JPS62115718A - Lighting optical system - Google Patents

Lighting optical system

Info

Publication number
JPS62115718A
JPS62115718A JP60255601A JP25560185A JPS62115718A JP S62115718 A JPS62115718 A JP S62115718A JP 60255601 A JP60255601 A JP 60255601A JP 25560185 A JP25560185 A JP 25560185A JP S62115718 A JPS62115718 A JP S62115718A
Authority
JP
Japan
Prior art keywords
light
optical system
plane
exit surface
luminous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60255601A
Other languages
Japanese (ja)
Inventor
Michio Kono
道生 河野
Takashi Komata
小俣 貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60255601A priority Critical patent/JPS62115718A/en
Publication of JPS62115718A publication Critical patent/JPS62115718A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To light an arcuate surface to be irradiated uniformly, to obtain the same effective light-source image at all points in an irradiation region and to attain a high illumination effect by arranging a luminous-flux transmission member having a predetermined shape to one part of a lighting optical system. CONSTITUTION:A light source 15 and the plane of incidence of a luminous-flux transmission member 17 are arranged positioned near two focal points of an elliptical mirror 16. The plane of incidence of the luminous-flux transmission member 17 takes a circle or a rectangle or the like, and the shape of the plane P1 of projection is formed to an arcuate shape. Outgoing luminous flux from the luminous-flux transmission member 17 is changed into parallel luminous flux by a first optical system 18, and projected to a light integrator 19. The plane P1 of projection of the luminous-flux transmission member 17 and the plane P2 of projection of the light integrator 19 are made approximately conjugate. Since the plane P1 of projection is formed to the arcuate shape, luminous flux on the plane P2 of projection as the conjugate plane of the plane P1 of projection is formed to the arcuate shape, thus reducing the eclipse of luminous flux. A slit for an arcuate opening on a slit opening plate 21 is formed onto a mask M by an optical system 22. Accordingly, the upper section of the mask M can be lit efficiently and uniformly.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子回路等の微細パターンをウニ八面上に投影
焼付をし集積回路を製造する半導体焼付は装置に好適な
照明光学系に関し、特に2枚の凹凸の反射鏡を主体とす
る反射投影光学系においてマスクth]t−円弧状に照
明する場合に好適な照明光学系に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an illumination optical system suitable for semiconductor printing equipment for producing integrated circuits by projecting and printing fine patterns such as electronic circuits onto eight surfaces of a sea urchin. In particular, the present invention relates to an illumination optical system suitable for illuminating in a mask th]t-arc shape in a reflection projection optical system mainly composed of two uneven reflecting mirrors.

(従来の技術) 従来より半導体製造用の焼付は装置に用いられている光
学系の1つに特開昭48−12039号公報で提案され
ている反射投影光学系がある。この光学系では物体面で
あるマスク面上に形成された電子回路等の微細パターン
を像面でめるクエー・向上に投影する際に、光学系を凹
面鏡と凸面鏡の2つの反射鏡を用い結像倍率が略等倍と
なるように構成し、軸外の円弧状の良像域のみを使用し
てマスクとウェハを一定方向く走査することにより投影
焼付けを行っている。この方法は他の半導体製造方法で
あるステップアンドリピート方法やコンタクト方法、近
接露光方法に比べて高スループツト、高歩留りそして高
解像力が容易に得られるという長所がらる。
(Prior Art) One of the optical systems conventionally used in printing equipment for semiconductor manufacturing is a catoptric projection optical system proposed in Japanese Patent Application Laid-Open No. 12039/1983. This optical system uses two reflecting mirrors, a concave mirror and a convex mirror, to project fine patterns such as electronic circuits formed on the mask surface, which is the object surface, onto the image plane. The image magnification is set to be approximately equal to the same magnification, and projection printing is performed by scanning the mask and wafer in a fixed direction using only an off-axis arcuate good image area. This method has the advantage of easily achieving high throughput, high yield, and high resolution compared to other semiconductor manufacturing methods such as the step-and-repeat method, the contact method, and the proximity exposure method.

しかしながら、この反射投影光学系においては円弧状の
良債域全体を均一に効率良く、所定のN、Aで照明出来
る照明系を必要とする。
However, this catoptric projection optical system requires an illumination system that can uniformly and efficiently illuminate the entire arcuate area with predetermined N and A.

