JPS62117211A - High voltage insulated conductor - Google Patents

High voltage insulated conductor

Info

Publication number
JPS62117211A
JPS62117211A JP25620085A JP25620085A JPS62117211A JP S62117211 A JPS62117211 A JP S62117211A JP 25620085 A JP25620085 A JP 25620085A JP 25620085 A JP25620085 A JP 25620085A JP S62117211 A JPS62117211 A JP S62117211A
Authority
JP
Japan
Prior art keywords
insulating layer
dielectric constant
conductor
electric field
high dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25620085A
Other languages
Japanese (ja)
Inventor
南 松太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25620085A priority Critical patent/JPS62117211A/en
Publication of JPS62117211A publication Critical patent/JPS62117211A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は高電圧回転電機のコイル、乾式静止誘導電器の
コイルなど高電圧絶縁導体の絶縁構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an insulation structure of a high voltage insulated conductor such as a coil of a high voltage rotating electric machine or a coil of a dry static induction electric machine.

〔従来技術とその問題点〕[Prior art and its problems]

一般に3KVを超える高電圧絶縁導体においては、導体
を包囲する絶縁層中にはく離や残存気泡などの空隙(ボ
イド)があると、静電容量分圧の原理に基づいて誘電率
の小さいボイドに電界が集中してボイド中で部分放電が
発生し、絶縁層が損傷するなどの不都合を生ずるので、
絶縁層はボイドを含まず、また熱劣化などによりボイド
が生じ難いものが望まれている。
In general, in high-voltage insulated conductors exceeding 3KV, if there are voids such as peeling or residual bubbles in the insulating layer surrounding the conductor, an electric field will be applied to the voids with a small dielectric constant based on the principle of capacitance partial pressure. Concentrates and causes partial discharge in the void, causing problems such as damage to the insulating layer.
It is desired that the insulating layer does not contain voids and that voids are not easily generated due to thermal deterioration.

第2図は従来技術の一例を示す断面図であり、高電圧回
転電機の固定子コイルの断面構造の例を示したものであ
る。図において、1はコイル導体であシ、角部に半径r
なる面取りを施した絶縁被覆された複数の素線1A、1
B等を相互に固着させて一体化するよう形成されてお)
、コイル導体1の外側は厚みdなる主絶縁層2により包
囲されている。主絶縁層2は、織布、不織布あるいは耐
熱性フィルムからなる基材に、はがしマイカ、集成マイ
カ等を貼り合わせたシートあるいはテープをコイル導体
1に複数層巻回l〜だ後、ポリエステル樹脂、エポキシ
樹脂などの熱硬化性樹脂を真空加圧含浸、加熱加圧硬化
する(真空加圧含浸法)か、あるいは上記シートまたは
テープにあらかじめ樹脂を含浸、半硬化させ、コイル導
体に巻回した後、所定温度で加圧成形する(プリプレグ
法)などの方法によシ、前述の要求性能を満たす高電圧
絶縁導体が得られる技術がすでに確立されている。また
、6は主絶縁層2の外周面に被着された接地導電層であ
る。
FIG. 2 is a cross-sectional view showing an example of the prior art, and shows an example of the cross-sectional structure of a stator coil of a high-voltage rotating electric machine. In the figure, 1 is a coil conductor, and the corner has a radius r.
A plurality of insulating coated strands 1A, 1 with chamfering
B, etc. are formed so as to be fixed to each other and integrated)
, the outside of the coil conductor 1 is surrounded by a main insulating layer 2 having a thickness d. The main insulating layer 2 is formed by winding a plurality of sheets or tapes made of peelable mica, laminated mica, etc. on a base material made of woven fabric, non-woven fabric, or heat-resistant film around the coil conductor 1. A thermosetting resin such as an epoxy resin is impregnated with vacuum pressure and cured with heat and pressure (vacuum pressure impregnation method), or the sheet or tape is impregnated with resin in advance and semi-cured, and then wound around a coil conductor. Techniques have already been established for obtaining high-voltage insulated conductors that meet the above-mentioned performance requirements, such as by press molding at a predetermined temperature (prepreg method). Further, 6 is a ground conductive layer deposited on the outer peripheral surface of the main insulating layer 2.

