
て、各周波数ごとのエコー信号に基づく断層像を得、次
いでこれらの各断層像について、その深さ方向に2つの
領域を設定し、両領域のエコー信号強度の輝度の平均値
が等しくなるようにSTCを調整した後、各領域におけ
るゲイン設定値をそれぞれ読み取り、読み取ったこれら
の各ゲイン設定値と両領域間の距離から両領域間の超音
波の吸収係数を算出し、前記エコー信号の周波数と吸収
係数との関係を求めることを特徴とする超音波診断装置
における組織性状の判定方法。
(1) Echo signals obtained by transmitting and receiving ultrasound are passed through multiple filters with different frequency bands to obtain tomographic images based on the echo signals for each frequency, and then for each of these tomographic images, After setting two regions in the depth direction and adjusting the STC so that the average value of the luminance of the echo signal intensity in both regions is equal, the gain settings in each region are read respectively, and each of these read gains A method for determining tissue properties in an ultrasonic diagnostic apparatus, characterized by calculating an absorption coefficient of ultrasound between both regions from a set value and a distance between both regions, and determining a relationship between the frequency of the echo signal and the absorption coefficient. .
JP60259147A 1985-11-18 1985-11-18 Method for measuring frequency dependence of ultrasonic absorption coefficient in ultrasonic diagnostic equipment Expired - Fee Related JP2825091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259147A JP2825091B2 (en) 1985-11-18 1985-11-18 Method for measuring frequency dependence of ultrasonic absorption coefficient in ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259147A JP2825091B2 (en) 1985-11-18 1985-11-18 Method for measuring frequency dependence of ultrasonic absorption coefficient in ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JPS62117536A true JPS62117536A (en) 1987-05-29
JP2825091B2 JP2825091B2 (en) 1998-11-18

Family

ID=17329986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259147A Expired - Fee Related JP2825091B2 (en) 1985-11-18 1985-11-18 Method for measuring frequency dependence of ultrasonic absorption coefficient in ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JP2825091B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113692A3 (en) * 2006-03-31 2008-12-24 Aloka Co Ltd Methods and apparatus for ultrasound imaging
WO2016157624A1 (en) * 2015-03-31 2016-10-06 オリンパス株式会社 Ultrasonic observation apparatus, operating method of ultrasonic observation apparatus, and operating program for ultrasonic observation apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070083A (en) * 1973-05-03 1975-06-11
JPS6024829A (en) * 1983-07-21 1985-02-07 株式会社東芝 Ultrasonic diagnostic apparatus
JPS6029137A (en) * 1983-07-27 1985-02-14 株式会社東芝 Ultrasonic diagnostic apparatus
JPS60203090A (en) * 1984-03-27 1985-10-14 Shimadzu Corp Picture processor
JPS60212150A (en) * 1984-04-06 1985-10-24 富士通株式会社 Measurement of living body tissue characteristics by ultrasonic wave

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070083A (en) * 1973-05-03 1975-06-11
JPS6024829A (en) * 1983-07-21 1985-02-07 株式会社東芝 Ultrasonic diagnostic apparatus
JPS6029137A (en) * 1983-07-27 1985-02-14 株式会社東芝 Ultrasonic diagnostic apparatus
JPS60203090A (en) * 1984-03-27 1985-10-14 Shimadzu Corp Picture processor
JPS60212150A (en) * 1984-04-06 1985-10-24 富士通株式会社 Measurement of living body tissue characteristics by ultrasonic wave

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113692A3 (en) * 2006-03-31 2008-12-24 Aloka Co Ltd Methods and apparatus for ultrasound imaging
JP2009531107A (en) * 2006-03-31 2009-09-03 アロカ株式会社 Method and apparatus for ultrasound imaging
US8313436B2 (en) 2006-03-31 2012-11-20 Hitachi Aloka Medical, Ltd. Methods and apparatus for ultrasound imaging
US8591418B2 (en) 2006-03-31 2013-11-26 Hitachi Aloka Medical, Ltd. Methods and apparatus for ultrasound imaging
WO2016157624A1 (en) * 2015-03-31 2016-10-06 オリンパス株式会社 Ultrasonic observation apparatus, operating method of ultrasonic observation apparatus, and operating program for ultrasonic observation apparatus
JPWO2016157624A1 (en) * 2015-03-31 2017-06-08 オリンパス株式会社 Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and operation program of ultrasonic observation apparatus

Also Published As

Publication number Publication date
JP2825091B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
US4646748A (en) Ultrasonic measurement method, and apparatus therefor
JP4405017B2 (en) Method and apparatus for automatic time and / or lateral gain compensation in B-mode ultrasound imaging
KR100749973B1 (en) Prf adjustment method and apparatus, and ultrasonic wave imaging apparatus
US4785402A (en) Ultrasonic imaging apparatus for color display of flow velocity
US5383463A (en) Mapping of flow parameters
JPH0227631B2 (en)
US6302847B1 (en) Two dimensional ultrasonic scanning system and method
KR100380913B1 (en) Ultrasound imaging mehtod and apparatus for isolating noise from signal by using variable power threshold
US5404883A (en) Gray scale windowing
JPH0654850A (en) Ultrasonic diagnostic device
JPS62117536A (en) Judgement of tissue properties in ultrasonic diagnostic apparatus
JP3943653B2 (en) Ultrasonic diagnostic equipment
JP2001327492A (en) Ultrasonic diagnostic apparatus
JPS60232138A (en) Object scanner by ultrasonic echography
US5081996A (en) Ultrasonic imaging apparatus
JP2674005B2 (en) Ultrasound diagnostic equipment
JPH10314170A (en) Ultrasonic diagnostic device
JPH0360493B2 (en)
JPH056969Y2 (en)
JPS62117537A (en) Measurement of ultrasonic absorbing amount in ultrasonic diagnostic apparatus
JP3262169B2 (en) Ultrasound diagnostic equipment
JP2760550B2 (en) Ultrasound diagnostic equipment
JPH04224739A (en) Ultrasonic tomographic apparatus
JPH0411172Y2 (en)
JPS6141215B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees