JPS62115211A - Production of porous body for culture of plant - Google Patents

Production of porous body for culture of plant

Info

Publication number
JPS62115211A
JPS62115211A JP60255763A JP25576385A JPS62115211A JP S62115211 A JPS62115211 A JP S62115211A JP 60255763 A JP60255763 A JP 60255763A JP 25576385 A JP25576385 A JP 25576385A JP S62115211 A JPS62115211 A JP S62115211A
Authority
JP
Japan
Prior art keywords
water
porous
porous body
super absorbent
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60255763A
Other languages
Japanese (ja)
Inventor
栄一 森田
足利 直雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagao Soda Co Ltd
Original Assignee
Nagao Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagao Soda Co Ltd filed Critical Nagao Soda Co Ltd
Priority to JP60255763A priority Critical patent/JPS62115211A/en
Publication of JPS62115211A publication Critical patent/JPS62115211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Fertilizers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、一般の土壌改良資材、人工圃場川床材、園芸
鉢物用床材などに単独で又は土その他の培養資材と共に
使用して植物生育に効果のある植物栽培用多孔体の製造
方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention can be used alone or together with soil or other cultivation materials for general soil improvement materials, artificial farm river bed materials, garden potted plant beds, etc. to improve plant growth. The present invention relates to a method for producing a porous material for plant cultivation that is effective for.

〈従来の技術〉 植物の栽培を適正、順調に行なうためには、その栽培床
を構成する材料の種類、密度などの条件と、水分、肥料
、酸素の量などの供与を管理することが重要である。そ
のために、培養床には植物の生育に必要な毛根の発達を
促す適度の通気性と保水性とそして肥料の保持性が要求
されるのである。
<Conventional technology> In order to properly and smoothly cultivate plants, it is important to control the conditions such as the type and density of the materials that make up the cultivation bed, as well as the supply of water, fertilizer, oxygen, etc. It is. For this reason, the culture bed must have adequate ventilation, water retention, and fertilizer retention to encourage the development of hairy roots necessary for plant growth.

従来の培養床には鹿沼上等の天然多孔質土壌や水ボケな
どのほか種々の合成人工材料が用いられていることは周
知のとおりである。本発明で使用する無機質材料のベン
トナイトやゼオライトも土壌改良資材として周知である
し、高吸水性樹脂もこの種の培養土用資材として種々の
形で使用されている。例えば、高吸水性樹脂粉末をその
ままの形で土に混合して使用するもの(特開昭57−2
5383号、特開昭58−823号)、吸水性高分子発
泡体を粒千秋、ペレット状、線状、フィルム状等の形状
にして土に混合して使用するもの(特開昭57−182
331号)、高吸水性高分子連続層に無機質又は有機質
資材が島状に存在した構造の層状体にして使用するもの
(特開昭57−187324号)、あるいはこれに薄層
基材として例えばポリビニルアルコール系フィルムを積
層した高吸水性積層物として使用するもの(特開昭58
−41140号)、更に、この高吸水性積層物の表面に
多孔性小片として天然水ボケ粉末、発泡ポリウレタン粉
砕品等を付潰させて使用するもの(特開昭58−155
018号)などがある。
It is well known that conventional culture beds use natural porous soil such as Kanumajo, water blur, and various synthetic artificial materials. The inorganic materials bentonite and zeolite used in the present invention are well known as soil improvement materials, and superabsorbent resins are also used in various forms as this type of cultivation soil material. For example, super absorbent resin powder is used as it is mixed with soil (Japanese Unexamined Patent Publication No. 57-2
No. 5383, JP-A No. 58-823), water-absorbing polymer foams in the form of grains, pellets, wires, films, etc. and mixed with soil (JP-A No. 57-182)
No. 331), a layered structure in which an inorganic or organic material is present in the form of islands in a continuous superabsorbent polymer layer (Japanese Patent Application Laid-Open No. 187324/1983), or a thin layer base material for this, e.g. A product used as a super absorbent laminate made by laminating polyvinyl alcohol films (Japanese Patent Laid-Open No. 58
-41140), and furthermore, those in which natural water blur powder, pulverized polyurethane foam, etc. are crushed as porous pieces on the surface of this super absorbent laminate (Japanese Patent Laid-Open No. 58-155
No. 018).