第3図は第2図に示す高電圧絶縁導体を回転電機のスロ
ットに収納した状態を示す説明図であり、回転電機の固
定子鉄心5のスロットに収納された高電圧絶縁導体の接
地導電層3は鉄心5を介して大地電位に保持されること
によシ、主絶縁層2と鉄心5との間に間隙があった場合
発生する部分放電を阻止できるとともに、接地導電層6
の端部には半導電性の電界緩和層4が被着され、接地導
電層6の端部における電界集中を主絶縁層20表面の沿
面方向に分散させることにより、接地導電層ろの端部に
おける部分放電の発生をも阻止するよう構成されている
FIG. 3 is an explanatory diagram showing a state in which the high voltage insulated conductor shown in FIG. 2 is housed in a slot of a rotating electric machine, and the ground conductive layer of the high voltage insulated conductor housed in a slot of a stator core 5 of the rotating electric machine. 3 is held at the ground potential via the iron core 5, thereby preventing partial discharge that would occur if there is a gap between the main insulating layer 2 and the iron core 5, and the ground conductive layer 6
A semiconductive electric field relaxation layer 4 is deposited on the end of the ground conductive layer 6, and by dispersing the electric field concentration at the end of the ground conductive layer 6 in the creeping direction of the surface of the main insulating layer 20, The structure is also designed to prevent partial discharges from occurring.

前述のように絶縁上の欠陥が逐次排除された結果、高電
圧絶縁導体の主絶縁2の厚みdは徐々に縮小され、した
がって印加電圧Vを絶縁厚dで除した平均電界Eo =
 V / dが高まりつつある。ところが平均電界EO
を高めようとする場合、従来問題とならなかった面取半
径rなるコイル導体1の角部の電界集中が新たに問題と
な)、その対策が求められている。
As a result of the successive elimination of insulation defects as described above, the thickness d of the main insulation 2 of the high voltage insulated conductor is gradually reduced, and therefore the average electric field Eo = applied voltage V divided by insulation thickness d
V/d is increasing. However, the average electric field EO
In order to increase the current density, electric field concentration at the corners of the coil conductor 1 with the chamfer radius r, which has not been a problem in the past, has become a new problem, and countermeasures are required.

面取半径rなる角部の電界の強さEmは次式で表わされ
る。
The electric field strength Em at the corner with the chamfer radius r is expressed by the following equation.

第4図は導体角部における電界の集中度を表わす特性線
図であシ、縦軸は角部の電界Emと平均電界EOとの比
Em/Eo  、横軸は面取半径rと主絶縁厚さdとの
比r/dでそれぞれ標準化しである。図において、r 
= 0.6 tram 、 d = 5 rranとし
た場合、半径rなる導体1の角部には平均電界EOの約
3.5倍に相当する電界Emが発生することになシ、こ
の部分が絶縁の欠陥となるとともに、主絶縁寸法dを縮
小して導体の占積率を高めることを阻害する原因になっ
ている。
Figure 4 is a characteristic diagram showing the degree of concentration of the electric field at the corner of the conductor, where the vertical axis is the ratio Em/Eo of the electric field Em at the corner and the average electric field EO, and the horizontal axis is the chamfer radius r and the main insulation. Each is standardized by the ratio r/d to the thickness d. In the figure, r
= 0.6 tram and d = 5 rran, an electric field Em equivalent to about 3.5 times the average electric field EO will be generated at the corner of the conductor 1 with radius r, and this part is insulated. In addition to being a defect, it also becomes a cause of inhibiting the reduction of the main insulation dimension d and the increase in the space factor of the conductor.

第5図は電界の集中度(Em /Eo )対絶縁厚(d
)特性線図であり、電界の集中度を一定に保つためには
、絶縁厚さdに比例して面取半径rを大きくする必要が
あることを示しておシ、素線の面取加工費の増大ならび
に導体占積率の低下をまねく欠点がある。
Figure 5 shows electric field concentration (Em /Eo) versus insulation thickness (d
) is a characteristic diagram showing that in order to keep the degree of concentration of the electric field constant, it is necessary to increase the chamfer radius r in proportion to the insulation thickness d. There are drawbacks that increase costs and decrease the conductor space factor.

またコイル導体1の外側に半導電性のシートまたはテー
プを巻回して面取半径rを等測的に大きくする方法も知
られているが、導体占積率の大幅な低下を1ねくととも
に、導電性物質により主絶縁層が汚損するという欠点が
ある。
It is also known to wind a semiconductive sheet or tape around the outside of the coil conductor 1 to increase the chamfer radius r isometrically, but this method reduces the conductor space factor significantly and increases the chamfer radius r. However, there is a drawback that the main insulating layer is contaminated by the conductive substance.

