JPS62114659A - Preparation of catalyst - Google Patents

Preparation of catalyst

Info

Publication number
JPS62114659A
JPS62114659A JP25268285A JP25268285A JPS62114659A JP S62114659 A JPS62114659 A JP S62114659A JP 25268285 A JP25268285 A JP 25268285A JP 25268285 A JP25268285 A JP 25268285A JP S62114659 A JPS62114659 A JP S62114659A
Authority
JP
Japan
Prior art keywords
solvent
active component
carrier
catalyst
catalytically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25268285A
Other languages
Japanese (ja)
Other versions
JPH0480744B2 (en
Inventor
Yasuyuki Ooishi
庸之 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP25268285A priority Critical patent/JPS62114659A/en
Publication of JPS62114659A publication Critical patent/JPS62114659A/en
Publication of JPH0480744B2 publication Critical patent/JPH0480744B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To uniformize the concn. distribution of an active component, in preparing a catalyst according to a solution impregnating method, by immersing a carrier in a solvent having an active component dissolved therein and further immersing the impregnated carrier taken out from said solvent in a separate solvent compatible with said solvent and having specific active component solubility before removing the solvent. CONSTITUTION:A porous refractory inorg. oxide carrier is immersed in a solvent A having a catalytically active component dissolved therein at 0-100 deg.C for about 5min-100hr. Thereafter, the carrier impregnated with the active compo nent is taken out and the solvent A is removed by filter paper. Subsequently, the impregnated carrier is immersed in a solvent B having active component solubility of 10g/l or less and compatible with the solvent A at 0-100 deg.C pref. for about 10min. Thereafter, the solvent B is removed. The carrier from which the solvent B is removed is dried for 1-24hr and subsequently baked to obtain a catalyst containing the active component in uniform concn. distribution.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は溶液含浸法による触媒の’El造方法に関し、
4丁しくは溶液含浸法により多孔質の耐大性無機酸化物
担体に触媒活性成′l)を担持して触媒を製j貫する際
、絞首乾燥や加熱乾燥刃の乾燥工程にa3()る触媒活
性成分の1且体内の移動を抑制する触媒の製造方法に関
する。
[Detailed Description of the Invention] "Industrial Application Field" The present invention relates to a method for producing 'El' of a catalyst by a solution impregnation method.
When manufacturing a catalyst by supporting a catalytically active component (1) on a porous, large-resistant inorganic oxide carrier using a solution impregnation method, a3 () is used in the drying process of hanging drying or heating drying blade. The present invention relates to a method for producing a catalyst that suppresses the movement of one of the catalytically active components within the body.

し従来の技術] 工業用触媒は数I楯〜1cm程度の径を右する粒子状あ
るいは円柱状のものが多く、一般に担体への触媒活性物
質の担持は溶3ル含浸法が用いられる。
BACKGROUND OF THE INVENTION Industrial catalysts are often in the form of particles or cylinders with a diameter of about 1 cm to 1 cm, and generally a molten impregnation method is used to support a catalytically active substance on a carrier.

溶液含浸法とは活性成分を溶媒に溶かし、その溶液に担
体を浸漬し、所定時間後に取り出して、乾燥後焼成する
方法である。
The solution impregnation method is a method in which an active ingredient is dissolved in a solvent, a carrier is immersed in the solution, taken out after a predetermined period of time, dried, and then fired.

一般に触媒担体内の触媒活性成分力イ1i +ま均一で
ある場合が多いが、一方では触媒内部のみに触媒活性成
分を担持する等して触媒の特性を向上すろ試みもある。
In general, the catalytic active components within the catalyst carrier are often uniform, but there are also attempts to improve the characteristics of the catalyst by, for example, supporting the catalytically active components only inside the catalyst.