これに対する照明系としては列えば特開昭54−123
877号公報や41[昭59−87879号等がある。
The lighting system for this is JP-A-54-123.
There are publications such as No. 877 and No. 41 (Sho 59-87879).

前者はクリティカル照明を利用したものであシ、マスク
面上の円弧状の照射域各点における有効光源像は光学系
の光軸を中心とする回転対称の向きを持つ。第2図はこ
の様子を模式的に表わした図であり、0は照明系の光軸
、Aはマスク面における円弧状の照射域、Bは光源像を
示している。一方、マスク上の微細パターンは一般に1
方向およびy方向の一定の方向性を持つので、照射円弧
の両端にいくにつれて有効光源像の方向とマスク上のパ
ターンの方向との差が大きくなる。その結果、わずかの
デフォーカスでウェハ上に転写されるパターン像が歪ン
でしまう場合がめった。又光源をマスク面上に結像して
いる為に光源上の光強度分布がそのままマスク面上に現
われてしまう場合がめった。
The former uses critical illumination, and the effective light source image at each point in the arc-shaped irradiation area on the mask surface has a rotationally symmetrical orientation about the optical axis of the optical system. FIG. 2 is a diagram schematically showing this situation, where 0 indicates the optical axis of the illumination system, A indicates an arc-shaped irradiation area on the mask surface, and B indicates a light source image. On the other hand, the fine pattern on the mask is generally 1
Since it has a constant directionality in the direction and the y direction, the difference between the direction of the effective light source image and the direction of the pattern on the mask increases as it approaches both ends of the irradiation arc. As a result, the pattern image transferred onto the wafer is rarely distorted due to slight defocus. Furthermore, since the light source is imaged onto the mask surface, the light intensity distribution on the light source rarely appears as it is on the mask surface.

一方後者は前者を改良したものであって、その光学系の
概略図t−第3図に示す。
On the other hand, the latter is an improved version of the former, and its optical system is schematically shown in FIG.

第3図において光#lからの光束t−橢同円ミラーによ
りライトインテグレータ3に桑光する。
In FIG. 3, a light beam t from light #l is transmitted to the light integrator 3 by a circular mirror.

ライトインテグレータ3は第4図に示すように複数のシ
リンドリカルレンズを平面上に並べたものを複数個積1
−シて構成されている。ライトインテグレータ3からの
射出光はコリメーターレンズ4により平行光となり!1
照射面5を照明する。これによりケーラー照明を行って
いる。
The light integrator 3 is a product of multiple cylindrical lenses arranged on a plane as shown in Figure 4.
- It is structured as follows. The light emitted from the light integrator 3 becomes parallel light by the collimator lens 4! 1
The irradiation surface 5 is illuminated. This provides Koehler lighting.

第1照射面5には第5図に示す円弧状開口のスリット8
が配置されている。円弧状開口のスリット8とマスク7
は光学系6を介して共役関係となっており、これにより
マスク7面上を円弧状に照明することによシ均−照明を
行っている。
The first irradiation surface 5 has a slit 8 having an arcuate opening as shown in FIG.
is located. Arc-shaped opening slit 8 and mask 7
are in a conjugate relationship through the optical system 6, and thereby perform uniform illumination by illuminating the surface of the mask 7 in an arc shape.

均一照明されたマスク7面上の微細バター/は反射鏡l
Oで反射し凹面鏡l]と凸面m 12 Kよシ反射した
後、反射fi13を介してウェハ14ifii上に投影
結像されている。
Fine butter on the uniformly illuminated 7th mask surface / is a reflecting mirror
After being reflected by the concave mirror l] and the convex surface m 12 K, it is projected and imaged onto the wafer 14ifii via the reflection fi13.

第3図に示す照明系は均一照明が容易となるがfjX5
図に示すように照射域9の一部分である円弧状開口のス
リン)8t−通過した光束のみしか使用していない為に
照明効率を向上させるのが難しかった。
The illumination system shown in Figure 3 facilitates uniform illumination, but fjX5
As shown in the figure, it was difficult to improve the illumination efficiency because only the light beam that passed through the arc-shaped aperture, which is a part of the irradiation area 9, was used.