また、主絶縁層中に導電層を複数層設け、各導電層間の
静電容量を調整することによシ、導体角部の電界集中を
緩和する方法も知られているが、導電層と絶縁層の接着
性に新たな問題が発生するばかりか、加工費の大幅な増
大をまねくという欠点がある。
Another known method is to provide multiple conductive layers in the main insulating layer and adjust the capacitance between each conductive layer to alleviate the electric field concentration at the corners of the conductor. This method has the disadvantage that not only new problems arise in the adhesion of the layers, but also a significant increase in processing costs.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、導体角部
の丸みを大きくすることなく角部の電界を低減でき、導
体占積率の高い高電圧絶縁導体を提供することを目的と
する。
The present invention was made in view of the above-mentioned situation, and aims to provide a high-voltage insulated conductor that can reduce the electric field at the corners without increasing the roundness of the conductor corners and has a high conductor space factor. .

〔発明の要点〕[Key points of the invention]

本発明は、導体角部の曲率半径rが絶縁厚さdの十分の
一程度と小さく電界集中度が高いことに着目し、導体に
密着形成された高誘電率絶縁層の誘電率をその外側に密
着形成された主絶縁層のそれのほぼ2倍以上と大きくな
るよう構成したことによシ、誘電率の異なる直列絶縁体
それぞれの分担電圧がそれぞれの誘電率に逆比例し、か
つ電界の緩和効果が電界の集中度に比例することを利用
して、導体角部の電界を緩和するようにしたものである
The present invention focuses on the fact that the radius of curvature r of the corner of a conductor is about one-tenth of the insulation thickness d, and the degree of electric field concentration is high. Due to the construction, which is approximately twice as large as that of the main insulating layer formed in close contact with the The electric field at the corner of the conductor is relaxed by utilizing the fact that the relaxation effect is proportional to the degree of concentration of the electric field.

(発明の実施例〕 以下本発明を実施例に基づいて説明する。(Embodiments of the invention) The present invention will be explained below based on examples.

第1図は本発明の実施例を示す断面図でsb、従来技術
の説明と同様に回転電機の固定子コイルを例にしたもの
である。図において、1は絶縁被覆された複数の索線を
接着樹脂等により相互に結合して断面方形状に形成され
た導体であり、その角部には曲率半径rが0.5 va
n前後の丸みを有するよう素線の製造過程において面取
りが施されている。11は導体1の表面に密着して形成
された誘電率ε1なる高誘電率絶縁層、12は高誘電率
絶縁層11の表面に密着して形成され&誘電率’!+厚
みdなる主絶縁層、6は主絶縁層12の表面に被着され
た接地導電層である。図において、高誘電率絶縁層11
の角部の曲率半径をrI  +導体1と接地導電層6と
の間に印加される電圧をVとすると、曲率半径rなる導
体角部の電界Km、  は次式で表わされる。
FIG. 1 is a sectional view sb showing an embodiment of the present invention, which takes a stator coil of a rotating electrical machine as an example, similar to the description of the prior art. In the figure, reference numeral 1 denotes a conductor formed into a rectangular cross-section by bonding a plurality of insulated cable wires to each other with an adhesive resin, etc., and the corners have a radius of curvature r of 0.5 va.
The strands are chamfered during the manufacturing process so that they have a roundness of around n. 11 is a high dielectric constant insulating layer with a dielectric constant ε1 formed in close contact with the surface of the conductor 1, and 12 is a high dielectric constant insulating layer formed in close contact with the surface of the high dielectric constant insulating layer 11 &dielectric constant'! + thickness d of the main insulating layer; 6 is a ground conductive layer deposited on the surface of the main insulating layer 12; In the figure, a high dielectric constant insulating layer 11
When the radius of curvature of the corner of the conductor is rI + the voltage applied between the conductor 1 and the ground conductive layer 6 is V, the electric field Km of the corner of the conductor with the radius of curvature r is expressed by the following equation.

■ また、上式と(1)式との比を求めると次式のように上
式において高誘電率絶縁層11の誘電率ε、が主絶縁1
層12の誘電率ε、より大きい場合、Eml/Emは1
以下となり、導体角部の電界Em、  を低減すること
ができる。
■ Also, when calculating the ratio between the above equation and equation (1), we can see that in the above equation, the dielectric constant ε of the high dielectric constant insulating layer 11 is the main insulating layer 1.
If the dielectric constant ε of layer 12 is greater than Eml/Em is 1
The electric field Em, at the corner of the conductor can be reduced as follows.

高誘電率を有する材料としては、チタン酸バリウム、チ
タン酸マグネシウム、チタン酸亜鉛等の無機質強誘電体
粉末、またはシアノエチル化セルローズ、ポリぶつ化ビ
ニリデン等の合成樹脂フィルムがある。そこでチタン酸
バリウム粉末およびポリふり化ビニリデンを用いた高誘
電率絶縁シートの製作方法について説明する。
Examples of materials having a high dielectric constant include inorganic ferroelectric powders such as barium titanate, magnesium titanate, and zinc titanate, and synthetic resin films such as cyanoethylated cellulose and polyvinylidene butylene. Therefore, a method for manufacturing a high dielectric constant insulating sheet using barium titanate powder and polyvinylidene fluoride will be explained.

粒径約0406μmのチタン酸バリウム粉末をエポキシ
樹脂組成物に重量比約10%混入した配合樹脂を、厚さ
0.13訓のガラスクロス[80〜120y/−の割合
で均一に塗布し、このように形成された裏打材に集成マ
イカシートを重ね合わせ面圧約200 Kpaで貼υ合
わせることにより、誘電率と□ が8ないし10の高誘
電率複合シートを製作することができた。
A blended resin in which barium titanate powder with a particle size of approximately 0406 μm was mixed into an epoxy resin composition at a weight ratio of approximately 10% was uniformly applied to a glass cloth with a thickness of 0.13 cm [80 to 120 y/-]. By superimposing the laminated mica sheet on the backing material formed in the above manner and bonding it together with a surface pressure of about 200 Kpa, a high dielectric constant composite sheet with a dielectric constant and □ of 8 to 10 could be manufactured.

また、上述の配合樹脂を厚さ0−025m+のポリふり
化ビニリデンフィルム(呉羽化学製、KFポリマーフィ
ルム)に80 ?/rr?の割合で均一に塗布し、集成
マイカシートを面圧200 Kpaで貼り合わせること
により、誘電率ε1が約8の可とう性を有する高誘電率
複合シートを製作することができた。
In addition, the above compounded resin was applied to a polyvinylidene fluoride film (manufactured by Kureha Chemical Co., Ltd., KF Polymer Film) with a thickness of 0 to 025 m+. /rr? A high dielectric constant composite sheet with a dielectric constant ε1 of about 8 and flexibility was able to be manufactured by uniformly applying the mica sheets at a ratio of 2 and bonding the assembled mica sheets together under a surface pressure of 200 Kpa.

上述のようにして形成された高誘電率複合シートは曲率
半径1” = Q、 6 rrrmの丸みを有する導体
1の外側に密接して所要回数巻回され、その上に重ねて
従来技術について既に説明した集成マイカ層を有するシ
ートまたはテープを巻回し、厚みdなる主絶縁層を形成
する。このように形成された未含浸絶縁導体にエポキシ
系含浸樹脂を真空加圧含浸、加熱加圧硬化することによ
り、厚み約0.2馴の高誘電率(複合)絶縁層11と厚
み約6WInの主絶縁層12を備えた高電圧絶縁導体を
1回の含浸硬化工程で製作することができた。また主絶
縁層11の誘電率は別に製作された板状試料によりε。
The high-permittivity composite sheet formed as described above is wound closely around the outside of the conductor 1 having a radius of curvature of 1" = Q, 6 rrrm the required number of times, and is superimposed thereon as described in the prior art. A sheet or tape having the assembled mica layer described above is wound to form a main insulating layer having a thickness of d.The thus formed unimpregnated insulated conductor is impregnated with an epoxy-based impregnated resin under vacuum pressure and cured under heat and pressure. As a result, a high voltage insulated conductor comprising a high dielectric constant (composite) insulating layer 11 with a thickness of about 0.2 mm and a main insulating layer 12 with a thickness of about 6 WIn could be manufactured in a single impregnation and curing process. Further, the dielectric constant of the main insulating layer 11 was determined to be ε according to a plate-shaped sample manufactured separately.

