JPS6211606B2 - - Google Patents

Info

Publication number
JPS6211606B2
JPS6211606B2 JP14843778A JP14843778A JPS6211606B2 JP S6211606 B2 JPS6211606 B2 JP S6211606B2 JP 14843778 A JP14843778 A JP 14843778A JP 14843778 A JP14843778 A JP 14843778A JP S6211606 B2 JPS6211606 B2 JP S6211606B2
Authority
JP
Japan
Prior art keywords
pressure
high pressure
tapered
anvil
gasket material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14843778A
Other languages
Japanese (ja)
Other versions
JPS5573338A (en
Inventor
Masato Araki
Akira Sawaoka
Shinroku Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP14843778A priority Critical patent/JPS5573338A/en
Publication of JPS5573338A publication Critical patent/JPS5573338A/en
Publication of JPS6211606B2 publication Critical patent/JPS6211606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/004Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses involving the use of very high pressures

Description

【発明の詳細な説明】 本発明は、ダイヤモンドや高圧相窒化硼素の合
成及び焼結に用いる圧力発生効率の高い超高圧高
温発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-high pressure and high temperature generator with high pressure generation efficiency used in the synthesis and sintering of diamond and high pressure phase boron nitride.

従来、ダイヤモンドや高圧相窒化硼素の合成及
び焼結は、約5GPa(約5000気圧)、1000℃以上の
高圧高温下で行われ、高圧、高温を発生する装置
として超高圧高温発生装置(以下、単に超高圧装
置と称す)が用いられてきた。
Conventionally, the synthesis and sintering of diamond and high-pressure phase boron nitride has been carried out under high pressure and high temperature of approximately 5 GPa (approximately 5000 atmospheres) and 1000°C or more. (simply referred to as ultra-high pressure equipment) have been used.

超高圧装置には各種のものがあるが、大別して
一軸圧縮型超高圧装置と多軸圧縮型超高圧装置に
分類でき、工業的用途には一軸圧縮型超高圧装置
が最も一般的に用いられている。
There are various types of ultra-high pressure equipment, but they can be broadly classified into uniaxial compression type ultra-high pressure equipment and multi-axial compression type ultra-high pressure equipment, with uniaxial compression type ultra-high pressure equipment being the most commonly used for industrial purposes. ing.

一軸圧縮型超高圧装置は、殆んどのものが貫通
した孔を有するシリンダー部と、シリンダー部の
孔の上下端部から先細の先端部を挿入して高圧室
を形成する一対の先細アンビルからなるもので、
たとえばベルト装置やガードル装置などと呼ばれ
る超高圧装置が知られている。
Most uniaxial compression type ultra-high pressure devices consist of a cylinder part that has a hole through it, and a pair of tapered anvils that form a high-pressure chamber by inserting tapered tips from the upper and lower ends of the hole in the cylinder part. Something,
For example, ultra-high pressure devices called belt devices and girdle devices are known.

例えば、特公昭36−23463号公報に記載のもの
は、ベルト装置に関するもので、ガスケツトが先
細アンビル先細部の傾斜側面と、それと向い合つ
たシリンダー部の傾斜側面部分との間に充填され
ていることが特徴である。
For example, the one described in Japanese Patent Publication No. 36-23463 relates to a belt device, in which a gasket is filled between the sloped side surface of the tapered part of the tapered anvil and the sloped side part of the cylinder part facing it. This is a characteristic.

特公昭41−1683号公報に記載の超高圧装置は、
シリンダー部内壁と高圧室の間に、剛性の圧縮係
数の少ない中空円筒状の絶縁体を置き、シリンダ
ー部内壁に高圧室の高圧、高温が直接加わるのを
防ぐことを特徴とする装置である。
The ultra-high pressure device described in Japanese Patent Publication No. 41-1683 is
This device is characterized by placing a hollow cylindrical insulator with low rigidity and low compression coefficient between the inner wall of the cylinder part and the high pressure chamber to prevent the high pressure and high temperature of the high pressure chamber from being directly applied to the inner wall of the cylinder part.

前記の特公昭36−23463号公報記載のベルト装
置は、高い圧力発生効率と比較的大きな試料容積
を有する優れた装置であるが、試料が納められ、
高圧を附与される高圧室とシリンダー部内壁の間
には、パイロフイライトやカオリナイトなどのガ
スケツト材が充填され、高圧室内に発生した圧力
をシリンダー部内壁に伝達する。その場合、問題
となるのは、ガスケツトは先細アンビルの圧下に
よつて圧力を受けると流動して先細アンビルの前
進を助け、先細アンビル先細部傾斜側面と、それ
と向い合つたシリンダー部傾斜側面の間に充填さ
れたガスケツト材は、薄くなつて新しい圧力の釣
合いを作り出すように作用するため、ガスケツト
材自身としては剛性が低く、高圧室からシリンダ
ー部の内壁に圧力が伝達する際の圧力減衰が十分
でないので、シリンダー部に大きな圧力を負担さ
せなければならない。以上のことは、先細アンビ
ル先細部傾斜側面と、それと向い合つたシリンダ
ー部の傾斜側面の間に充填されたガスケツト材
(以後アンビル傾斜側面ガスケツト材と称する)
が圧縮されて十分に薄くなり、高圧室内に発生し
た圧力に見合つた圧力シール能力を発揮する迄、
高圧室とシリンダー内壁の間のガスケツト材は流
動を続けることになり、その間高圧室内の試料や
発熱体が潰されて変形するので、特に焼結する場
合のように、試料の最終形状が問題になるような
場合具合が悪く、また最終的に有効な高圧室容積
は小さくなるという不利益がある。
The belt device described in the above-mentioned Japanese Patent Publication No. 36-23463 is an excellent device having high pressure generation efficiency and a relatively large sample volume.
A gasket material such as pyrofluorite or kaolinite is filled between the high pressure chamber to which high pressure is applied and the inner wall of the cylinder section, and transmits the pressure generated within the high pressure chamber to the inner wall of the cylinder section. In that case, the problem is that when the gasket receives pressure from the tapered anvil, it flows and helps the tapered anvil move forward, between the inclined side surface of the tapered anvil tapered part and the opposite inclined side surface of the cylinder part. The gasket material filled in the cylinder becomes thinner and acts to create a new pressure balance, so the gasket material itself has low rigidity and has sufficient pressure attenuation when pressure is transmitted from the high pressure chamber to the inner wall of the cylinder part. Therefore, the cylinder part must bear a large amount of pressure. The above describes the gasket material (hereinafter referred to as anvil inclined side gasket material) filled between the inclined side surface of the tapered part of the tapered anvil and the inclined side surface of the cylinder section facing it.
is compressed until it becomes sufficiently thin and exhibits a pressure sealing ability commensurate with the pressure generated in the high pressure chamber.
The gasket material between the high pressure chamber and the inner wall of the cylinder will continue to flow, during which time the sample and heating element in the high pressure chamber will be crushed and deformed, making the final shape of the sample problematic, especially when sintered. In such a case, there is a disadvantage that the condition is not good and the effective volume of the high pressure chamber is ultimately reduced.