(発明が解決しようとする問題点) 本発明は円弧状の照射域を効率良く、均一にしかも均一
の有効光源像金得ることにより像の歪みのない状態で照
明することのできる照明光学系の提供を目的とする。
(Problems to be Solved by the Invention) The present invention provides an illumination optical system that can illuminate an arc-shaped irradiation area efficiently and uniformly by obtaining a uniform effective light source image without image distortion. For the purpose of providing.

(問題点tS決するための手段) 円弧状の射出向P1を有する光束伝達部材を該光束伝達
部材の入射面が光源の結像面近傍に位置するように配置
し、前記射出面P1からの光束を第1光学系と断面形状
が円弧状をなす複数のセグメントレンズよ)成るライト
インテグレータとを通過させる際、前記射出向PI と
前記ライトインテグレータの射出面P2 とが略共役と
なり、かつ前記射出面P2近傍に結像する前記射出面P
1の円弧状の弧の方向が前記射出面P2の円弧状の弧の
方向と略一致するように設定し、第2光学系を該第2光
学系の絞りが前記射出面P2近傍に位置するように配置
し、前記第2光学系により形成された円弧状の光束を利
用したことでめる。
(Means for resolving the problem tS) A light flux transmitting member having an arcuate exit direction P1 is arranged such that the incident surface of the light flux transmitting member is located near the imaging plane of the light source, and the light flux from the exit surface P1 is When passing through a first optical system and a light integrator consisting of a plurality of segment lenses each having an arcuate cross-sectional shape, the exit direction PI and the exit surface P2 of the light integrator become approximately conjugate, and the exit surface The exit surface P that is imaged near P2
The second optical system is set such that the direction of the circular arc of the second optical system substantially coincides with the direction of the circular arc of the exit surface P2, and the aperture of the second optical system is located near the exit surface P2. This can be achieved by arranging the optical system as shown in FIG.

この他本発明の特徴は実施列において記載されている。Other features of the invention are described in the implementation section.

(実施列) 第1図は本発明の一実施列の光学系の概略図である。同
図において15は光源、L6は開田ミラー、17は光束
伝達部材でおり本実施列では光学ファイバーより構成し
ている。開田ミラー[6の2つの焦点近傍に光源15と
光束伝達部材17の入射面が位置するように配置してい
る。
(Implementation row) FIG. 1 is a schematic diagram of an optical system of one implementation row of the present invention. In the figure, 15 is a light source, L6 is a Kaida mirror, and 17 is a light beam transmitting member, which in this embodiment is composed of an optical fiber. The light source 15 and the light beam transmitting member 17 are arranged so that their entrance surfaces are located near the two focal points of the Kaida mirror [6].

これにより光源15からの光束を開田ミラー16によっ
て光束伝達部材17の入射面に集光している。光束伝達
部材17の入射面の形状は円形若しくは矩形等より成り
、射出面P1の形状は円弧状となっている。
Thereby, the light beam from the light source 15 is focused by the Kaida mirror 16 onto the incident surface of the light beam transmission member 17 . The shape of the entrance surface of the light flux transmitting member 17 is circular or rectangular, and the shape of the exit surface P1 is arcuate.

光束伝達部材17から射出した光束は第1光学系18に
よって平行光束とされライトインテグレータ19に入射
する。ライトインテグレータは本出願人が先に提案した
特願昭60−140133号で示す構成金有している。
The light beam emitted from the light beam transmission member 17 is converted into a parallel light beam by the first optical system 18 and enters the light integrator 19 . The light integrator has the components shown in Japanese Patent Application No. 60-140133, which was previously proposed by the present applicant.

即ち第6図に示すように球面レンズ61をその断面形状
が最終照射面と略相似形(本実施し1」では円弧状)と
なるように切り出したものを第7図に示すように隙間な
く積層してブロック化したレンズ群より構成している。
That is, as shown in FIG. 6, a spherical lens 61 is cut out so that its cross-sectional shape is approximately similar to the final irradiation surface (arc shape in this embodiment 1), and the spherical lens 61 is cut out without any gaps as shown in FIG. It consists of a group of lenses that are stacked together into blocks.