一方、本発明の製造方法に使用する無機質粉体から多孔
質粒子を製造する方法も種々提案されているが、その主
流は無機質粉末に発泡剤や発泡剤と有機質ポリマーを加
え、造粒後焼成してセラミック多孔体にして使用するも
の(例えば、特開昭58−15062号、特開昭57−
47756号)である。本発明者もこれらセラミック多
孔体に興味を抱き、高吸水性樹脂のゲルによりセラミッ
ク多孔体にする方法を確立し、特開昭60−46(17
8号で提案している。
On the other hand, various methods have been proposed for producing porous particles from the inorganic powder used in the production method of the present invention, but the mainstream method is to add a blowing agent or a blowing agent and an organic polymer to the inorganic powder, and then granulate it and then bake it. and used as a ceramic porous body (for example, JP-A-58-15062, JP-A-57-
No. 47756). The present inventor was also interested in these ceramic porous bodies, and established a method for making ceramic porous bodies using gel of super absorbent resin,
This is proposed in issue 8.

〈発明が解決しようとする問題点〉 本発明は肥料資材として良好な性質を有するベントナイ
トやゼオライトではあるが、そのままでは植物栽培床と
して適さない性質に高吸水性樹脂の使用により多孔質化
すると共に保水性を高めることを考え、上記従来技術を
考慮し、かつ本発明者が開発したセラミック多孔体の製
造方法を応用して上記問題を解決しようと試みた。
<Problems to be Solved by the Invention> The present invention uses bentonite and zeolite, which have good properties as fertilizer materials, but they are not suitable as a plant cultivation bed as they are, and the use of super absorbent resin makes them porous. In order to improve water retention, an attempt was made to solve the above problem by taking into consideration the above-mentioned conventional techniques and applying a method for producing a ceramic porous body developed by the present inventor.

〈問題点を解決するための手段〉 本発明の植物栽培用多孔体の製造方法は、無機質粉体を
膠着剤により膠着して固形体を製造するにあたり、高吸
水性樹脂を無機質粉体に混合しておき、水を加えてゲル
状物に移行して、このゲル状物にて固形体の一部分を占
有させ、乾燥することによって、固形体の中に高吸水性
樹脂を保有した多孔体を形成することを特徴とする植物
栽培用多孔体の製造方法を特徴とする。更に好ましいの
は、無機質粉体の塩基置換容量が50+ne/100g
以上であり、膠着剤がポリビニルアルコールであり、こ
れらの条件を具備した資材を用いて上記方法で製造する
ことにより、目的とする良好な植物栽培用多孔体の製造
方法が得られる。
<Means for Solving the Problems> The method for producing a porous material for plant cultivation of the present invention involves mixing a super absorbent resin with the inorganic powder when producing a solid material by sticking the inorganic powder with an adhesive. Then, by adding water and converting it into a gel-like substance, this gel-like substance occupies a part of the solid body, and by drying it, a porous body containing a super absorbent resin in the solid body is formed. The present invention is characterized by a method for producing a porous body for plant cultivation. More preferably, the base substitution capacity of the inorganic powder is 50+ne/100g.
This is the above, and by manufacturing by the above method using polyvinyl alcohol as the adhesive and using materials meeting these conditions, the desired method for manufacturing a good porous body for plant cultivation can be obtained.

以下、かかる多孔体の製造法の特徴について詳細に説明
する。
Hereinafter, the characteristics of the method for manufacturing such a porous body will be explained in detail.

無機質粉体と高吸水性樹脂の粉体を均一に混合したもの
を別に準備した膠着剤の水溶液に投入して、混合、混線
を行なう。固体である高吸水性樹脂は膠着剤を溶解して
いる水分を吸ってゲル化し、その度合いは時間と共に吸
水度を高めるため、残余の自由水は減少し系の粘度は逐
次上昇して、粘稠なペースト状に移行する。この製法は
混合の順序を変えて、膠着剤の水溶液の中に所定量の高
吸水性樹脂を混合し、完全に吸水ゲル化し、この液の中
に無機質粉体を混合して粘稠なペースト状物とする方法
も可能である。次に、乾燥を行ない水分を除き、更に、
栽培床に適した形状に成形する。
A uniform mixture of inorganic powder and superabsorbent resin powder is poured into a separately prepared aqueous adhesive solution to perform mixing and cross-talk. The solid superabsorbent resin absorbs the water that dissolves the adhesive and turns into a gel, and the degree of water absorption increases over time, so the remaining free water decreases and the viscosity of the system increases gradually, increasing the viscosity. Turns into a thick paste. This manufacturing method changes the mixing order and mixes a predetermined amount of super absorbent resin into an aqueous adhesive solution to completely absorb water and form a gel, and then mixes inorganic powder into this liquid to form a viscous paste. It is also possible to make it into a shape. Next, dry to remove moisture, and
Shape into a shape suitable for the cultivation bed.