また、前記の特公昭41−1683号公報による超高
圧装置は、高圧室とシリンダー部の孔の内壁との
環状空間に、例えばアルミナ焼結体のような剛性
があり、かつ圧縮係数の少ない円空円筒体を配置
し、高圧室内の高圧高温が直接シリンダー部の孔
の内壁に伝わるのを防止しようとする装置で、そ
の点は同じ部分に配置されているのが圧力減衰能
力の低いガスケツトである前記の特公昭36−
23463号公報のベルト装置より優れている。
Further, the ultra-high pressure device according to the above-mentioned Japanese Patent Publication No. 41-1683 uses a circular space made of a rigid material such as an alumina sintered body and a small compression coefficient in the annular space between the high pressure chamber and the inner wall of the hole in the cylinder part. This is a device in which an empty cylindrical body is placed to prevent the high pressure and high temperature inside the high pressure chamber from directly transmitting to the inner wall of the hole in the cylinder part. A certain above-mentioned special public service
It is superior to the belt device of Publication No. 23463.

しかしこの装置にも問題があつて、高圧室とシ
リンダー部の孔の内壁との間に配置される円空円
筒体は強度と耐熱性の優れた高価な絶縁材料、例
えばアルミナ焼結体を用いねばならず、その中空
円筒体は1回の作業ごとに新しいものに替えねば
ならないので、ベルト装置に較べてシリンダー部
に対する応力負荷や熱負荷が少ないため、シリン
ダー部の寿命が伸びる利点はあるが、十分に有利
ではない。また強度と耐熱性に優れた絶縁材料は
例外なく脆く、殆んど延性を示さない。そのため
シリンダー部内壁と中空円筒体の度に隙間がある
と中空円筒状に亀裂が発生して圧力を低下させ
る。それを避けるには中空円筒体とシリンダー部
内壁に隙間を生じないように、中空円筒体の寸法
を常にシリンダー部内壁の寸法に合わせるように
しなければならない。高圧発生を繰返すとシリン
ダー部内壁は変形するので、その部分を整つた形
状に加工し、加工後の寸法に合わせた寸法の中空
円筒体を使うというサイクルを何回かの高圧発生
ごとに繰返すことは、工数上、資材の調達上、技
術上の不利益であつた。
However, this device also has a problem; the hollow cylinder placed between the high pressure chamber and the inner wall of the hole in the cylinder part is made of an expensive insulating material with excellent strength and heat resistance, such as alumina sintered body. Since the hollow cylindrical body must be replaced with a new one after each operation, there is less stress and heat load on the cylinder compared to a belt device, which has the advantage of extending the life of the cylinder. , not sufficiently advantageous. Furthermore, insulating materials with excellent strength and heat resistance are without exception, brittle and exhibit almost no ductility. Therefore, if there is a gap between the inner wall of the cylinder part and the hollow cylindrical body, cracks will occur in the hollow cylindrical shape, reducing the pressure. To avoid this, the dimensions of the hollow cylindrical body must always match the dimensions of the inner wall of the cylinder so that no gap is created between the hollow cylindrical body and the inner wall of the cylinder. Since the inner wall of the cylinder part deforms when high pressure is generated repeatedly, the cycle of processing that part into a regular shape and using a hollow cylindrical body with dimensions that match the dimensions after processing is repeated every time high pressure is generated. This was a disadvantage in terms of man-hours, material procurement, and technology.

さらに、シリンダー部内に貫通した孔の上下端
から一対の先細アンビルの先端部を挿入すること
により、前記孔の内壁面と前記の先細アンビルの
先端面とによつて囲まれた空間内に環状板体を埋
め込んだガスケツト材を設けた超高圧装置も知ら
れている(特公昭45−28355号公報)。
Furthermore, by inserting the tips of a pair of tapered anvils from the upper and lower ends of the hole penetrating into the cylinder part, the annular plate is inserted into the space surrounded by the inner wall surface of the hole and the tip surface of the tapered anvil. An ultra-high pressure device equipped with a gasket material embedded in the body is also known (Japanese Patent Publication No. 45-28355).

しかしながら、この装置における環状板体を埋
め込んだガスケツト材は、中心部、即ち試料部に
近ずくに従つて、その内径を減少させたものであ
り、試料部への圧縮が促進され、安定した圧縮力
を試料部に負荷することができるもののシリンダ
ー部内の孔の内壁面にもその高圧が伝達されるた
めに寿命の点で十分ではなかつた。
However, the inner diameter of the gasket material embedded with the annular plate in this device decreases as it approaches the center, that is, the sample section, which promotes compression to the sample section and provides stable compression. Although it is possible to apply force to the sample part, the high pressure is also transmitted to the inner wall surface of the hole in the cylinder part, so it is not sufficient in terms of life.

本発明は、前記従来の超高圧装置の利点を生か
し、その欠点を除くべく研究した結果得られたも
のであつて、その目的は、圧力発生率が高く、容
易に高圧高温を発生でき、長寿命で運転コストが
低く、取扱いが容易で、比較的安価に製作出来る
極めて優れた新規な超高圧装置を提供するもので
ある。
The present invention was obtained as a result of research to take advantage of the advantages of the conventional ultra-high pressure equipment and eliminate its drawbacks. The object of the present invention is to provide an extremely superior new ultra-high pressure device that has a long life, low operating costs, is easy to handle, and can be manufactured at a relatively low cost.

なお、ここでいう圧力発生効率とは、例えば同
一の高圧室容積を有する装置の高圧室にある一定
の圧力を発生させる場合、その圧力を発生するの
に必要なプレス負荷荷重が少ない程圧力発生効率
が高いという。
Note that the pressure generation efficiency here means, for example, when generating a certain pressure in the high pressure chamber of a device with the same high pressure chamber volume, the lower the press load required to generate that pressure, the higher the pressure generation. It is said to be highly efficient.