=4であることがわかった。= 4.

上述のように形成された高電圧絶縁導体の角部の電界E
mlと第2図に示す従来の絶縁導体の電界Emとの比を
(3)式に基づいて計算すると、Em4/Em=0.5
2となり、厚み0.2咽、誘電率8(主絶縁層の誘電率
ε、の2倍に相当する)なる高誘電率絶縁N11を設け
たことにより、角部の電界Ems  を従来のほぼ半分
に低減することができる。
Electric field E at the corner of the high voltage insulated conductor formed as described above
When the ratio between ml and the electric field Em of the conventional insulated conductor shown in Fig. 2 is calculated based on equation (3), Em4/Em=0.5.
By providing high dielectric constant insulation N11 with a thickness of 0.2 mm and a dielectric constant of 8 (corresponding to twice the dielectric constant ε of the main insulating layer), the electric field Ems at the corner can be reduced to almost half that of the conventional one. can be reduced to

また第5図において、導体の曲率半径P = O,(5
rra、主絶縁厚さd = 6 rranとした場合、
従来技術における電界Emは平均電界Eoの約4倍にな
るのに対し、実施例においてはこれを2倍程度に低減す
ることができ、これは従来技術において導体角部の曲率
半径rを2咽程度に大きくしたのと同等の電界緩和効果
が得られることを意味している。また厚み0.2 rt
atr程度の薄い高誘電率絶縁層により大きな電界緩和
効果が得られる理由としては、第4図において電界の集
中度がr / dが0.2以下の領域で急速に立上がっ
ていること、いいかえればこのような領域では電界が集
中している部分が導体の角部に近接した極く限られた場
所に集中していることによるもので、回転電機のコイル
導体の場合、通常r / dがほぼ0.1前後になるこ
とが多いので、導体角部に密着して高誘電率絶縁層を設
けたことによる電界緩和効果を十分活用できたものであ
る。
In addition, in Fig. 5, the radius of curvature of the conductor P = O, (5
rra, main insulation thickness d = 6 rran,
While the electric field Em in the prior art is about four times the average electric field Eo, this can be reduced to about twice in the embodiment. This means that it is possible to obtain the same electric field relaxation effect as if it were increased to a certain degree. Also thickness 0.2 rt
The reason why a large electric field relaxation effect can be obtained with a high dielectric constant insulating layer as thin as atr is that in Fig. 4, the electric field concentration rises rapidly in the region where r/d is 0.2 or less. This is due to the fact that in areas such as tobacco, the electric field is concentrated in a very limited area near the corner of the conductor, and in the case of a coil conductor in a rotating electric machine, r/d is usually Since it is often around 0.1, the electric field relaxation effect of providing the high dielectric constant insulating layer in close contact with the corner of the conductor can be fully utilized.