乾燥により無機質粉体は強固に膠着し、全体の物理的強
度は高まる。高吸水性樹脂の膨潤で形成されたゲルの占
有する領域は無機質粉体膠着物の機械的強度に支えられ
て、占有した体積の状態にて乾燥が進み、気孔となって
残り、多孔体としての構造をつくる。最後に孔相互は気
化水分の移行によって生じた間隙により、又は相互の隣
接により連結路をつくり、植物栽培時に空気や水の通路
を形成する。かかる製造プロセスを経て、固形体の内部
には水分の供給を受け、ゲル状で保水できる高吸水性樹
脂を収容し、連結した気孔を均等に配置した、強固な多
孔質の構造体が製造できる。
Drying causes the inorganic powder to firmly adhere, increasing the overall physical strength. The area occupied by the gel formed by the swelling of the superabsorbent resin is supported by the mechanical strength of the inorganic powder adhesive, and dries in the occupied volume, remaining as pores and forming a porous body. Create a structure. Finally, the pores form a connecting path through gaps created by the migration of vaporized moisture or by adjacency to each other, forming air and water passages during plant cultivation. Through this manufacturing process, it is possible to manufacture a strong porous structure in which the interior of the solid body receives water supply, contains a gel-like super absorbent resin that can retain water, and has connected pores arranged evenly. .

栽培床の運用に際して肥料の供与を効率的に行なうこと
は、植物の発育や施肥の経済性から重要である。肥料は
水溶液になって床材料に物理化学的に吸着され、また保
持されている。従って、床材料の形状特に粒度、多孔性
など水分の吸着能も要素ではあるが、肥料を吸着する床
材料素材の性能が支配的要素であるとされている。
Efficient application of fertilizer when operating a cultivation bed is important from the standpoint of plant growth and economic efficiency of fertilization. Fertilizer is converted into an aqueous solution and is physicochemically adsorbed and retained by the bed material. Therefore, although moisture adsorption capacity such as the shape, particle size, and porosity of the bed material is also a factor, the ability of the bed material material to adsorb fertilizer is said to be the dominant factor.

一般的に、土壌や粘土鉱物が保有する肥料の吸着能を表
現する数値は、塩基置換容量(me/100g、100
g当りのミリ当量)で示され、通常の土壌の値は約20
me/100g程度である。本発明に係る多孔体は天然
産の原石を粉砕したものを使い、選択して多孔質を形成
できるため塩基置換容量の高効率的な品種を自由に利用
できる特徴がある。発明者の研究によれば、肥料の供給
量に対して植物への効果を表す利用率は通常30〜40
%とされているが、この利用率を50%以上に高めるに
は塩基置換容量で50me7100g以上の尿素材を採
用する必要がある。この条件に対応できる天然資材とし
てはモンモリロナイト系の天然産無機質であるベントナ
イト、ゼオライトが適用できる。本発明に使用した島根
基原関西ベントナイトは73.8ms/100g、 山
形基原ゼオライトは100.7me/100gであった
In general, the numerical value expressing the fertilizer adsorption capacity possessed by soil and clay minerals is the base displacement capacity (me/100g, 100
milliequivalents per gram), and the value for normal soil is approximately 20
It is about me/100g. The porous body according to the present invention uses crushed natural raw stone and can be selectively porous, so it has the characteristic that it is possible to freely use varieties with high efficiency in base substitution capacity. According to the inventor's research, the utilization rate, which indicates the effect on plants with respect to the amount of fertilizer supplied, is usually 30 to 40.
%, but in order to increase this utilization rate to 50% or more, it is necessary to use a urine material with a base substitution capacity of 50me7100g or more. As natural materials that can meet this condition, bentonite and zeolite, which are naturally produced inorganic substances of the montmorillonite type, can be used. The Shimane Motohara Kansai bentonite used in the present invention was 73.8ms/100g, and the Yamagata Motohara zeolite was 100.7me/100g.