本発明は、シリンダー部内に貫通した孔の上下
端から一対の先細アンビルの先端部を挿入するこ
とにより前記孔の内壁面と前記の先細アンビルの
先端面とによつて囲まれた空間を形成し、この空
間内の中心部に試料部と、この試料部の外側に環
状板体を埋め込んだガスケツト材とを設けてなる
超高圧装置において、先記先細アンビルの傾斜側
面と前記孔の上下両端部近くで前記先細アンビル
の傾斜側面に向い合つているシリンダー部の孔の
傾斜側面との間隙にガスケツト材を充填し、前記
試料部の外側に前記先細アンビルと電気的に結合
された電熱体を埋め込んだ圧力伝達材を配し、こ
の圧力伝達材の外側であつてシリンダー部内の孔
の内壁面の内側に複数の厚さの薄い環状のガスケ
ツト板円板と前記電熱体に触れないようにかつこ
のガスケツト材円板に平行に配置された複数の同
一形状の金属円板とを積層してなる中空円筒状の
圧力減衰体を配し、この圧力減衰体の端面が前記
先細アンビルの先端面及び傾斜側面のガスケツト
材に接触するように設置することを特徴とする超
高圧装置である。
In the present invention, by inserting the tips of a pair of tapered anvils from the upper and lower ends of a hole penetrating into the cylinder part, a space surrounded by the inner wall surface of the hole and the tip surface of the tapered anvil is formed. In an ultra-high pressure device comprising a sample part in the center of this space and a gasket material with an annular plate embedded in the outside of the sample part, the inclined side surface of the tapered anvil and the upper and lower ends of the hole are A gasket material is filled in the gap between the inclined side surface of the hole in the cylinder part that faces the inclined side surface of the tapered anvil in the vicinity, and an electric heating element electrically connected to the tapered anvil is embedded outside the sample part. A pressure transmitting material is disposed outside the pressure transmitting material and inside the inner wall surface of the hole in the cylinder section, and a plurality of thin annular gasket disks and a plurality of thin annular gasket discs are arranged so as not to touch the electric heating element. A hollow cylindrical pressure damping body is arranged by laminating a plurality of metal discs of the same shape arranged in parallel to the gasket material disc, and the end face of this pressure damping body is aligned with the tip face of the tapered anvil and the inclined surface. This is an ultra-high pressure device that is installed so as to be in contact with the side gasket material.

以下、図に示す実施態様によつて本発明を説明
する。第1図は本発明の一実施態様である超高圧
装置の断面図であり、第2図は第1図の高圧室3
およびその近傍の部分拡大図である。これらの図
において、シリンダー部2の上部から上部先細ア
ンビル1および下から下部先細アンビル1′が挿
入され、これらによつて高圧室3が形成される。
上部先細アンビル1および下部先細アンビル1′
は、それぞれ超硬合金又は高速度鋼からなる上部
先細アンビル中心部1aおよび下部先細アンビル
中心部1′aとそれぞれのまわりに構造部材1
c,1eおよび1′c,1′eは強靭鋼または型鋼
からなり焼ばめして強化している。シリンダー部
2の中心部2aは超硬合金又は高速度鋼もしくは
型鋼からなり、その周囲に強靭鋼または高速度鋼
または硬鋼からなる構造部材2b,2cを焼ばめ
または押しばめして強化している。5および5′
はシリンダー2の上下開口部の傾斜側面2eと上
部および下部先細アンビル1および1′の先細部
の傾斜側面1b,1′bの間に充填されるガスケ
ツト材、5aおよび5′aはガスケツト材の封止
能力を向上させるための鋼などの金属板である。
8および8′は上部先細アンビル1および下部先
細アンビル1′を電極として炭素電熱体6に通電
し加熱する際の電流回路の一部を構成する導電管
で通常ステンレス鋼で作られ、8aおよび8′a
は同じく電流回路の一部を形成する導電板でモリ
ブデン、タンタル、ステンレス鋼などで作られ
る。10および10′は、炭素電熱体6に通電し
高温が発生している場合に、上部先細アンビル1
および下部先細アンビル1′への熱伝達量を低下
させるための熱遮断材で、パイロフイライト、タ
ルク、アルミナなどが用いられる。11は試料部
で、試料または試料と触媒、充填材などをいい、
たとえばダイヤモンド合成の場合は黒鉛と触媒、
高圧相窒化硼素の場合は六方晶系窒化硼素と触媒
が、また焼結を行なう場合は焼結されるべき材料
が装填される試料部であり、9は試料部11に対
して圧力を伝達する圧力伝達材で、パイロフイラ
イト、タルク、六方晶窒化硼素などが用いられ
る。本発明でいう高圧室3とは実質的に有効な高
圧が発生する部分で、具体的には炭素電熱体6に
包囲された部分、すなわち試料部11および圧力
伝達材9の占める部分をいう。
The present invention will be explained below with reference to embodiments shown in the figures. FIG. 1 is a sectional view of an ultra-high pressure device that is an embodiment of the present invention, and FIG. 2 is a sectional view of the high pressure chamber 3 of FIG. 1.
and a partially enlarged view of its vicinity. In these figures, an upper tapered anvil 1 and a lower tapered anvil 1' are inserted from the top of the cylinder part 2, and a high pressure chamber 3 is formed by these.
Upper tapered anvil 1 and lower tapered anvil 1'
is an upper tapered anvil center part 1a and a lower tapered anvil center part 1'a made of cemented carbide or high speed steel, respectively, and a structural member 1 around each.
C, 1e and 1'c, 1'e are made of tough steel or shaped steel and are strengthened by shrink fitting. The center portion 2a of the cylinder portion 2 is made of cemented carbide, high-speed steel, or shaped steel, and is strengthened by shrink-fitting or force-fitting structural members 2b, 2c made of tough steel, high-speed steel, or hard steel around it. ing. 5 and 5'
5a and 5'a are gasket materials filled between the inclined side surfaces 2e of the upper and lower openings of the cylinder 2 and the inclined side surfaces 1b and 1'b of the tapered parts of the upper and lower tapered anvils 1 and 1', respectively. A metal plate made of steel or other material to improve sealing ability.
8 and 8' are conductive tubes that constitute a part of the current circuit when the carbon electric heating element 6 is energized and heated using the upper tapered anvil 1 and the lower tapered anvil 1' as electrodes, and are usually made of stainless steel. 'a
is a conductive plate that also forms part of the current circuit and is made of materials such as molybdenum, tantalum, and stainless steel. 10 and 10' are the upper tapered anvil 1 when the carbon electric heating element 6 is energized and a high temperature is generated.
and a heat shielding material for reducing the amount of heat transferred to the lower tapered anvil 1', such as pyrofluorite, talc, alumina, etc. 11 is a sample part, which refers to a sample or a sample, a catalyst, a filler, etc.
For example, in the case of diamond synthesis, graphite and catalyst,
In the case of high-pressure phase boron nitride, this is a sample part loaded with hexagonal boron nitride and a catalyst, and in the case of sintering, the material to be sintered is loaded, and 9 transmits pressure to the sample part 11. Pyrofluorite, talc, hexagonal boron nitride, etc. are used as pressure transmitting materials. The high-pressure chamber 3 in the present invention is a portion where a substantially effective high pressure is generated, and specifically refers to a portion surrounded by the carbon electric heating element 6, that is, a portion occupied by the sample portion 11 and the pressure transmission material 9.