しかしながら溶液含浸法で触媒活性成分を担持した場合
、その溶媒除去づ−なりら乾燥工程において触媒活性成
分が溶媒とともに移動するため、均一に分布さVようと
した場合でも1r!体の外表付近に偏る前向がある。ざ
らに触媒活性成分の澗■α分イロを意図的に変化させる
場合、乾燥工程にJ5ける濶度分侑の乱れ(、表大きな
問題である。
However, when a catalytically active component is supported by a solution impregnation method, the catalytically active component moves together with the solvent during the drying process when the solvent is removed. There is an anterior orientation that is biased towards the outer surface of the body. When intentionally changing the ratio of the catalytically active component, it is a big problem that the ratio of the ratio of the catalytic active component to J5 is disturbed during the drying process.

従って、1ス上の問題を解決するために種々の研究が行
われていた。例えば、触媒活性成分を強く1[1体に固
定してから乾燥を行う方法(Chen+。
Therefore, various studies have been conducted to solve the above problems. For example, a method in which the catalytically active component is strongly fixed in one form and then dried (Chen+).

l et(、第1165頁、1982年〉、粘度調整剤
を添加して、溶媒の拡散過程を改良する方法(M。
et (, p. 1165, 1982), Method for improving the solvent diffusion process by adding a viscosity modifier (M.

Kotter 、 l 、 R1ekert、P re
p、  Catal、 l )等がある。
Kotter, L., R1ekert, Pre.
p, Catal, l), etc.

[発明が解決しようとする問題点] しかしなが・ら、これら従来の技術においては、前者は
触媒活性成分が限られ、一般的ではない。
[Problems to be Solved by the Invention] However, in these conventional techniques, the catalytically active components of the former are limited and are not common.

また後者は添加する粘度調整剤が触媒内に残留するため
、除去する工程が必要である。
In addition, in the latter case, since the viscosity modifier added remains in the catalyst, a step of removing it is necessary.

本発明は、上述の問題点に鑑みなされたもので、溶液含
浸法で触媒を製造する方法において、担体に含浸させた
触媒活性成分が乾燥工程において担体内を移動すること
を抑制する触媒の製造方法を提供することを目的とする
The present invention has been made in view of the above-mentioned problems, and is used to produce a catalyst that suppresses movement of the catalytically active component impregnated into the carrier during the drying process in a method of producing a catalyst using a solution impregnation method. The purpose is to provide a method.

[問題点を解決するための手段および作用j本発明者ら
は航記の問題点を解決するために鋭意検討を行った結果
、含浸後のlf1体内の溶媒を活性成分が溶解しない溶
媒に置換することで、乾燥工程において活性成分の移動
を抑制することを知見し本発明を完成させるに至った。
[Means and effects for solving the problem j As a result of intensive studies by the present inventors to solve the navigation problem, the solvent in the lf1 body after impregnation was replaced with a solvent in which the active ingredient does not dissolve. The present inventors have discovered that the movement of active ingredients can be suppressed in the drying process by doing so, and have completed the present invention.

すなわら本発明は、多孔質の耐火性無機酸化物担体に触
媒活性成分を溶液含浸法によりin持ザる触媒の製造方
法において、 該触媒活性成分を溶解した溶媒Aに該担体を浸漬した後
取り出し、次いで該触媒活性成分の溶解度が10g/)
以下で、かつ溶媒Aと相溶性のある溶媒B中に浸漬した
後溶媒Bを除去して、該触媒活性成分を該担体に担持す
ることを特徴とする触媒の製造方法である。
That is, the present invention provides a method for producing a catalyst in which a porous refractory inorganic oxide carrier is impregnated with a catalytically active component by a solution impregnation method, which comprises immersing the carrier in a solvent A in which the catalytically active component is dissolved. After removal, the solubility of the catalytically active component is 10 g/)
The method for producing a catalyst described below is characterized in that the catalyst is immersed in a solvent B that is compatible with the solvent A, and then the solvent B is removed to support the catalytically active component on the carrier.