多孔体に保水性を持たせ内部に多孔質を形成するため使
用する高吸水性樹脂は、次の種類のものが使用できるが
、いずれも粉体又は粒体で数十倍より最大1000倍の
体積膨張が可能である。
The following types of super absorbent resins can be used to impart water retention to porous bodies and form porosity inside them, but all of them are powders or granules with a water retention capacity of several tens of times to up to 1000 times. Volume expansion is possible.

気孔の大きさ、形状はゲル化前の高吸水性樹脂の大きさ
、形状と膨潤の度合いにより決まるので、気孔の寸法、
形状の調節については高吸水性樹脂の選択により可能で
ある。具体的樹脂としてビニルエステルー不飽和カルボ
ン酸(又はそのエステル)共重合けん化物、 αオレフ
ィン−無水マレイン酸共重合体のアルカリ塩の架橋体、
ポリエチレンオキシドの架橋体、デンプン−アクリルニ
トリル(又はメタクリロニトリル)共重合体加水分解物
、架橋ポリアクリルアミドけん化物、スルホン化ポリエ
チレンの架橋体などを挙げることができる。
The size and shape of the pores are determined by the size and shape of the superabsorbent resin before gelation and the degree of swelling.
The shape can be adjusted by selecting the superabsorbent resin. Specific resins include vinyl ester-unsaturated carboxylic acid (or its ester) copolymerized saponified product, α-olefin-maleic anhydride copolymer alkali salt crosslinked product,
Examples include crosslinked polyethylene oxide, starch-acrylonitrile (or methacrylonitrile) copolymer hydrolyzate, saponified crosslinked polyacrylamide, and sulfonated polyethylene crosslinked products.

これ等の樹脂はいずれも粉体である。All of these resins are powders.

膠着剤としては水溶性の天然又は合成高分子いずれでも
使用できるが、植物栽培用の材料として乾燥状態でも湿
潤下でも使用でき、更には地下でバクテリアとの反応を
軽減するためには、澱粉類はバクテリアの反応性と湿潤
時の膠着力が低いし、網台型の合成樹脂であるフェノー
ル系又はメラミン系樹脂も湿潤時の膠着が異常に低くな
り、湿潤時の形体安定性に問題があって実用性がない。
Any water-soluble natural or synthetic polymer can be used as a glue, but it can also be used as a material for growing plants in dry or wet conditions, and starches can be used to reduce reactions with bacteria underground. has low bacterial reactivity and low adhesion when wet, and phenolic or melamine resins, which are net-type synthetic resins, have abnormally low adhesion when wet and have problems with shape stability when wet. It's not practical.

発明者らの研究によれば、ポリビニルアルコールが必要
にして充分な能力を示した。すなわち、ポリビニルアル
コールは、平均重合度が500以上3000以下、鹸化
度が70モル%以上の領域の品種であって、この範囲で
あればいずれも水に対する溶解性、無機質との親和性と
接着性、乾燥及び湿潤時の接着力、樹脂の剛性に優れて
いる。平均重合度500以下のポリビニルアルコールに
ついては湿潤時の接着力が低く実用性がなく、平均重合
度3000以上のポリビニルアルコールの水溶液は必要
な濃度についての粘度が高く、製造工程上の混合、混線
に於て不経済な取扱いが生ずる。又、鹸化度が70モル
%以下ではそのものの水溶性が低下し、無機粉体の結合
力に劣り実用性がない。
According to the inventors' research, polyvinyl alcohol showed the necessary and sufficient performance. That is, polyvinyl alcohol is a variety with an average degree of polymerization of 500 to 3000 and a degree of saponification of 70 mol% or more, and within this range, it has good solubility in water, affinity with inorganic materials, and adhesiveness. , excellent adhesive strength when dry and wet, and resin rigidity. Polyvinyl alcohol with an average degree of polymerization of 500 or less has low adhesive strength when wet and is not practical, and an aqueous solution of polyvinyl alcohol with an average degree of polymerization of 3,000 or more has a high viscosity at the required concentration and is difficult to mix and cross-wire during the manufacturing process. In this case, uneconomical treatment occurs. Furthermore, if the degree of saponification is less than 70 mol%, the water solubility of the powder itself will decrease, and the binding strength of the inorganic powder will be poor, making it impractical.