次にシリンダー部内側面2dの内側と炭素電熱
体6の側壁に挟まれて中空円筒状の圧力減衰体7
が設置され、圧力減衰体7は複数の環状のガスケ
ツト材円板7aと複数の同一形状の環状の金属円
板7bを積層してなるものであり、シリンダー部
2への圧力伝達を小さくし、ガスケツト材5およ
び5′の不必要な流動を制限して少ないアンビル
ストロークと少ないプレス負荷荷重で容易に高圧
を発生しうる圧力減衰作用をもつ。7aはガスケ
ツト材円板、7bは鋼、銅などの環状の金属円板
である。積層部材7と炭素電熱体6に挟まれて絶
縁スリーブ4があり、炭素電熱体6の絶縁用であ
るが、圧力減衰体7の構造によつては必ずしも必
要ではない。なお1dおよび1′dは、それぞれ
上部および下部先細アンビル1および1′の先端
面である。
Next, a hollow cylindrical pressure damping body 7 is sandwiched between the inner side of the cylinder part inner surface 2d and the side wall of the carbon electric heating element 6.
is installed, and the pressure damping body 7 is formed by laminating a plurality of annular gasket material discs 7a and a plurality of annular metal discs 7b of the same shape, which reduces pressure transmission to the cylinder part 2, It has a pressure damping effect that restricts unnecessary flow of gasket materials 5 and 5' and allows high pressure to be easily generated with a small anvil stroke and a small press load. 7a is a gasket material disc, and 7b is an annular metal disc made of steel, copper, or the like. An insulating sleeve 4 is sandwiched between the laminated member 7 and the carbon electric heating element 6, and is used to insulate the carbon electric heating element 6, but depending on the structure of the pressure damping element 7, this is not necessarily necessary. Note that 1d and 1'd are the tip surfaces of the upper and lower tapered anvils 1 and 1', respectively.

次に以上に述べた実施態様の変形について述べ
る。
Next, a modification of the embodiment described above will be described.

第2a図は圧力減衰体7の変形例を示すもの
で、第2図においてはガスケツト材円板7aと金
属円板7bが同じ内外径を有し単純に積層されて
いたが、第2a図においては金属円板7bの外径
を小さくかつ内径を大きくして、ガスケツト材円
板7aは金属円板7bよりつき出ているため、金
属円板7bの前後の欠除部をガスケツト材で充填
し、あたかも連続したガスケツト材の中に金属円
板7bが埋め込まれている形状である。この場
合、炭素電熱体6は絶縁体であるガスケツト材と
接触している第2図に示す絶縁スリーブ4を省略
することができる。
Fig. 2a shows a modification of the pressure damping body 7. In Fig. 2, the gasket material disc 7a and the metal disc 7b have the same inner and outer diameters and are simply laminated, but in Fig. 2a, the gasket material disc 7a and the metal disc 7b are simply laminated. The outer diameter of the metal disk 7b is made smaller and the inner diameter is made larger, and since the gasket material disk 7a protrudes from the metal disk 7b, the missing parts at the front and rear of the metal disk 7b are filled with gasket material. , it is as if the metal disk 7b is embedded in a continuous gasket material. In this case, the insulating sleeve 4 shown in FIG. 2, in which the carbon electric heating element 6 is in contact with the insulating gasket material, can be omitted.

第2b図はガスケツト材円板7a、金属円板7
bともそれらの外径をシリンダー部2の内径より
小さくし、またそれらの内径を炭素電熱体6の外
径より大きくしたもので、圧力減衰体7と炭素電
熱体6の間および圧力減衰体7とシリンダー部内
壁面2dとの間にそれぞれ圧力減衰体スリーブ7
cと圧力減衰体スリーブ7dを挿入したものであ
る。圧力減衰体スリーブ7c,7dの材質は炭素
電熱体6と接触するため耐熱性と絶縁性が必要で
あり、従つてガスケツト材を含むセラミツク質物
質でなければならないが、圧力減衰体スリーブ7
cおよび7dはガスケツト材を含むセラミツク質
物質の他に金属やフツ素樹脂、シリコン樹脂、フ
エノール樹脂などの耐熱性樹脂も使用し得る。
Figure 2b shows the gasket material disk 7a and the metal disk 7.
Both of them have an outer diameter smaller than the inner diameter of the cylinder part 2 and a larger inner diameter than the outer diameter of the carbon electric heating element 6, and are arranged between the pressure damping body 7 and the carbon electric heating element 6 and the pressure damping body 7. A pressure damping body sleeve 7 is provided between the inner wall surface 2d of the cylinder portion and the cylinder portion inner wall surface 2d.
c and a pressure damping sleeve 7d are inserted. The material of the pressure damping body sleeves 7c and 7d must have heat resistance and insulation properties since they come into contact with the carbon electric heating element 6, and therefore must be made of a ceramic material containing a gasket material.
For c and 7d, in addition to ceramic materials including gasket materials, metals and heat-resistant resins such as fluorine resins, silicone resins, and phenolic resins can also be used.

本発明による圧力減衰体7を高圧室3とシリン
ダー部内壁面2d間に介在させて、シリンダー部
内壁面2dへの圧力値を低下させることの原理
は、ブリツジマンアンビルの原理に基づいてい
る。第3図はブリツジマンアンビル型超高圧装置
の断面図で、13と13′はアンビル、14はガ
スケツト材、15は試料である。アンビル13と
13′がプレス負荷によつて接近すると、試料1
5とガスケツト材14は潰され、試料15の内部
には高圧が発生する。第4図は、ブリツジマンア
ンビルによつて圧力を発生している試料15とガ
スケツト材14内での圧力分布を示したもので、
図のPで示された曲線が圧力分布を示す。これに
よつて、試料部分で高圧を発生していても、ガス
ケツト14によつて連続的に圧力を降下させ、ガ
スケツト14の外縁で大気圧として高圧を封止し
ていることがわかる。
The principle of interposing the pressure damping body 7 according to the present invention between the high pressure chamber 3 and the inner wall surface 2d of the cylinder portion to reduce the pressure value on the inner wall surface 2d of the cylinder portion is based on the principle of the Bridgeman anvil. FIG. 3 is a sectional view of a Bridgeman anvil type ultra-high pressure device, in which 13 and 13' are anvils, 14 is a gasket material, and 15 is a sample. When anvils 13 and 13' approach each other due to the press load, sample 1
5 and the gasket material 14 are crushed, and high pressure is generated inside the sample 15. FIG. 4 shows the pressure distribution within the sample 15 and gasket material 14 where pressure is generated by the Bridgeman anvil.
The curve indicated by P in the figure shows the pressure distribution. This shows that even if high pressure is generated in the sample portion, the pressure is continuously lowered by the gasket 14, and the high pressure is sealed as atmospheric pressure at the outer edge of the gasket 14.