本発明でいう担体は、多孔質の耐火性無機酸化物であり
、触媒用担体として用いられるものであれば特に制限さ
れない。一般に周1!11律表の第■族、第1Lあるい
は第1v族の元素の中から選ばれる少なくとも1種の元
素の酸化物を挙げることができる。特にシリカ、アルミ
ナ、マグネシア、ジルコニア、ドリア、ボリア、ストロ
ンチアおよびハフニア等の酸化物の少なくとも1種が好
ましく使用できる。
The carrier referred to in the present invention is a porous refractory inorganic oxide, and is not particularly limited as long as it can be used as a catalyst carrier. In general, oxides of at least one element selected from the elements of Group 1, Group 1L, or Group 1V of the 111 Table of Contents can be mentioned. In particular, at least one of oxides such as silica, alumina, magnesia, zirconia, doria, boria, strontia, and hafnia can be preferably used.

この担体の粒子の大きさは一般に直径0.1〜10mで
あり、押し出したときは一般に0.3〜10m+で、球
状の場合には0.1〜5閤のものが好ましい。
The particle size of this carrier is generally 0.1 to 10 m in diameter, generally 0.3 to 10 m+ when extruded, and preferably 0.1 to 5 m in diameter when spherical.

また一般に11体の表面積は約100況/g以上、平均
細孔直径は約20Å以上、細孔容積は0.4cc/りの
ものが好ましい。
In general, it is preferable that the surface area of the 11 particles is about 100 cm/g or more, the average pore diameter is about 20 angstroms or more, and the pore volume is 0.4 cc/g.

本発明でいう触媒活性成分とは触媒作用を示すしのであ
れば特に限定されるものではない。一般に触媒活性成分
としては、周期律表第1B族、第1IB厄、第VB族、
第VI B族および第■族の金属の中から選ばれる少な
くととも1種の金属元素あるいはイの化合物が挙げられ
、例えば好ましくはPt 、Pb 、Ru 、Co 、
Ni 、Mo 、W、V、Cuおよび7nからなる群よ
り選択される。金属化合物としてはこれらの金属の酸化
物、水酸化物、塩化物、硫化物、炭酸塩、硫酸塩、r+
r1M塩および有IM酸塩が挙げられる。
The catalytically active component as used in the present invention is not particularly limited as long as it exhibits catalytic action. In general, catalytic active components include Group 1B, Group 1IB, Group VB of the periodic table,
Examples include at least one metal element selected from Group VI B and Group II metals or compounds of Group A, such as preferably Pt, Pb, Ru, Co,
Selected from the group consisting of Ni, Mo, W, V, Cu and 7n. Metal compounds include oxides, hydroxides, chlorides, sulfides, carbonates, sulfates, and r+ of these metals.
Includes r1M salts and IM salts.

触媒活性成分の担体への担持出は一般に金属酸化物とし
て計篩し、約0.01〜約30重量%、好ましくは約0
.1〜約20重ω%の範囲である。
The catalytically active component is generally sieved as a metal oxide, and the amount of the catalytically active component is about 0.01 to about 30% by weight, preferably about 0.
.. It is in the range of 1 to about 20 weight ω%.

触媒活性成分は金属元素態あるいは酸化動態のような化
合物懇で触媒中に存在しうる。
The catalytically active component may be present in the catalyst in the form of a metal element or as a compound such as oxidative kinetics.

本発明でいう溶媒△とは触媒活性成分を溶解できるもの
であれば特に制限されるものではない。
The solvent Δ in the present invention is not particularly limited as long as it can dissolve the catalytically active component.

例えば触媒活性成分が金属塩の場合は一般に水等がりY
ましく用いられ、金属有機M塩の場合は一般に炭素数1
〜6のアルコール、例えばメタノール、■タノール、プ
ロパツール、ブタノール、アミルアルコールおよびへ主
シルアルコール、アセトン、ジオキサン、ベンげン、ト
ルエン等の有機溶媒が好ましく用いられる。
For example, if the catalytic active component is a metal salt, generally water
In the case of metal organic M salts, the number of carbon atoms is generally 1.
-6 alcohols, such as organic solvents such as methanol, ethanol, propatool, butanol, amyl alcohol and hemyl alcohol, acetone, dioxane, benzene, and toluene, are preferably used.