ここに言う湿潤時の形態保持性とは培土として潅水を受
は充分な水を内部及び表面に持ったときの栽培中に取扱
われるであろう農業上又は園芸上の耕作、切返し、入替
などの作業に粒形を維持する状態を限度としたものであ
る。
The term "shape retention when wet" refers to the ability to maintain the shape of the soil when it is irrigated in the form of a soil that has sufficient water inside and on the surface of the soil. The limit is to maintain the grain shape during operation.

〈作用〉 本製法によって製造された無機質多孔体は、その中に存
在する高吸水性樹脂のために良好な保水性を有する。こ
れは、無機質多孔体が水と遭遇したとき多孔体に存在す
る水は孔の間隙又は空隙に吸着する部分と、多孔体に製
造工程で封入された高吸水樹脂の膨潤によってできるゲ
ルの部分との二つに分かれる。二部分の量比は高吸水性
樹脂の配合比により決まり、両部会を合計した水の量は
無機質に対する配合水量の量比により決定される。
<Function> The inorganic porous body produced by the present production method has good water retention due to the super absorbent resin present therein. When an inorganic porous material encounters water, the water present in the porous material is divided into two parts: one part is adsorbed into the gaps or voids of the pores, and the other part is a gel part, which is formed by the swelling of the superabsorbent resin encapsulated in the porous material during the manufacturing process. It is divided into two parts. The quantitative ratio of the two parts is determined by the blending ratio of the superabsorbent resin, and the total amount of water in both parts is determined by the quantitative ratio of the blended water amount to the inorganic substance.

このようにして、無機質内に吸着した水は多孔質系外の
湿度や、多孔体内の毛管現象により自由に移動する外、
表面からの内部包含ガス気化も容易であるが、高吸水性
樹脂の形成したゲルは内部の水分拡散速度が低く、又自
由表面からの気化は自由水に比べて遅い。実験によると
、100ccのビーカーの中に、濃度12.5%の高吸
水性樹脂(市販のスミカゲル)のゲルを入れ、7日間室
内に置いたときの気化量は18.9重量%であり、同等
条件下での水単独の気化量は25.6%であった。ゲル
からの水分気化が進み、ゲル濃度が高くなるに従って気
化速度は遅くなり、保水性が高まる。無機質よりなり、
高吸水性樹脂を内部に存在させた多孔体からの水分の蒸
発速度は、高吸水性樹脂が存在しない多孔体に比べて低
く、高い保水性を持つことになる。
In this way, water adsorbed within the inorganic material can move freely due to the humidity outside the porous system and capillary action within the porous body.
Although it is easy to evaporate the internally contained gas from the surface, the gel formed by the superabsorbent resin has a low internal moisture diffusion rate, and evaporation from the free surface is slower than free water. According to an experiment, when a super absorbent resin (commercially available Sumikagel) gel with a concentration of 12.5% was placed in a 100cc beaker and left indoors for 7 days, the amount of vaporization was 18.9% by weight. The amount of vaporization of water alone under the same conditions was 25.6%. As water evaporation from the gel progresses and the gel concentration increases, the evaporation rate slows down and water retention increases. Made of inorganic material,
The evaporation rate of moisture from a porous body in which a super absorbent resin is present is lower than that of a porous body without a super absorbent resin, resulting in high water retention.

〈実施例〉 以下、具体的な実施例によって本発明をより詳細に説明
する。
<Examples> Hereinafter, the present invention will be explained in more detail with reference to specific examples.

実施例1 塩基置換容量が73.8n+e/loogであるベント
ナイト粉末(かさねん社製関西ベントナイト)700g
に高吸水性樹脂(住友化学製スミカゲル)1昨を混合し
た粉末を、別に製造した平均重合度175o、鹸化度9
9.9%のポリビニルアルコール(クラレ製ポパールH
)の濃度8.4%の水溶液2400gの中に入れ、攪拌
を20分続けて粘稠なペースト状物を作製した。これを
スクリュー型押出機に投入してノズルより吐出しカッタ
ーにて横断的に切断し、直径8.3+++n+で長さ1
0I111+の含水粒体を作った。更に70’Cの恒温
乾燥機にて7時間乾燥したところ、直径7.1m長さ8
.8mmの内部に多数の小孔のある多孔体が得られた。
Example 1 700 g of bentonite powder (Kansai bentonite manufactured by Kasanen Co., Ltd.) with a base substitution capacity of 73.8n+e/loog
A powder prepared by mixing 1 part super absorbent resin (Sumikagel manufactured by Sumitomo Chemical) with 1 part of super absorbent resin (Sumikagel manufactured by Sumitomo Chemical) was prepared separately with an average degree of polymerization of 175o and a degree of saponification of 9.
9.9% polyvinyl alcohol (Kuraray Popal H)
) into 2400 g of an aqueous solution with a concentration of 8.4%, and stirring was continued for 20 minutes to produce a viscous paste. This is put into a screw type extruder, discharged from a nozzle, cut crosswise with a cutter, and has a diameter of 8.3+++n+ and a length of 1.
Water-containing granules of 0I111+ were prepared. After further drying in a constant temperature dryer at 70'C for 7 hours, the diameter was 7.1 m and the length was 8.
.. A porous body having a size of 8 mm and many small pores was obtained.