一般的に、板状のガスケツト材によつて封止可
能な圧力Pcは、 Pc=σe2μl/t (1) で表わされる。ここでσはガスケツト材の降伏応
力、eは自然対数の底、lはガスケツト材の長
さ、tはガスケツト材の厚さ、μは摩擦係数であ
る。これからわかることは、σとμは、使用して
いる材料で決まるので、材料が同じであれば、ガ
スケツト材の長さが長い程、厚さが薄い程高い圧
力を封止できることである。
Generally, the pressure Pc that can be sealed by a plate-shaped gasket material is expressed as Pc=σe2μl/t (1). Here, σ is the yield stress of the gasket material, e is the base of the natural logarithm, l is the length of the gasket material, t is the thickness of the gasket material, and μ is the coefficient of friction. What can be seen from this is that σ and μ are determined by the materials used, so if the materials are the same, the longer the length and thinner the gasket material, the higher the pressure that can be sealed.

本発明は、ガスケツト材の有するそのような特
性を利用して高圧室の高圧を封じ込め、またその
圧力を他の場合より有効に減衰させてシリンダー
2に伝えるものである。第5図は本発明による装
置の高圧室と圧力減衰体の推定圧力分布を図示し
たものである。Pで示された実線が、圧力減衰体
を使用した場合の推定圧力分布、P′で示される点
線が高圧室の圧力発生値を一定として圧力減衰体
を使用せずに通常のガスケツト材が同部分に置か
れた場合の推定圧力分布、P″で示される線が、
シリンダー部内壁面2dでの圧力を一定としての
推定圧力分布である。前に述べたようにガスケツ
ト材は薄い程高い圧力を封止できる、言い換えれ
ば短い距離で高い圧力減衰をさせることができる
ため、本発明における圧力減衰体がガスケツト材
を金属板で何層にも仕切つて薄くすることによつ
て、高圧室からシリンダー部内壁面2dまでの間
で有効に圧力を減衰できることが理解される。従
つて高圧室での発生圧力を一定とすれば、従来の
ベルト装置のように高圧室とシリンダー部内砲面
2dとの間にガスケツト材が挿入されているもの
ではP′で示されるように本発明における圧力減衰
体を用いたものよりシリンダー部内壁面2dへの
負荷圧力が大きくなる。また、シリンダー部内壁
面2dへの負荷圧力を一定とすると、圧力減衰体
を使用した装置は、しない装置より高い圧力を高
圧室に発生できることが、P及びP″よりわか
る。この事実は、プレス負荷々重が一定であれ
ば、本発明による装置の方が他の従来の装置より
高い圧力が発生でき、発生圧力を一定とすれば、
本発明による装置の方がプレス荷重が少なくてす
むことにより立証できる。
The present invention utilizes such characteristics of the gasket material to contain the high pressure in the high pressure chamber and to transmit the pressure to the cylinder 2 while attenuating it more effectively than in other cases. FIG. 5 illustrates the estimated pressure distribution in the high pressure chamber and pressure damping body of the device according to the invention. The solid line indicated by P is the estimated pressure distribution when a pressure damping element is used, and the dotted line indicated by P' is the estimated pressure distribution when the pressure damping element is not used, assuming the pressure generation value in the high pressure chamber is constant. The estimated pressure distribution when placed on the part, the line denoted by P″, is
This is an estimated pressure distribution assuming that the pressure on the inner wall surface 2d of the cylinder portion is constant. As mentioned earlier, the thinner the gasket material is, the higher the pressure can be sealed.In other words, the pressure damper can be highly damped over a short distance.The pressure damping body of the present invention is made by layering the gasket material with metal plates. It is understood that by partitioning and making it thinner, the pressure can be effectively attenuated between the high pressure chamber and the cylinder inner wall surface 2d. Therefore, assuming that the pressure generated in the high pressure chamber is constant, in a conventional belt device in which a gasket material is inserted between the high pressure chamber and the gun surface 2d in the cylinder section, the main pressure is as shown by P'. The load pressure on the inner wall surface 2d of the cylinder portion is greater than that in the invention using the pressure damping body. Furthermore, if the load pressure on the inner wall surface 2d of the cylinder part is constant, it can be seen from P and P'' that the device using the pressure damping body can generate a higher pressure in the high pressure chamber than the device not using the pressure damping body.This fact indicates that the press load If the load is constant, the device according to the present invention can generate higher pressure than other conventional devices, and if the generated pressure is constant,
This can be demonstrated by the fact that the device according to the invention requires less press load.

超高圧装置において、圧力を発生する場合、低
い圧力を発生する場合は低い圧力封止能力を発生
していればよく、高い圧力を発生する場合は高い
圧力封止能力を発揮しなければならない。低い圧
力を発生している場合に、不必要に高い圧力封止
能力を発生していると圧力発生効率が低く、高い
圧力を発生している場合に圧力封止能力が不十分
であると、シリンダー部2の内容物が噴出したり
試料が大きく変形したり、またそのため有効試料
容積が小さくなつたり、上部および下部先細アン
ビル傾斜側面1b,1′bとシリンダー部開口部
傾斜側面2eの間のガスケツト材が十分に薄くな
つて圧力封止能力を発揮するまでプレス荷重を増
加しなければならないために圧力発生効率が低く
なつたりする。発生している圧力に応じて必要な
圧力封止能力が発生する機構を、ここで発生圧力
―圧力封止能力自己調整機能(以後、自己調整機
能と称する)と称する。超高圧装置においては、
その自己調整機能を必ずそなえていなければなら
ず、発生圧力に対して圧力封止能力発生に要する
プレス荷重が少ない程優れた超高圧装置であり、
そのような装置程圧力発生効率が高い。
In ultra-high pressure equipment, when generating pressure, it is sufficient to generate low pressure sealing ability when generating low pressure, and it is necessary to exhibit high pressure sealing ability when generating high pressure. If low pressure is being generated, unnecessarily high pressure sealing ability is generated, resulting in low pressure generation efficiency, and if high pressure is being generated, pressure sealing ability is insufficient. If the contents of the cylinder part 2 are spouted out or the sample is greatly deformed, and the effective sample volume is thereby reduced, or if the space between the upper and lower tapered anvil sloped sides 1b, 1'b and the cylinder part opening sloped side 2e is Since the press load must be increased until the gasket material becomes sufficiently thin and exerts its pressure sealing ability, the pressure generation efficiency may become low. A mechanism that generates a necessary pressure sealing ability according to the generated pressure is referred to herein as a generated pressure-pressure sealing ability self-adjustment function (hereinafter referred to as a self-adjustment function). In ultra-high pressure equipment,
The self-adjustment function must be provided, and the lower the press load required to generate pressure sealing ability with respect to the generated pressure, the better the ultra-high pressure device is.
Such a device has a higher pressure generation efficiency.