前述のように形成された高誘電率複合シートまたはテー
プには可とう性があシ、導体1への巻回作業が容易であ
る。また、チタン酸バリウムが微粉末であることによシ
樹脂への混合性がよく、かつチタン酸バリウム粉末の配
合量を変えることによシ高誘電率絶縁層11の誘電率ε
1をかなシ大幅に調整できる利点がある。さらに、ガラ
スシートを基材とした場合、チタン酸バリウムなどの強
誘電体粉末が樹脂中に配合された以外は主絶縁層12の
構成とほとんど同じであシ、絶縁層11および12の電
気的、熱的1機械的性能を従来技術と同等に保持するこ
とができる。さらにまた、ポリぶつ化ビニリデンフィル
ムは熱的、電気的に優れた特性を有しておシ、かつ誘電
率εが15ないし1日と大きいために負担電圧が低いの
で、電界集中部に配されても優れた絶縁性能を発揮する
ことができる。
The high dielectric constant composite sheet or tape formed as described above has flexibility and can be easily wound around the conductor 1. In addition, since barium titanate is a fine powder, it has good mixability with the resin, and by changing the blending amount of barium titanate powder, the dielectric constant ε of the high dielectric constant insulating layer 11 can be changed.
It has the advantage that 1 can be adjusted significantly. Furthermore, when a glass sheet is used as the base material, the structure is almost the same as that of the main insulating layer 12 except that ferroelectric powder such as barium titanate is blended into the resin. , thermal and mechanical performance can be maintained equivalent to the prior art. Furthermore, polyvinylidene buttride film has excellent thermal and electrical properties, and has a high dielectric constant ε of 15 to 1 day, so the burden voltage is low, so it can be placed in areas where electric fields are concentrated. It can demonstrate excellent insulation performance.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように、角部に丸みを有する方形の導体
に密着して高誘電率絶縁層を、その外側に密着して主絶
縁層を形成するとともに、高誘電率絶縁層の誘電率が主
絶縁層のそれのほぼ2倍以上になるよう構成した。その
結果、導体角部の電界集中度を従来の半分程度に低減す
ることかで色局部的高電界部分が排除されて絶縁の信頼
性を向上できるとともに、絶縁厚の縮/トおよび高電圧
化が可能な高電圧絶縁導体を提供することができムまた
導体を平角銅線など角部の丸みが0.5 wn前後おる
いはそれ以下の安価な市販の導体を使って構成できるの
で、導体の占積率の高い高電圧絶縁導体を経済的に有利
に提供することができる。さらに、高誘電率絶縁層は、
複合絶縁シートまたはテープを強誘電体粉末あるいは高
誘電率フィルムを含む高誘電率複合シートまたはテープ
に変えるだけで、その他の工程は主絶縁層の製造工程に
よシ同時に形成することができ、かつ高誘電率絶縁層の
誘電率は強誘電体粉末の配合量を調整することによシか
なシ大幅に変えられるなどの利点が得られる。
As described above, the present invention forms a high dielectric constant insulating layer in close contact with a rectangular conductor having rounded corners, and forms a main insulating layer in close contact with the outside of the rectangular conductor. The main insulating layer was designed so that the amount of the main insulating layer was approximately twice that of the main insulating layer. As a result, by reducing the electric field concentration at the corners of the conductor to about half of the conventional level, localized high electric field areas can be eliminated and insulation reliability can be improved, while the insulation thickness can be reduced and the voltage increased. In addition, the conductor can be constructed using inexpensive commercially available conductors with rounded corners of around 0.5 wn or less, such as rectangular copper wire. A high voltage insulated conductor with a high space factor can be provided economically. Furthermore, the high dielectric constant insulating layer is
By simply changing the composite insulation sheet or tape to a high dielectric constant composite sheet or tape containing ferroelectric powder or high dielectric constant film, other steps can be formed simultaneously with the manufacturing process of the main insulation layer, and The advantage is that the dielectric constant of the high dielectric constant insulating layer can be changed significantly by adjusting the amount of ferroelectric powder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す要部の断面図、第2図は
従来技術の一例を示す断面図、第6図は高電圧回転電機
への適用状況の説明図、第4図は導体角部の電界の集中
度と角部の曲率半径との関係を示す特性線図、第5図は
、電界集中度対主絶縁層の厚さ特性線図である。 1・・・導体、1A、1B・・・絶縁被覆された素線、
2.12・・・主絶縁層、6・・・接地導電層、11・
・・高誘電率絶縁層、r・・・導体角部の曲率半径、r
o  ・・・高誘電率絶縁層角部の曲率半径、d・・・
主絶縁層の厚み、εl ・・・高誘電率絶縁層の誘電率
、ε雪 ・・・主絶縁層の誘電率。 第1図 第2図      第3図
Fig. 1 is a cross-sectional view of the main part showing an embodiment of the present invention, Fig. 2 is a cross-sectional view showing an example of the prior art, Fig. 6 is an explanatory view of the state of application to a high-voltage rotating electric machine, and Fig. 4 is a cross-sectional view of the main part showing an embodiment of the present invention. FIG. 5 is a characteristic diagram showing the relationship between the degree of electric field concentration at the corner of the conductor and the radius of curvature of the corner. FIG. 5 is a characteristic diagram showing the relationship between the degree of electric field concentration and the thickness of the main insulating layer. 1... Conductor, 1A, 1B... Insulated wire,
2.12... Main insulating layer, 6... Ground conductive layer, 11.
... High dielectric constant insulating layer, r ... Radius of curvature of conductor corner, r
o...Radius of curvature of the corner of the high dielectric constant insulating layer, d...
Thickness of main insulating layer, εl... Dielectric constant of high dielectric constant insulating layer, ε snow... Dielectric constant of main insulating layer. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)角部に所定の曲率半径の丸みを有する方形断面の導
体が比誘電率の互いに異なる2層の複合絶縁層により密
着して覆われたものであって、導体側に密着して形成さ
れた高誘電率絶縁層、ならびにこの高誘電率絶縁層の外
側に密着して形成された主絶縁層を備えたことを特徴と
する高電圧絶縁導体。 2)特許請求の範囲第1項記載のものにおいて、高誘電
率絶縁層の比誘電率が主絶線層のそれのほぼ2倍以上で
わることを特徴とする高電圧絶縁導体。
[Scope of Claims] 1) A conductor with a rectangular cross section whose corners are rounded with a predetermined radius of curvature is tightly covered with two composite insulating layers having different dielectric constants, and the conductor side A high voltage insulated conductor comprising: a high dielectric constant insulating layer formed in close contact with the insulating layer; and a main insulating layer formed in close contact with the outside of the high dielectric constant insulating layer. 2) The high voltage insulated conductor according to claim 1, wherein the dielectric constant of the high dielectric constant insulating layer is approximately twice or more that of the main insulation layer.
JP25620085A 1985-11-15 1985-11-15 High voltage insulated conductor Pending JPS62117211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25620085A JPS62117211A (en) 1985-11-15 1985-11-15 High voltage insulated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25620085A JPS62117211A (en) 1985-11-15 1985-11-15 High voltage insulated conductor