この多孔体の空隙率は51%で、水に15分間浸漬後の
重量増加は自重の125%であり小孔には高吸水性樹脂
のゲル状物を認めた。更に、水中に7日間連続放置後も
崩壊、亀裂を生ずるなどの変化は認められなかった。ま
た、測定した塩基置換容量は71.5n+e/100g
であった。粒体を24時間水中に置き湿潤状態にしたも
のを20℃、RH6’5%の室内に置いたとき、24時
間後の水分減少率は63.7%、48時間後のそれは8
7.2%であった。
The porosity of this porous body was 51%, the weight increase after being immersed in water for 15 minutes was 125% of its own weight, and gel-like substances of super absorbent resin were observed in the small pores. Furthermore, no changes such as collapse or cracking were observed even after being left in water for 7 consecutive days. In addition, the measured base substitution capacity was 71.5n+e/100g
Met. When the granules were placed in water for 24 hours and kept in a moist state in a room at 20°C and RH 6'5%, the moisture loss rate after 24 hours was 63.7%, and after 48 hours it was 8.
It was 7.2%.

比較例1 実施例1で得た内部に多数の小孔のある多孔体を160
℃の乾燥機にて20時間熱処理した。得られた多孔体を
水に浸漬したところ、実施例1で小孔内部に存在した高
吸水樹脂のゲル化物は認められなかった。この粒体総量
30gを実施例1と同じ条件   下で室内に置いたと
き24時間の水分減少率は83.0%、48時間後のそ
れは100%であった。
Comparative Example 1 The porous body with many small pores inside obtained in Example 1 was
Heat treatment was performed in a dryer at ℃ for 20 hours. When the obtained porous body was immersed in water, the gelled product of the super absorbent resin that existed inside the small pores in Example 1 was not observed. When a total amount of 30 g of this granule was placed indoors under the same conditions as in Example 1, the moisture reduction rate after 24 hours was 83.0%, and after 48 hours it was 100%.

実施例2 実施例1に使用したポリビニルアルコールの5m長%溶
液4000gに高吸水性樹脂(クラレイソプレー社製K
Iゲル)10gを加えて、30分間攪拌して高吸水性樹
脂のゲル化を進めた。この粘性液に塩基置換容量が10
9.7me/100gである天然ゼオライト粉末(ジ−
グライド社製ジ−グライド) 2000gを入れ攪拌し
つつ混合し、粘稠なペースト状の成型用素材をつくった
。次に金型に入れて直径約10m+の球体に成型し引続
き90℃の恒温乾燥機にて5時間乾燥したところ直径約
8.7mmで小孔を多数に持った多孔体が得られた。こ
の多孔体の空隙率は38%で塩基置換容量は99.6m
e/100Bであった。水に15分間浸漬後の重量増加
は自重の105%であり、 この際、小孔には高吸水性
樹脂のゲル化物質の存在が認められた。粒体を24時間
水中に置き湿潤状態にしたものを20℃、R1165%
の室内に置いたとき24時間後及び48時間後の水分減
少率は68.3重量%及び90.0重量%であった。
Example 2 A super absorbent resin (K manufactured by Kuraray Sopray Co., Ltd.) was added to 4000 g of the 5 m length% solution of polyvinyl alcohol used in Example 1
10 g of I gel) was added and stirred for 30 minutes to promote gelation of the super absorbent resin. This viscous liquid has a base displacement capacity of 10
Natural zeolite powder (Z-9.7me/100g)
2000 g of Glide (manufactured by Glide) was added and mixed with stirring to produce a viscous paste-like molding material. Next, it was put into a mold and formed into a sphere with a diameter of about 10 m+, and then dried in a constant temperature dryer at 90° C. for 5 hours, resulting in a porous body with a diameter of about 8.7 mm and many small pores. The porosity of this porous body is 38% and the base substitution capacity is 99.6 m
It was e/100B. The weight increase after immersion in water for 15 minutes was 105% of its own weight, and at this time, the presence of gelled superabsorbent resin was observed in the small pores. The granules were placed in water for 24 hours and kept in a moist state at 20℃, R1165%.
When placed in a room, the moisture reduction rates after 24 hours and 48 hours were 68.3% by weight and 90.0% by weight.