本発明による装置は極めて優れた自己調整機能
を有する。その理由は、例えば通常のベルト装置
の場合は、圧力封止部分が、本発明による装置の
ガスケツト5に相当する部しかないといつて差支
えなく、その自己調整機能は、ガスケツト材が、
アンビルのストロークが進むにつれ薄くなつて圧
力封止能力が増加することのみにたよつている
が、本発明による装置においては、それに加える
に圧力減衰体7もアンビルの前進に伴つてアンビ
ルの進行軸の方向に潰され、それによつて金属円
板7bの間のガスケツト材円板7aが薄くなつて
圧力封止能力が増加するという自己調整機能をも
有しているため、優れた特性を発揮するものであ
る。
The device according to the invention has an extremely good self-adjustment function. The reason for this is that, for example, in the case of a conventional belt device, the pressure sealing part may be the only part corresponding to the gasket 5 of the device according to the invention, and its self-adjusting function is due to the fact that the gasket material
In addition to this, in the device according to the present invention, the pressure damping body 7 also changes the axis of travel of the anvil as the anvil advances. It exhibits excellent characteristics because it also has a self-adjusting function in which the gasket material disc 7a between the metal discs 7b becomes thinner and the pressure sealing ability increases by being crushed in the direction of the metal disc 7b. It is.

本発明でいうガスケツト材とは、パイロフイラ
イト、タルク、などの鉱物を塊体から削り出した
ものや、それらの粉粒体を含むセラミツク質の粉
粒体を焼結したり、セメントや水ガラスなどの粘
結体で固めたもので、従来知られて来た超高圧装
置用ガスケツト材は何でも利用し得る。
The gasket material used in the present invention refers to minerals such as pyrofluorite and talc carved from a lump, sintered ceramic powder containing these powders, cement, water, etc. It is made of a caking material such as glass, and any conventionally known gasket material for ultra-high pressure equipment can be used.

本発明による装置においては、超高圧作業を行
なう際に不可欠なガスケツト材を、最も効果的な
圧力減衰体として使用するため、特公昭41−1683
号公報による装置のように、高価で取扱い不便な
アルミナ焼結体などの中空円筒体を用いることに
よる不利益を伴わずに、優れた高圧発生機能を示
すことができる。
In the device according to the present invention, in order to use the gasket material, which is essential when performing ultra-high pressure work, as the most effective pressure damping body,
It is possible to exhibit an excellent high pressure generation function without the disadvantages of using a hollow cylindrical body such as an alumina sintered body, which is expensive and inconvenient to handle, as in the device according to the publication.

次に実施例について説明する。 Next, an example will be described.

実施例 1 シリンダー2の内径40mm、上部および下部先細
アンビル1および1′の先端の径32mm、シリン
ダー部内壁面2dの平行部分の長さ18mm、シリン
ダー開口部傾斜側面2eのシリンダー中心軸から
の傾斜角40゜、上部および下部先細アンビル先細
部傾斜面1bおよび1′bの先細アンビル1の中
心軸からの傾斜角35゜、圧力減衰体7の外径40
mm、内径22mm、高さ22mmで、圧力減衰体7は、外
径36mm、内径26mm、厚さ2mmのパイロフイライト
9枚と、同じ内外径で厚さ0.5mmの鋼板8枚を交
互に積み重ね、積層構造としたものを、外径40
mm、内径36mm、高さ22mmのパイロフイライト製円
筒と、外径26mm、内径22mm、高さ22mmのパイロフ
イライト製円筒の間に収めたものからなる超高圧
装置を製作した。尚シリンダー2の孔の外径は
500mm、高さは120mmで、最外層はSNCM8鋼、中
間層はSKD6鋼、最内層はSKH9鋼とし、先細ア
ンビル1および1′の外径は278mm、高さ110mm
で、最外層はSNCM8鋼、中間層はSKD6鋼、上部
および下部の先細アンビル中心部1aおよび1′
aの上部および下部先細アンビル先細部はコバル
ト量6%の超硬合金とした。
Example 1 The inner diameter of the cylinder 2 is 40 mm, the diameter of the tips of the upper and lower tapered anvils 1 and 1' is 32 mm, the length of the parallel portion of the inner wall surface 2d of the cylinder portion is 18 mm, and the angle of inclination of the inclined side surface 2e of the cylinder opening from the cylinder center axis 40°, upper and lower tapered anvil tapered part inclined surfaces 1b and 1′b have an inclination angle of 35° from the central axis of the tapered anvil 1, and the outer diameter of the pressure damping body 7 is 40°.
mm, inner diameter 22 mm, and height 22 mm, and the pressure damping body 7 consists of 9 pieces of pyrofilite with an outer diameter of 36 mm, an inner diameter of 26 mm, and a thickness of 2 mm, and 8 steel plates with the same inner and outer diameters and a thickness of 0.5 mm, stacked alternately. , a laminated structure with an outer diameter of 40
We fabricated an ultra-high pressure device consisting of a pyrofilite cylinder with a diameter of 26 mm, an inner diameter of 36 mm, and a height of 22 mm, and a pyrofilite cylinder with an outer diameter of 26 mm, an inner diameter of 22 mm, and a height of 22 mm. The outer diameter of the hole in cylinder 2 is
500mm, the height is 120mm, the outermost layer is made of SNCM8 steel, the middle layer is made of SKD6 steel, and the innermost layer is made of SKH9 steel, the outer diameter of tapered anvils 1 and 1' is 278mm, and the height is 110mm.
The outermost layer is SNCM8 steel, the middle layer is SKD6 steel, and the upper and lower tapered anvil centers 1a and 1'
The tapered parts of the upper and lower tapered anvils a were made of cemented carbide containing 6% cobalt.