Publications (1)

Publication Number Publication Date
JPS62117211A true JPS62117211A (en) 1987-05-28

Family

ID=17289301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25620085A Pending JPS62117211A (en) 1985-11-15 1985-11-15 High voltage insulated conductor

Country Status (1)

Country Link
JP (1) JPS62117211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118719A (en) * 2006-12-15 2009-05-28 General Electric Co <Ge> Nonlinear dielectric used as electrically insulating material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810245U (en) * 1971-06-18 1973-02-05
JPS5042387A (en) * 1973-07-18 1975-04-17
JPS5386401A (en) * 1977-01-10 1978-07-29 Toshiba Corp Electrical insulation coil
JPS55120319A (en) * 1979-03-09 1980-09-16 Showa Electric Wire & Cable Co Method of alleviating electric field
JPS57141808A (en) * 1982-01-29 1982-09-02 Tokyo Shibaura Electric Co Insulating conductor for winding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810245U (en) * 1971-06-18 1973-02-05
JPS5042387A (en) * 1973-07-18 1975-04-17
JPS5386401A (en) * 1977-01-10 1978-07-29 Toshiba Corp Electrical insulation coil
JPS55120319A (en) * 1979-03-09 1980-09-16 Showa Electric Wire & Cable Co Method of alleviating electric field
JPS57141808A (en) * 1982-01-29 1982-09-02 Tokyo Shibaura Electric Co Insulating conductor for winding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118719A (en) * 2006-12-15 2009-05-28 General Electric Co <Ge> Nonlinear dielectric used as electrically insulating material

Similar Documents

Publication Publication Date Title
JP3458693B2 (en) Insulation and electric winding
CA2344564C (en) Graded electric field insulation system for dynamoelectric machine
US3679925A (en) Electrical apparatus with corona suppression means
US3708875A (en) Methods of constructing electrical inductive apparatus
JPS6319709A (en) High voltage insulating conductor
EP0672521A1 (en) Composite thin film insulator, manufacturing method thereof, and electric rotating machines using the composite thin film insulator
US5973269A (en) Multi-layer insulation for winding elements of dynamoelectric machines (D.E.M.s)
JPS62117211A (en) High voltage insulated conductor
US3626587A (en) Methods of constructing electrical transformers
US5674340A (en) Insulating tape for the winding of an electric machine
JPH11234938A (en) High-voltage dynamo-electric machine and its manufacture
JPH0357603B2 (en)
JPH0723003Y2 (en) coil
JPH0638424A (en) Stator coil of high-tension rotating electric machine
JPS6223058Y2 (en)
JPS6372106A (en) Resin molded coil
JPS58144563A (en) Manufacture of coil conductor
CA2231580C (en) Multi layer insulation for winding elements of d.e.m.s
JPS62123936A (en) Electric field relaxation layer for coil for rotary electric machine
JPS6223057Y2 (en)
JP3472670B2 (en) Winding of rotating electric machine
JPS6268030A (en) Winding of rotary electric machine
JPS61224844A (en) Manufacture of electric coil
JPH0564014B2 (en)
JPS63124740A (en) Stator coil for rotary electric machine