を東伝達部材17の射出面PI とライトイ/ケグレー
タ19の射出面P2とは略共役になっている。又射出面
Piの射出面P2近傍に結像する円弧状の弧の方向と射
出面P2の円弧状の弧の方向とは略一致するように構成
されている。
The exit surface PI of the east transmission member 17 and the exit surface P2 of the light i/ke grater 19 are substantially conjugate. Further, the direction of the circular arc formed on the exit surface Pi in the vicinity of the exit surface P2 and the direction of the circular arc of the exit surface P2 are configured to substantially match.

ライトイ/ケグレータ19と第1照射面Sとの関係は、
ライトインテグレータ19から射出した同一方向の光束
が、第2光学系20によって第1照射面S上に集光する
様になってい・る。第1照射面S上には照明ムラ調整用
の円弧状開口のスリットを有するスリット開口板2)ヲ
設けている。
The relationship between the light i/ke grater 19 and the first irradiation surface S is as follows:
The light beams emitted from the light integrator 19 in the same direction are condensed onto the first irradiation surface S by the second optical system 20. On the first irradiation surface S, a slit aperture plate 2) having a slit with an arcuate opening for adjusting illumination unevenness is provided.

そして光学系22によりスリット開口板2)上の円弧状
開口のスリットをマスクM上に形成し、円弧状の照明域
を得ている。
Then, a slit having an arc-shaped aperture on the slit aperture plate 2) is formed on the mask M by the optical system 22, thereby obtaining an arc-shaped illumination area.

このように本実施例では光束伝達部材17t−用いろこ
とによ)マスクM向上を効率の良くしかも均一に照明す
ることを可能としている。
In this way, in this embodiment, by using the light flux transmitting member 17t, it is possible to efficiently and uniformly illuminate the mask M.

次に本実施、列における光束伝達部材17の作用を説明
する前に光束伝達部材17ヲ用いない場合の照明光学系
を第8図を用いて説明する。
Next, before explaining the function of the light beam transmitting member 17 in this embodiment, the illumination optical system when the light beam transmitting member 17 is not used will be described with reference to FIG.

第8図において点P3は開田ミラー16の一焦点であり
第1図における光束伝達部材17の射出面P2に相当し
ている。点P3の断面形状は光源15の形状にもよるが
第9図(4)に示す如く略円形:Cなっている。この点
P3 とライトインテグレータ19の射出面P2 とは
第1光学系18とライトインテグレータ19の入射面p
4v介して略共役関係にある。この為2つの光学部材の
焦点距離の比で求まる結像倍率でもって点P3 Kおけ
る光束の断面形状が射出面P2に投影される。
In FIG. 8, a point P3 is one focal point of the Kaida mirror 16, and corresponds to the exit surface P2 of the light flux transmitting member 17 in FIG. The cross-sectional shape of point P3 is approximately circular (C) as shown in FIG. 9 (4), although it depends on the shape of the light source 15. This point P3 and the exit surface P2 of the light integrator 19 are the entrance surface P of the first optical system 18 and the light integrator 19.
They have a substantially conjugate relationship via 4v. Therefore, the cross-sectional shape of the light beam at the point P3K is projected onto the exit surface P2 with an imaging magnification determined by the ratio of the focal lengths of the two optical members.

ところがライトインテグレータ19けその断面形状が円
弧状に切っである為、射出面P2に投影される光束のう
ち第9図(13)の斜線部で示す領域の光束しか通過せ
ず、他の領域の光束はクランでし壕う。この場合断面全
円弧状に切り出す事により得られるう・イトインテグレ
ータのつめ数の増加率kA、ライトインテグレータの射
出面P2での光束の捕獲率tBとすると照明効率の向上
分Iは 1−AXB        ・・・・・−・・(1)と
なる。ここでもしB−1/A  :)まりライトインテ
グレータのつめ数が増加した分だけ、クランの為に光束
の捕獲率が減少したとすると1−1となって照明効率は
上がらない。しかしながら実際には点P3での断面光量
分布は第9図C)に示す如くガウス分布である為射出面
P2で光強度の中心部1切り出せばI)1となり照明効
率を上げることができる。この場合でも射出面P2  
では斜線部・以外の光束はケラしている訳であシこの領
域の光束も通過するようにすれば照明効率は更に上がる
However, since the cross-sectional shape of the light integrator 19 is cut into an arc shape, only the light beam in the shaded area in FIG. The luminous flux is hidden in the clan. In this case, if the rate of increase in the number of light integrators obtained by cutting out the entire arc in cross section is kA, and the capture rate of the light flux at the exit surface P2 of the light integrator is tB, the improvement in illumination efficiency I is 1-AXB. ......(1). Here, if B-1/A:) The light flux capture rate decreases due to the clan as the number of claws of the mari light integrator increases, the ratio becomes 1-1, and the lighting efficiency does not increase. However, in reality, the cross-sectional light intensity distribution at the point P3 is a Gaussian distribution as shown in FIG. 9C), so if the central part of the light intensity is cut out at the exit surface P2, it becomes I)1, and the illumination efficiency can be increased. Even in this case, the injection surface P2
In this case, the light flux outside the shaded area is vignetted, so if the light flux in this area is also allowed to pass through, the illumination efficiency will be further improved.