以上のようにして構成された装置に第2図のよ
うに各アセンブリーを装着した。シリンダー開口
部傾斜側面2eと上部先細アンビル傾斜側面1b
の間のガスケツト5は、外径120mm、内径30mm、
外周部の厚さ9mmで、高さ方向の中心部に厚さ
0.5mm、外径100mm、内径60mmの鋼板を圧力封止力
増強用に挿入した。導電管8および8′は、
SUS304ステンレス鋼の高さ4mm、外径30mm、内
径28mmのものを用い、内部に高さ4mm、外径28mm
のパイロフイライトを充填し、導電板8aおよび
8′aとして、厚さ0.5mm、直径30mmのモリブデン
板を装着した。試料部11、圧力伝達材9、炭素
電熱体6の替りに、外径22mm、高さ11mmのパイロ
フイライト塊体2個を積み重ねて挿入し、パイロ
フイライト塊体の向い合つた面の間に、圧力測定
用ゲージを入れて、上部および下部の先細アンビ
ル1及び1′を電極としてプレス負荷荷重に対す
る発生圧力を計測した。ビスマス2.55GPa、タリ
ウム3.67GPa、バリウム5.5GPaの各ゲージ圧力に
対するプレス負荷荷重をプロツトし、つないだも
のが、第6図のAで示された曲線である。
Each assembly was attached to the apparatus constructed as described above as shown in FIG. Cylinder opening inclined side surface 2e and upper tapered anvil inclined side surface 1b
The gasket 5 between the two has an outer diameter of 120 mm, an inner diameter of 30 mm,
The outer circumference is 9mm thick, and the center in the height direction is thicker.
A steel plate with a diameter of 0.5 mm, an outer diameter of 100 mm, and an inner diameter of 60 mm was inserted to increase pressure sealing force. The conductive tubes 8 and 8' are
Made of SUS304 stainless steel with a height of 4 mm, outer diameter of 30 mm, and inner diameter of 28 mm; internal height of 4 mm and outer diameter of 28 mm.
of pyrofluorite, and molybdenum plates with a thickness of 0.5 mm and a diameter of 30 mm were attached as conductive plates 8a and 8'a. Instead of the sample part 11, the pressure transmitting material 9, and the carbon electric heating element 6, two pyrofluorite blocks with an outer diameter of 22 mm and a height of 11 mm are stacked and inserted, and the space between the opposing surfaces of the pyrofluorite blocks is inserted. A pressure measurement gauge was inserted into the press, and the pressure generated in response to the press load was measured using the upper and lower tapered anvils 1 and 1' as electrodes. The curve shown by A in FIG. 6 is a plot of the press load for each gauge pressure of bismuth 2.55 GPa, thallium 3.67 GPa, and barium 5.5 GPa, and then connected.

実施例 2 実施例1と同じ方法で各ゲージ圧力に対するプ
レス負荷荷重を測定した。ただし、圧力減衰体7
は、実施例1で用いたものと同寸法の鋼板8枚を
2.5mm間隔で、外径40mm、内径22mm、高さ22mmの
酸化珪素粉80%、アルミナセメント20%に外割10
%(それぞれ重量%)の水を加え、プレス成形し
たものの中に同心円状に配置して埋め込み、第2
a図の形状としたものを用いた。
Example 2 The press load for each gauge pressure was measured in the same manner as in Example 1. However, the pressure damping body 7
Eight steel plates with the same dimensions as those used in Example 1 were
At 2.5mm intervals, outer diameter 40mm, inner diameter 22mm, height 22mm silicon oxide powder 80%, alumina cement 20% divided by 10
% (each % by weight) of water, arranged concentrically in the press-formed product and embedded it, and
The shape shown in Figure a was used.

その結果、測定値は第6図Aで示された値とほ
とんど変らず、同一ゲージ圧力を発生するのに必
要なプレス荷重の差は10トン以内であつた。
As a result, the measured values were almost the same as those shown in FIG. 6A, and the difference in press load required to generate the same gauge pressure was within 10 tons.

比較例 本発明による装置と、圧力減衰体7部分を除い
て同形状の装置の、本発明で圧力減衰体7を装着
した部分に、同一外形寸法のパイロフイライト塊
体を装着し、あとは実施例1と同様にしてプレス
負荷荷重に対する発生圧力を測定したところ、第
6図Bに示すプレス負荷荷重に対する発生圧力曲
線が得られた。この方法では5.5GPaを発生する
のに、本発明による圧力減衰体7を使用した装置
に対し、約1.6倍のプレス荷重を必要とした。ま
た、実施例2で圧力減衰体7を構成するのに用い
た、酸化珪素―アルミナセメント配合によるガス
ケツト材を、鋼板なしで外径40mm、内径22mm、高
さ22mmに成形し、本発明による圧力減衰体を装着
する部分に装着して、プレス負荷荷重に対する発
生圧力を計測したが、第6図Bに示される値と
ほゞ等しかつた。
Comparative Example A device according to the present invention and a device having the same shape except for the pressure damping body 7 portion, a pyrofilite mass having the same external dimensions is attached to the part where the pressure damping body 7 according to the present invention is attached, and the rest is When the generated pressure with respect to the press load was measured in the same manner as in Example 1, a generated pressure curve with respect to the press load shown in FIG. 6B was obtained. In this method, in order to generate 5.5 GPa, a press load approximately 1.6 times greater than that of the apparatus using the pressure damping body 7 according to the present invention was required. In addition, the gasket material made of a silicon oxide-alumina cement mixture used to construct the pressure damping body 7 in Example 2 was molded to have an outer diameter of 40 mm, an inner diameter of 22 mm, and a height of 22 mm without using a steel plate. The damping body was attached to the part where the damping body was attached, and the generated pressure against the press load was measured, and it was almost equal to the value shown in FIG. 6B.

以上要約するに、本発明は圧力発生効率が高
く、装置に対する負荷応力が低いため、装置製造
コストを低くでき、長寿命で運転コストが低く、
装置に無理な荷重がかゝらないため、危険な破壊
が避けられ、安全性が高く、産業上有用な超高圧
装置を提供するものである。
In summary, the present invention has high pressure generation efficiency and low load stress on the device, so the manufacturing cost of the device can be reduced, the life is long, the operating cost is low, and
Since no unreasonable load is applied to the device, dangerous destruction can be avoided, and an ultra-high pressure device that is highly safe and industrially useful is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様である超高圧高温
発生装置の断面図、第2図は第1図の高圧室およ
びその近傍の部分拡大断面図、第2a図は前記実
施態様の超高圧高温発生装置の変形例を示す部分
拡大断面図、第2b図は同じく他の変形例を示す
部分拡大断面図、第3図は本発明による超高圧高
温発生装置の原理を説明するために引用したブリ
ツジマンアンビル型装置の断面図、第4図は第3
図の部分拡大断面図およびガスケツト材付近の圧
力分布図、第5図は本発明による超高圧高温発生
装置の高圧室付近の圧力分布図、第6図は本発明
による超高圧高温発生装置と従来のベルト型超高
圧高温発生装置のプレス負荷荷重に対する発生圧
力曲線を示す図である。 1:上部先細アンビル、1′:下部先細アンビ
ル、2:シリンダー部、3:高圧室、4:絶縁ス
リーブ、5,5′:ガスケツト材、6:炭素電熱
体、7:圧力減衰体、7a:ガスケツト材円板、
7b:金属円板、8,8′:導電管、8a,8′
a:導電板、9:圧力伝達材、11:試料部。
Fig. 1 is a sectional view of an ultra-high pressure and high temperature generator which is an embodiment of the present invention, Fig. 2 is a partially enlarged sectional view of the high pressure chamber and its vicinity in Fig. 1, and Fig. 2a is an ultra-high pressure generator of the above embodiment. FIG. 2b is a partially enlarged sectional view showing a modified example of the high temperature generator, FIG. 2b is a partially enlarged sectional view showing another modified example, and FIG. Cross-sectional view of the Bridgeman anvil-type device, Figure 4 is the third
5 is a partial enlarged sectional view and a pressure distribution diagram near the gasket material, FIG. 5 is a pressure distribution diagram near the high pressure chamber of the ultra-high pressure and high temperature generator according to the present invention, and FIG. 6 is a diagram showing the ultra high pressure and high temperature generator according to the present invention and the conventional pressure distribution diagram. FIG. 2 is a diagram showing a generated pressure curve with respect to press load of the belt-type ultra-high pressure and high temperature generator. 1: Upper tapered anvil, 1': Lower tapered anvil, 2: Cylinder part, 3: High pressure chamber, 4: Insulating sleeve, 5, 5': Gasket material, 6: Carbon electric heating element, 7: Pressure damping element, 7a: gasket material disc,
7b: Metal disk, 8, 8': Conductive tube, 8a, 8'
a: conductive plate, 9: pressure transmission material, 11: sample part.