比較例2 実施例2にて使用したポリビニルアルコールの5重量%
濃度液400gに、実施例2に使用したと同じゼオライ
ト粉末200gを入れ攪拌しつつ混合し泥状物をつくっ
た。次に金型に入れて直径約10閣の球体に成型して引
続き90℃の恒温乾燥機にて5時間乾燥したところ直径
約9.3ww1の固型物を得た。塩基置換容量は98.
4me/100Bで、水に15分間浸漬後の重量増加は
自重の37%であった。粒体を24時間水中に置き、湿
潤状態にしたものの20℃、1865%の室内に置いた
とき、24時間及び48時間後の水分減少率は85”、
6重量%及び100重量%であった。
Comparative Example 2 5% by weight of polyvinyl alcohol used in Example 2
200 g of the same zeolite powder used in Example 2 was added to 400 g of the concentrated liquid and mixed with stirring to form a slurry. Next, it was put into a mold and formed into a sphere with a diameter of about 10 mm, and then dried in a constant temperature dryer at 90° C. for 5 hours to obtain a solid product with a diameter of about 9.3 ww1. Base substitution capacity is 98.
At 4me/100B, the weight increase after immersion in water for 15 minutes was 37% of its own weight. When the granules were placed in water for 24 hours and placed in a humid state in a room at 20°C and 1865%, the moisture loss rate after 24 and 48 hours was 85''.
They were 6% by weight and 100% by weight.

〈発明の効果〉 本発明の方法により得られた植物栽培用多孔体は、塩基
置換容量の大きい良質粘度であるから肥料の保持力が大
きく、遅効性となり肥培管理が容易となる。また、高吸
水性樹脂のために多孔質になると同時に保水力が大きく
、給水管理が容易となり、粗雑な栽培管理にも十分耐え
得ることとなり、労力節減が達成される経済効果も得ら
れるのである。
<Effects of the Invention> The porous material for plant cultivation obtained by the method of the present invention has a good viscosity with a large base substitution capacity, so it has a large fertilizer retention capacity and is slow-acting, making fertilizer management easy. In addition, because of the superabsorbent resin, it becomes porous and has a large water-holding capacity, making water supply management easy and being able to withstand rough cultivation management, which also brings economic benefits by reducing labor costs. .

以上that's all

Claims (1)

【特許請求の範囲】 1 無機質粉体を膠着剤により膠着して固形体を製造す
るにあたり、高吸水性樹脂を無機質粉体に混合しておき
、水を加えてゲル状物に移行させ、このゲル状物にて固
形体の一部分を占有させ、乾燥することによって、固形
体の中に高吸水性樹脂を保有した多孔体を形成すること
を特徴とする植物栽培用多孔体の製造方法。 2 無機質粉体の塩基置換容量が50me/100g以
上である特許請求の範囲第1項記載の植物栽培用多孔体
の製造方法。 3 膠着剤がポリビニルアルコールである特許請求の範
囲第1項記載の植物栽培用多孔体の製造方法。
[Scope of Claims] 1. When producing a solid body by sticking inorganic powder with an adhesive, a super absorbent resin is mixed with the inorganic powder, water is added thereto to transform it into a gel-like substance, and this 1. A method for producing a porous material for plant cultivation, which comprises forming a porous material containing a superabsorbent resin in the solid material by occupying a portion of the solid material with a gel-like material and drying the solid material. 2. The method for producing a porous material for plant cultivation according to claim 1, wherein the inorganic powder has a base substitution capacity of 50 me/100 g or more. 3. The method for producing a porous material for plant cultivation according to claim 1, wherein the adhesive is polyvinyl alcohol.
JP60255763A 1985-11-13 1985-11-13 Production of porous body for culture of plant Pending JPS62115211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255763A JPS62115211A (en) 1985-11-13 1985-11-13 Production of porous body for culture of plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255763A JPS62115211A (en) 1985-11-13 1985-11-13 Production of porous body for culture of plant