第1図で示した実施U」において光路中に配置した光束
伝達部材17はこれを実現する為のものである。即ち第
10図に示すように射出面Pi を円弧状に形成する事
によって、その共役面でろる射出面P2  での光束を
第10図CB)に示す如く円弧状とし光束のクランを少
なくしている。その結果(1)式でB−1となり照明効
率の向上分工はI−A、即ちライトインテグレータのつ
め数の増加分と等しい照度の向上全図っている。
The light beam transmitting member 17 disposed in the optical path in the embodiment U shown in FIG. 1 is for realizing this. That is, by forming the exit surface Pi in an arc shape as shown in FIG. 10, the luminous flux at the exit surface P2 that exits at its conjugate surface is made into an arc shape as shown in FIG. There is. As a result, the equation (1) becomes B-1, and the improvement in illumination efficiency is I-A, that is, the total improvement in illuminance is equal to the increase in the number of light integrators.

尚本実施列における光束伝達部材17はライトインテグ
レータ19の射出面P2での光束のクランをなくす為罠
、その射出面全円弧状にしているが、照明効率をらまり
上げる必要のないときは円弧状の代わシにそれに近い形
状で構成しても良い。
In this embodiment, the light flux transmitting member 17 is formed into a circular arc shape in order to eliminate the clamping of the light flux at the light integrator 19's light exit surface P2. Instead of an arc shape, it may be configured in a similar shape.

第11図は本発明の他の実施列の光学系の概略図である
。23は光束伝達部材であ夛本笑施列ではライトパイプ
より構成している。その他の要素は第1図の実施列と全
く同一である。ライトパイプとしては石英管若しくは単
なる反射面より構成しても良い。本実施列における光束
伝達部材23は第12図に示すよりにその入射面は矩形
で射出面はV字形若しくはU字形等から形成されている
。これは例えば断面が平面状の石英管を数枚積み重ねて
つくられている。
FIG. 11 is a schematic diagram of an optical system of another embodiment of the present invention. Reference numeral 23 denotes a light beam transmitting member, which in this case is composed of a light pipe. The other elements are exactly the same as the embodiment shown in FIG. The light pipe may be composed of a quartz tube or a simple reflective surface. As shown in FIG. 12, the light flux transmitting member 23 in this embodiment has a rectangular entrance surface and a V-shape or U-shape exit surface. This is made, for example, by stacking several quartz tubes with flat cross sections.

このような形状の光束伝達部材を用いることによってラ
イトインテグレータの射出面P2上での光束のクランを
少なくしている。即ち第13因囚、a3)に示すように
斜線部の領域の光束を通過させるようにしている。
By using a light beam transmitting member having such a shape, clamping of the light beam on the exit surface P2 of the light integrator is reduced. That is, as shown in the thirteenth factor, a3), the light flux in the shaded area is allowed to pass through.