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダー内部に貫通した孔の上下端から一
対の先細アンビルの先端部を挿入することにより
前記孔の内壁面と前記の先細アンビルの先端面と
によつて囲まれた空間を形成し、該空間内の中心
部に試料部と、該試料部の外側に環状板体を埋め
込んだガスケツト材とを設けてなる超高圧装置に
おいて、前記先細アンビルの傾斜側面と前記孔の
上下両端部近くで前記先細アンビルの傾斜側面に
向い合つているシリンダー部の孔の傾斜側面との
間隙にガスケツト材を充填し、前記試料部の外側
に前記先細アンビルと電気的に結合された電熱体
を埋め込んだ圧力伝達材を配し、該圧力伝達材の
外側であつてシリンダー部内の孔の内壁面の内側
に複数の厚さの薄い環状のガスケツト材円板と前
記電熱体に触れないようにかつ該ガスケツト材円
版に平行に配置された複数の同一形状の環状の金
属円板とを積層してなる中空円筒状の圧力減衰体
を配し、該圧力減衰体の端面が前記先細アンビル
の先端面及び傾斜側面のガスケツト材に接触する
ように設置してなることを特徴とする超高圧高温
発生装置。
1. By inserting the tips of a pair of tapered anvils from the upper and lower ends of a hole penetrating the inside of the cylinder, a space surrounded by the inner wall surface of the hole and the tip surface of the tapered anvil is formed, and the space is In an ultra-high pressure apparatus comprising a sample part in the center of the sample part and a gasket material with an annular plate embedded in the outside of the sample part, the tapered part is formed near the inclined side surface of the tapered anvil and the upper and lower ends of the hole. A pressure transmitting material in which a gasket material is filled in the gap between the inclined side surface of the hole in the cylinder part facing the inclined side surface of the anvil, and an electric heating element electrically connected to the tapered anvil is embedded outside the sample part. A plurality of thin annular disks of gasket material are disposed outside the pressure transmitting material and inside the inner wall surface of the hole in the cylinder portion, and the gasket disks are arranged so as not to touch the electric heating element. A hollow cylindrical pressure damping body formed by stacking a plurality of annular metal disks of the same shape arranged in parallel to each other is disposed, and the end face of the pressure damping body is between the tip face and the inclined side face of the tapered anvil. An ultra-high pressure and high temperature generator characterized by being installed in contact with gasket material.
JP14843778A 1978-11-30 1978-11-30 Super high pressure apparatus Granted JPS5573338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14843778A JPS5573338A (en) 1978-11-30 1978-11-30 Super high pressure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14843778A JPS5573338A (en) 1978-11-30 1978-11-30 Super high pressure apparatus

Publications (2)

Publication Number Publication Date
JPS5573338A JPS5573338A (en) 1980-06-03
JPS6211606B2 true JPS6211606B2 (en) 1987-03-13

Family

ID=15452765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14843778A Granted JPS5573338A (en) 1978-11-30 1978-11-30 Super high pressure apparatus

Country Status (1)

Country Link
JP (1) JPS5573338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154201U (en) * 1987-03-27 1988-10-11

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227833A (en) * 1985-03-30 1986-10-09 Mitsubishi Metal Corp Ultrahigh pressure generator
JPS62236734A (en) * 1986-04-08 1987-10-16 住友ベークライト株式会社 Manufacture of decorative board
JP2006068620A (en) * 2004-09-01 2006-03-16 National Institute Of Advanced Industrial & Technology High-pressure generator
EP3934891B1 (en) * 2020-05-21 2023-10-25 Kilncore Inc. High temperature, high pressure, powder-based, 3d printed object manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154201U (en) * 1987-03-27 1988-10-11

Also Published As

Publication number Publication date
JPS5573338A (en) 1980-06-03

Similar Documents

Publication Publication Date Title
TW423170B (en) High power ultrasonic transducer
KR950032729A (en) Supported polycrystalline compacts with improved properties and methods for their preparation
CN101684520A (en) Ultrasonic-assisted densification device
US3201828A (en) High pressure apparatus
JPH0336490A (en) Equilateral press and equilateral press method therefor in microwave heating
US9586376B2 (en) High pressure high temperature cell
GB922619A (en) A new high-pressure die
JPS6211606B2 (en)
US9379301B2 (en) Method for manufacturing pipe-shaped thermal power generation device
CN109569435B (en) High-temperature high-pressure synthesis cavity
US3350743A (en) High temperature and high pressure apparatus
US3546413A (en) High temperature high pressure apparatus
US20040222554A1 (en) Microwave molding of polymers
JP6698150B2 (en) Capsule assemblies for ultra high pressure presses and methods of using them
EP0038647B1 (en) Improved ultrahigh pressure apparatus
CN111545132A (en) Ultrahigh pressure synthesis cavity
US5122043A (en) Electric pulsed power vacuum press
US2944289A (en) Reaction vessel
JP4829268B2 (en) Manufacturing method of ceramic
US3088169A (en) High pressure, high temperature apparatus
JP6698149B2 (en) Capsule assemblies for ultra high pressure presses and methods of using them
US10464273B2 (en) Cell assemblies and methods of using the same
JPS5855808B2 (en) ultra high pressure equipment
CN102600768A (en) Indirect heating-type synthesis assembly for high-temperature and high-pressure artificial single crystal synthesis by using cubic press
JP2630796B2 (en) Method of subjecting sample to ultra high pressure