本発明でいう溶媒Bとは触媒活性成分の溶解度が10す
/1以下、好ましくは5(J/j以下で、かつ溶媒Δと
相溶性のある溶媒であれば特に限定されるものではない
。溶媒Bとしては溶媒へと同様の溶媒を用いることがで
きる。しかしながら溶媒Aと溶媒Bの組合せは触媒活性
成分によって異なる。例えば触媒活性成分が金属塩の揚
台、溶fiAとして水を用いたならば、溶媒Bとしては
活性成分の溶解度が10Q/J以下でかつ溶媒Aと相溶
性のあるアルコール類やアセトン等が用いられる。
The solvent B used in the present invention is not particularly limited as long as it has a solubility of the catalytically active component of 10 solubility or less, preferably 5 (J/j or less), and is compatible with the solvent Δ. The same solvent as the solvent can be used as the solvent B. However, the combination of solvent A and solvent B differs depending on the catalytically active component. For example, if the catalytically active component is a platform for a metal salt, and water is used as the solution fiA. For example, as the solvent B, alcohols, acetone, etc., in which the solubility of the active ingredient is 10 Q/J or less and are compatible with the solvent A, are used.

この場合溶媒Aと同様の水は用いられない。ここで言う
溶解度とは、溶媒1ノ中に溶解できる触媒活性成分の重
聞(a )を表わす。
In this case, water similar to solvent A is not used. The solubility herein refers to the weight (a) of the catalytically active component that can be dissolved in the solvent.

また、本発明で言う相溶性のあるとは、2種類の溶媒を
混合した際、両者をどのような割合にしても層分離を起
こさない場合を示す。
In addition, the term "compatible" as used in the present invention refers to a case where, when two types of solvents are mixed, no phase separation occurs no matter what the ratio of the two solvents.

次に、本発明の触媒の製造方法について述べる。Next, a method for producing the catalyst of the present invention will be described.

先ず、触媒活性成分を溶解した溶媒Aに担体を温度O〜
100℃で約5分〜100時間、好ましくは30分〜2
4時間浸漬し、その後触媒活性成分を含浸した担体を取
り出し、濾紙等で溶媒Aを除去する。
First, the carrier is placed in solvent A in which the catalytically active component is dissolved at a temperature of O~
At 100°C for about 5 minutes to 100 hours, preferably 30 minutes to 2
After soaking for 4 hours, the carrier impregnated with the catalytically active component is taken out and solvent A is removed using filter paper or the like.

次に溶媒活性成分の溶解度が10g/ノ以下で、かつ溶
媒△と相溶性のある溶媒B(溶媒Aとは異なる溶9!1
.>に温度0〜100℃で約1分間以上、好ましくは約
10分間以上浸漬する。この際、必要に応じて撹拌する
ことも可能である。その少溶媒Bを除去する。次に溶媒
Bを除去した担体を室温で約1〜24時間放置乾燥した
後、一般に温度約400〜800℃で約1〜24時間焼
成する。なお、焼成前に一般に温度約50〜150℃で
約1〜24時間で加熱乾燥してもよい。
Next, the solubility of the solvent active ingredient is 10 g/no or less, and the solvent B is compatible with the solvent
.. > at a temperature of 0 to 100°C for about 1 minute or more, preferably about 10 minutes or more. At this time, it is also possible to stir if necessary. The minor solvent B is removed. The carrier from which solvent B has been removed is then left to dry at room temperature for about 1 to 24 hours, and then calcined at a temperature of about 400 to 800° C. for about 1 to 24 hours. In addition, before firing, it may be dried by heating, generally at a temperature of about 50 to 150° C. for about 1 to 24 hours.