本実施列では第1図の実a列に比べて高い照明効率を得
ることができる。光学ファイバーはコアとクラッドの比
率より、又単線が円形の断面形状をしている為に光束の
透過効率が約 0.5程度である。しかも既存の石英フ
ァイバーで構成するとそのN、Aけ概ね0.2程度であ
る。これに対してライトパイプは透過効率が殆んど1で
ありN、Aも大きい・この為第13因囚、a3)に示す
ようだ光束が多少ケラしても全体的には光学ファイバー
を用いたときよりも高い照明効率を得ることができる。
In this practical row, higher illumination efficiency can be obtained than in the actual row a in FIG. Optical fibers have a luminous flux transmission efficiency of about 0.5 due to the ratio of the core to the cladding and because the single wire has a circular cross-section. Furthermore, when constructed from existing quartz fibers, the N and A values are approximately 0.2. On the other hand, the transmission efficiency of light pipes is almost 1, and N and A are also large.For this reason, as shown in factor 13, a3), even if the light beam is slightly vignetted, optical fibers are still used overall. It is possible to obtain higher lighting efficiency than before.

尚第1図、第11図に示した実施列において第1照射面
S上にマスク等の被照射物を配置しても良い。
Note that in the implementation rows shown in FIGS. 1 and 11, an object to be irradiated, such as a mask, may be placed on the first irradiation surface S.

(発明の効果) 本発F!AKよれば照明光学系の一部に所定形状の光束
伝達部材を配置することによシ円弧状の被照射面を均一
に照明し、かつ照射域内の全ての点において同一の有効
光源像金得ることができ、しかも高い照明効率を有した
照明光学系を達成することができる。
(Effect of the invention) Original F! According to AK, by arranging a light beam transmitting member of a predetermined shape in a part of the illumination optical system, an arc-shaped irradiated surface can be uniformly illuminated, and the same effective light source image can be obtained at all points within the irradiation area. In addition, an illumination optical system with high illumination efficiency can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施列の光学系の概略図、第2図は
従来の照明系における光源像と被照射面との説明図、第
3図は本出願人による先の出願に係る照明系の説明図、
第4図、第5図は第3図の一部分の説明図、電6図、第
7図は第1図の一部分の説明図、第8図は第1因の光束
伝達部材17t−削除したときの照明光学系の説明図、
第9図囚、CB)、(C’)は各々第8図の一部分の説
明図、第1O図囚、@は第1図の一部分の説明図、第1
1図は本発明の他の実NA列の光学系の概略図、第12
図、第13因囚、Φ)は第11図の一部分の説明図であ
る。 図中15は光源、16は開田ミラー、17 、23は各
々光束伝達部材、18は第1光学系、20は第2光学系
、19はライトイ/ケグレータ、2)はスリット開口根
である。
FIG. 1 is a schematic diagram of an optical system according to one embodiment of the present invention, FIG. 2 is an explanatory diagram of a light source image and an irradiated surface in a conventional illumination system, and FIG. 3 is a diagram related to an earlier application by the present applicant. Explanatory diagram of the lighting system,
Figures 4 and 5 are explanatory diagrams of a part of Figure 3, Figures 6 and 7 are explanatory diagrams of a part of Figure 1, and Figure 8 is when the first cause of light flux transmission member 17t is removed. An explanatory diagram of the illumination optical system of
Figure 9, CB) and (C') are explanatory diagrams of a part of Figure 8, Figure 1 O, @ are explanatory diagrams of a part of Figure 1,
Figure 1 is a schematic diagram of another real NA array optical system of the present invention;
Figure 13, Φ) is an explanatory diagram of a portion of Figure 11. In the figure, 15 is a light source, 16 is a Kaida mirror, 17 and 23 are each a light beam transmitting member, 18 is a first optical system, 20 is a second optical system, 19 is a light emitting/keggler, and 2) is a slit aperture root.

Claims (3)