Publications (1)

Publication Number Publication Date
JPS62115211A true JPS62115211A (en) 1987-05-26

Family

ID=17283281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255763A Pending JPS62115211A (en) 1985-11-13 1985-11-13 Production of porous body for culture of plant

Country Status (1)

Country Link
JP (1) JPS62115211A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287193A (en) * 1988-05-13 1989-11-17 Osaka Cement Co Ltd Agricultural and horticultural soil and production thereof
US5081791A (en) * 1985-11-29 1992-01-21 Beghin-Say S.A. Support for out-of-ground cultivation comprising superabsorbent particles and method of production
JP2000336356A (en) * 1999-05-27 2000-12-05 Okutama Kogyo Co Ltd Aggregate-structural zeolite and seedling-raising culture soil using the same
US20110314882A1 (en) * 2008-10-24 2011-12-29 DuluxGroup (Australia) Pty. Ltd. Fertiliser composition
JP2020198802A (en) * 2019-06-07 2020-12-17 昭和電工マテリアルズ・テクノサービス株式会社 Method for producing raising culture soil, raising culture soil, and method for cultivating plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081791A (en) * 1985-11-29 1992-01-21 Beghin-Say S.A. Support for out-of-ground cultivation comprising superabsorbent particles and method of production
JPH01287193A (en) * 1988-05-13 1989-11-17 Osaka Cement Co Ltd Agricultural and horticultural soil and production thereof
JP2000336356A (en) * 1999-05-27 2000-12-05 Okutama Kogyo Co Ltd Aggregate-structural zeolite and seedling-raising culture soil using the same
JP4573924B2 (en) * 1999-05-27 2010-11-04 奥多摩工業株式会社 Agglomerated zeolite, production method thereof and seedling culture soil
US20110314882A1 (en) * 2008-10-24 2011-12-29 DuluxGroup (Australia) Pty. Ltd. Fertiliser composition
US8562710B2 (en) * 2008-10-24 2013-10-22 Duluxgroup (Australia) Pty Ltd. Fertiliser composition
JP2020198802A (en) * 2019-06-07 2020-12-17 昭和電工マテリアルズ・テクノサービス株式会社 Method for producing raising culture soil, raising culture soil, and method for cultivating plant

Similar Documents

Publication Publication Date Title
US20110094967A1 (en) Composite material composed of polymer materials and a porous mineral matrix and the production and use thereof
JPH0394604A (en) Granuled and coated seed
JP2933580B2 (en) Sponge-like spherical particles and method for producing the same
CN110776926A (en) Soil water-retaining agent and preparation method thereof
JPS62115211A (en) Production of porous body for culture of plant
JPH04142390A (en) Granular soil conditioner and its manufacture
US8865214B1 (en) Bioactive gypsum starch composition
JPS5934822A (en) Water holding agent for growing plant
JPH0277487A (en) Soil improving agent and method for improving soil
CN214126327U (en) Plant material particle
JP2012080785A (en) Water swelling pellet-like plant growing medium, and method for producing the same
JP2000308412A (en) Water-retaining material for growing plant
JPH07241139A (en) Production of granular peat-moss
JP2012080788A (en) Water swelling pellet-like plant growing medium, and method for producing the same
JPH02117319A (en) Raw material for culture medium
JP2006075054A (en) Water-holding material for growing plant, consisting mainly of biodegradable water-absorbing resin
CN113617340A (en) Color-changeable bactericidal attapulgite-based deodorizing and dehumidifying agent and preparation method thereof
JPH04169127A (en) Culture medium for cultivating plant
CN1314428A (en) Method for producing water-keeping gel
JPH04149088A (en) Organic fertilizer made of fowl droppings or the like and its production
JPH11209760A (en) Soil conditioner
JP2000044728A (en) Carboxymethylcellulose composition for plant cultivation, its preparation and use thereof
JP2000053965A (en) Carboxymethylcellulose gel composition for growing plant, its production and use thereof
JPH02113826A (en) Production of granular culture soil
JP2005058036A (en) Artificial seed and method for producing the same