本発明において触媒内の触媒活性成分の濃度分布を測定
する方法として、X線マイクロ分析(EPMA)法を挙
げることができる。触媒を円柱状の場合は外周部に対し
て直角に切断し、球状の場合は球の中心を通って切断す
る。この切断面を前)本のEPMAにより走査すること
で濃度分布を与える図が得られる。
In the present invention, an X-ray microanalysis (EPMA) method can be cited as a method for measuring the concentration distribution of catalytically active components within the catalyst. If the catalyst is cylindrical, cut at right angles to the outer circumference; if spherical, cut through the center of the sphere. By scanning this cut surface with the EPMA of the previous book, a diagram giving the density distribution can be obtained.

本発明の触媒の製造法は、一般に石油類の水素化処理用
のモリブデン、コバルト、ニッケル等を担持した触媒、
炭化水素の転換(改質、水素添加、脱水素、異性化等)
用の白金、パラジウム、イリジウム等を担持した触媒お
よび排出ガス中の一酸化炭素、炭化水素、窒素酸化物等
の浄化用触媒として、白金やパラジウムを担持した触媒
等の製造に有効である。
The method for producing the catalyst of the present invention generally includes a catalyst supporting molybdenum, cobalt, nickel, etc. for hydrotreating petroleum.
Hydrocarbon conversion (reforming, hydrogenation, dehydrogenation, isomerization, etc.)
It is effective in the production of catalysts supporting platinum, palladium, iridium, etc., and catalysts for purifying carbon monoxide, hydrocarbons, nitrogen oxides, etc. in exhaust gas.

通常、溶液含浸法による触媒の製造方法において、触媒
活性成分を担体に含浸させた後の放置乾燥あるいは加熱
乾燥等の乾燥工程で、溶媒の蒸発等による移動とともに
、溶媒に溶解している触媒活性成分が担体内を移動する
ことにより、担体内の触媒活性成分の濃度分布に偏りや
乱れが生じるものと考えられる。
Normally, in a method for producing a catalyst using the solution impregnation method, during the drying process such as leaving the catalytically active component to be impregnated into the carrier or drying by heating, the catalytic activity dissolved in the solvent is transferred due to evaporation of the solvent, etc. It is thought that the movement of the components within the carrier causes bias or disturbance in the concentration distribution of the catalytically active components within the carrier.

本発明において触媒活性成分の担体内での移動抑制の作
用機構自体は明らかでないが、溶媒Aが溶媒Bに徐々に
置換し、触媒活性成分が担体内に沈着するため乾燥工程
における移動が抑制されるものと考えられる。
Although the mechanism of action for suppressing the movement of the catalytically active component within the carrier in the present invention is not clear, solvent A is gradually replaced by solvent B, and the catalytically active component is deposited within the carrier, so movement during the drying process is suppressed. It is considered that

「実施例」 以下、実施例、比較例J3よび分析試験に基づき本発明
を具体的に説明する。
"Example" Hereinafter, the present invention will be specifically described based on Examples, Comparative Example J3, and analytical tests.

実  施  例  1 パラモリブデン酸アンモニウム水溶液(モリブデン濃度
8wt%)に、1mmのアルミナ押し出し成型担体を3
111間浸漬した。それを取り出し、濾紙上で水分を取
り、アセトン中に30分浸漬した。アセトンは脱水剤を
通して循環した。取り出した触媒を室温で30分数百後
、550℃で3時間焼成した。
Example 1 Three 1 mm extruded alumina carriers were added to an aqueous ammonium paramolybdate solution (molybdenum concentration 8 wt%).
It was immersed for 111 hours. It was taken out, drained on filter paper, and immersed in acetone for 30 minutes. Acetone was circulated through the dehydrator. After several hundred minutes at room temperature, the taken out catalyst was calcined at 550° C. for 3 hours.

これを触媒Aとした。This was designated as catalyst A.