【特許請求の範囲】[Claims] (1)円弧状の射出面P1を有する光束伝達部材を該光
束伝達部材の入射面が光源の結像面近傍に位置するよう
に配置し、前記射出面P1からの光束を第1光学系と断
面形状が円弧状をなす複数のセグメントレンズより成る
ライトインテグレータとを通過させる際、前記射出面P
1と前記ライトインテグレータの射出面P2とが略共役
となり、かつ前記射出面P2近傍に結像する前記射出面
P1の円弧状の弧の方向が前記射出面P2の円弧状の弧
の方向と略一致するように設定し、第2光学系を該第2
光学系の絞りが前記射出面P2近傍に位置するように配
置し、前記第2光学系により形成された円弧状の光束を
利用したことを特徴とする照明光学系。
(1) A light flux transmitting member having an arc-shaped exit surface P1 is arranged such that the entrance surface of the light flux transmitting member is located near the imaging plane of the light source, and the light flux from the exit surface P1 is transmitted to the first optical system. When passing through a light integrator consisting of a plurality of segment lenses each having an arcuate cross-sectional shape, the exit surface P
1 and the exit surface P2 of the light integrator are approximately conjugate, and the direction of the circular arc of the exit surface P1 that is imaged near the exit surface P2 is approximately the direction of the circular arc of the exit surface P2. and set the second optical system to match the second optical system.
An illumination optical system characterized in that an aperture of the optical system is arranged so as to be located near the exit surface P2, and an arc-shaped light beam formed by the second optical system is utilized.
(2)前記射出面P2全体からの発散光束のうち、同一
方向への発散光束が集光する面近傍に円弧状のスリット
開口板を設けたことを特徴とする特許請求の範囲第1項
記載の照明光学系。
(2) An arc-shaped slit aperture plate is provided in the vicinity of the surface where the diverging light fluxes in the same direction among the diverging light fluxes from the entire exit surface P2 are converged. illumination optical system.
(3)前記光束伝達部材を光学ファイバー若しくはライ
トパイプより構成し、かつ、前記光束伝達部材の入射面
が円形若しくは矩形とし、射出面が円弧状、V字状若し
くはU字状となるように形成したことを特徴とする特許
請求の範囲第1項記載の照明光学系。
(3) The light flux transmitting member is formed of an optical fiber or a light pipe, and the light flux transmitting member is formed so that its entrance surface is circular or rectangular, and its exit surface is arc-shaped, V-shaped, or U-shaped. An illumination optical system according to claim 1, characterized in that:
JP60255601A 1985-11-14 1985-11-14 Lighting optical system Pending JPS62115718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255601A JPS62115718A (en) 1985-11-14 1985-11-14 Lighting optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255601A JPS62115718A (en) 1985-11-14 1985-11-14 Lighting optical system

Publications (1)

Publication Number Publication Date
JPS62115718A true JPS62115718A (en) 1987-05-27

Family

ID=17280989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255601A Pending JPS62115718A (en) 1985-11-14 1985-11-14 Lighting optical system

Country Status (1)

Country Link
JP (1) JPS62115718A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218660A (en) * 1989-11-29 1993-06-08 Canon Kabushiki Kaisha Illumination device
US5263250A (en) * 1990-04-27 1993-11-23 Canon Kabushiki Kaisha Method of manufacturing nozzle plate for ink jet printer
US5841101A (en) * 1994-12-27 1998-11-24 Canon Kabushiki Kaisha Method used in manufacturing a workpiece using a plurality of spaced apart mask patterns
US5946024A (en) * 1994-12-27 1999-08-31 Canon Kabushiki Kaisha Illuminating apparatus and device manufacturing method
US5971577A (en) * 1995-10-02 1999-10-26 Canon Kabushiki Kaisha Light source device and illumination system
US6055039A (en) * 1993-06-29 2000-04-25 Canon Kabushiki Kaisha Illumination system and exposure apparatus using the same
US6228311B1 (en) 1996-01-18 2001-05-08 Xaar Technology Limited Method of and apparatus for forming nozzles
WO2003050857A1 (en) * 2001-12-12 2003-06-19 Nikon Corporation Reflective illuminating optical element, reflective illuminating optical system, and duv to euv exposure device
US7027227B2 (en) 2003-01-22 2006-04-11 Canon Kabushiki Kaisha Three-dimensional structure forming method
JP2007525027A (en) * 2004-02-17 2007-08-30 カール・ツアイス・エスエムテイ・アーゲー Irradiation system for microlithography projection exposure apparatus
USRE39846E1 (en) 1992-11-05 2007-09-18 Nikon Corporation Illumination optical apparatus and scanning exposure apparatus
US7292316B2 (en) 2003-11-12 2007-11-06 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus having the same
JP2008278724A (en) * 2007-05-07 2008-11-13 Sumitomo Wiring Syst Ltd Protector
WO2010037434A1 (en) * 2008-09-30 2010-04-08 Carl Zeiss Smt Ag Field facet mirror for use in an illumination optic of a projection illumination system for euv microlithography
US7709736B2 (en) 2006-05-15 2010-05-04 Sumitomo Wiring Systems, Ltd. Protector for wire harness