匿−」L−皿一二し 実施例1と同様の触媒活性成分および担体を用いて行な
った。該担体を蹟触媒活性成分含有溶液に3[1;¥間
浸漬した後取り出し、濾紙上で水分を取った。それを室
温より徐々に昇温して120℃で2時間乾燥し、550
℃で3時間焼成した。これを触媒Bとした。
The experiment was carried out using the same catalytically active components and carrier as in Example 1. The carrier was immersed in a solution containing a catalytically active component for 3 minutes, then taken out, and the water was removed on a filter paper. The temperature was gradually raised from room temperature and dried at 120°C for 2 hours.
It was baked at ℃ for 3 hours. This was designated as catalyst B.

実  施  例  2 塩化コバルトを含む0.1規定HCJ溶′a(コバルト
濃度4ff11%)に実施例1で用いたアルミナ担体を
30分浸漬した後、取り出し、aa紙上で水分を取り、
アセトン中に30分浸漬した。アセトンは脱水剤を通し
て循環した。取り出した触媒を室温で30分放置後、5
50℃で3時間焼成した。これを触媒Cとした。
Example 2 The alumina support used in Example 1 was immersed in a 0.1N HCJ solution containing cobalt chloride (cobalt concentration 4ff11%) for 30 minutes, then taken out and drained on AA paper.
Soaked in acetone for 30 minutes. Acetone was circulated through the dehydrator. After leaving the removed catalyst at room temperature for 30 minutes,
It was baked at 50°C for 3 hours. This was designated as catalyst C.

比  較  例  2 実施例2と同様の触媒活性成分および担体を用いて行な
った。該担体を該触媒活性成分含有溶液に30分浸油し
た後取り出し、1M紙上で水分を取った。それをv温ま
り徐々にjV濡して 120℃で2時間乾燥し、550
℃で3時間焼成した。これを触媒りとした。
Comparative Example 2 Comparison was conducted using the same catalytically active component and carrier as in Example 2. The carrier was immersed in the catalytically active component-containing solution for 30 minutes, then taken out, and the moisture was removed on 1M paper. Warm it up, gradually wet it with water, dry it at 120℃ for 2 hours, and heat it to 550℃.
It was baked at ℃ for 3 hours. This was used as a catalyst.

分  析  試  験 実施例1〜2および比較例1〜2で得られた触媒A〜D
の金属担持量を原子吸光法で測定した。
Analysis Test Catalysts A to D obtained in Test Examples 1 to 2 and Comparative Examples 1 to 2
The amount of metal supported was measured by atomic absorption spectrometry.

その結果を第1表に示す。The results are shown in Table 1.

さらに、これらの触媒A−DをEPMAによって線分析
した。その結果を第1〜4図に示す。
Additionally, these catalysts A-D were line analyzed by EPMA. The results are shown in Figures 1-4.

第1表 金属分析結果 第1表に示されるように、従来の方法と同様に本発明の
方法によっても、(qられる触媒の金属担持量は変わら
ないことが判る。
Table 1 Metal Analysis Results As shown in Table 1, it can be seen that the amount of metal supported on the catalyst (q) does not change by the method of the present invention as well as by the conventional method.

次に、触媒活性成分を担体の外表から内部にまで均一に
分布した状態に制御する場合、本発明の方法より1!7
られた触媒A(実施例1)では第1図に示すように?i
!ll性成分(MO)は担体の外表から内部にまで均一
に分布しているが、従来の方法によって得られた触媒B
(比較例1)では第2図に示づように乾燥二[程で活性
成分の移動があり、活性成分〈MO)は均一に分布しな
いことが判る。
Next, when controlling the catalytic active component to be uniformly distributed from the outer surface to the inside of the carrier, the method of the present invention is 1!7
In the case of catalyst A (Example 1), as shown in FIG. i
! Although the ll component (MO) is uniformly distributed from the outer surface to the inside of the carrier, catalyst B obtained by the conventional method
In Comparative Example 1, as shown in FIG. 2, there was movement of the active ingredient during the second drying period, and it was found that the active ingredient (MO) was not uniformly distributed.