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218660A (en) * 1989-11-29 1993-06-08 Canon Kabushiki Kaisha Illumination device
US5263250A (en) * 1990-04-27 1993-11-23 Canon Kabushiki Kaisha Method of manufacturing nozzle plate for ink jet printer
US5517000A (en) * 1990-04-27 1996-05-14 Canon Kabushiki Kaisha Apparatus for forming a workpiece using plural light beams
USRE39846E1 (en) 1992-11-05 2007-09-18 Nikon Corporation Illumination optical apparatus and scanning exposure apparatus
US6055039A (en) * 1993-06-29 2000-04-25 Canon Kabushiki Kaisha Illumination system and exposure apparatus using the same
US5946024A (en) * 1994-12-27 1999-08-31 Canon Kabushiki Kaisha Illuminating apparatus and device manufacturing method
US5841101A (en) * 1994-12-27 1998-11-24 Canon Kabushiki Kaisha Method used in manufacturing a workpiece using a plurality of spaced apart mask patterns
US5971577A (en) * 1995-10-02 1999-10-26 Canon Kabushiki Kaisha Light source device and illumination system
US6280062B1 (en) 1995-10-02 2001-08-28 Canon Kabushiki Kaisha Light source device and illumination system
US7473387B2 (en) 1996-01-18 2009-01-06 Xaar Technology Limited Method of and apparatus for forming nozzles
US6228311B1 (en) 1996-01-18 2001-05-08 Xaar Technology Limited Method of and apparatus for forming nozzles
WO2003050857A1 (en) * 2001-12-12 2003-06-19 Nikon Corporation Reflective illuminating optical element, reflective illuminating optical system, and duv to euv exposure device
US7027227B2 (en) 2003-01-22 2006-04-11 Canon Kabushiki Kaisha Three-dimensional structure forming method
US7292316B2 (en) 2003-11-12 2007-11-06 Canon Kabushiki Kaisha Illumination optical system and exposure apparatus having the same
JP2007525027A (en) * 2004-02-17 2007-08-30 カール・ツアイス・エスエムテイ・アーゲー Irradiation system for microlithography projection exposure apparatus
JP4846600B2 (en) * 2004-02-17 2011-12-28 カール・ツァイス・エスエムティー・ゲーエムベーハー Irradiation system for microlithography projection exposure apparatus
US7709736B2 (en) 2006-05-15 2010-05-04 Sumitomo Wiring Systems, Ltd. Protector for wire harness
JP2008278724A (en) * 2007-05-07 2008-11-13 Sumitomo Wiring Syst Ltd Protector
WO2010037434A1 (en) * 2008-09-30 2010-04-08 Carl Zeiss Smt Ag Field facet mirror for use in an illumination optic of a projection illumination system for euv microlithography

Similar Documents

Publication Publication Date Title
JPS597359A (en) Lighting equipment
JP3707060B2 (en) Illumination optics
US4497015A (en) Light illumination device
JPS62115718A (en) Lighting optical system
JPS60232552A (en) Lighting optical system
JPH0831736A (en) Illumination optical device
US4683524A (en) Illumination apparatus
JPH10270312A (en) Lighting device, exposure device and manufacture of device
USRE34634E (en) Light illumination device
KR20200062316A (en) Lighting optical system, exposure apparatus and manufacturing method of article
JPS62115719A (en) Light optical system
JP3950553B2 (en) Illumination optical system and exposure apparatus having the same
JP3428055B2 (en) Illumination optical device, exposure apparatus, semiconductor manufacturing method and exposure method
US6285440B1 (en) Illumination system and projection exposure apparatus using the same
US5218660A (en) Illumination device
JP3368654B2 (en) Illumination optical device and transfer method
JPH0629189A (en) Projection type aligner, method therefor and illumination optical device
JPS622539A (en) Illumination optical system
Komatsuda Novel illumination system for EUVL
JPH11162837A (en) Illumination device and projection aligner using the same
JPH06204123A (en) Illuminator and projection aligner using the same
JPS63114186A (en) Lighting apparatus
JP3367569B2 (en) Illumination optical device, exposure device, and transfer method using the exposure device
JPH0629190A (en) Optical contraction projection aligner
JPS622617A (en) Illuminating device