また、触媒活性成分を担体の外表から内部にいくほど高
濃度になるように制御する場合、本発明の方法で1けら
れた触媒C(実施例2)では第3図に示すように活性成
分(Co)は担体の内部にいくほど高い濃度になってい
るが、従来の方法で19られた触媒D(比較!IA2 
>では第4図に示すように、乾燥工程で活性成分の移動
があり活性成分(Co )は担体の内部にいくほど高い
濃度分布にならず、逆に外表にいくほど高い濃度分布に
(^ることが判る。
In addition, when controlling the concentration of the catalytic active component so that it becomes higher in concentration from the outer surface of the carrier toward the inside, in catalyst C (Example 2), which was removed by the method of the present invention, the active component was The concentration of (Co) becomes higher as it goes inside the carrier, but catalyst D (comparison! IA2
> As shown in Figure 4, the active ingredient (Co) moves during the drying process, and the active ingredient (Co) does not have a high concentration distribution as it goes inside the carrier, but on the contrary, the concentration distribution increases as it goes to the outside surface (^ It turns out that

[発明の効果] 以上説明のごとく、多孔質の耐火性無機酸化物78体に
触媒活性成分を溶液含浸法により担持するに際しで、触
媒活性成分を溶解した溶媒Aを触媒活性成分の溶解度が
10(1/J以下で、かつ溶媒Aと相溶性のある溶媒B
T:置換する本発明の触媒の製造方法は、乾燥工程にお
ける触媒活性成分の担体での移動を抑制することができ
る。
[Effects of the Invention] As explained above, when supporting a catalytically active component on 78 porous refractory inorganic oxides by a solution impregnation method, the solvent A in which the catalytically active component was dissolved was used when the solubility of the catalytically active component was 10. (Solvent B that is 1/J or less and is compatible with solvent A)
T: The method for producing a catalyst of the present invention in which substitution is performed can suppress the movement of the catalytically active component on the carrier during the drying step.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は、実施〃1および比較例で得られた触媒へ
〜DのX線マイクロ分析(EPMA)による金属(Mo
 、 Co ’)の濃度分布をそれぞれ示す図。
Figures 1 to 4 show the results of X-ray microanalysis (EPMA) of metals (Mo
, Co′) respectively.

Claims (1)

【特許請求の範囲】 1、多孔質の耐火性無機酸化物担体に触媒活性成分を溶
液含浸法により担持する触媒の製造方法において、 該触媒活性成分を溶解した溶媒Aに該担体を浸漬した後
取り出し、次いで該触媒活性成分の溶解度が10g/l
以下で、かつ溶媒Aと相溶性のある溶媒B中に浸漬した
後溶媒Bを除去して、該触媒活性成分を該担体に担持す
ることを特徴とする触媒の製造方法。
[Claims] 1. A method for producing a catalyst in which a porous refractory inorganic oxide carrier is supported with a catalytically active component by a solution impregnation method, after immersing the carrier in a solvent A in which the catalytically active component is dissolved. Then, the solubility of the catalytically active component is 10 g/l.
A method for producing a catalyst, characterized in that the catalyst active component is supported on the carrier by immersing the catalyst in a solvent B that is compatible with the solvent A, and then removing the solvent B.
JP25268285A 1985-11-13 1985-11-13 Preparation of catalyst Granted JPS62114659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25268285A JPS62114659A (en) 1985-11-13 1985-11-13 Preparation of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25268285A JPS62114659A (en) 1985-11-13 1985-11-13 Preparation of catalyst

Publications (2)

Publication Number Publication Date
JPS62114659A true JPS62114659A (en) 1987-05-26
JPH0480744B2 JPH0480744B2 (en) 1992-12-21

Family

ID=17240773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25268285A Granted JPS62114659A (en) 1985-11-13 1985-11-13 Preparation of catalyst

Country Status (1)

Country Link
JP (1) JPS62114659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286698A (en) * 2007-05-18 2008-11-27 Toyota Motor Corp Analytical method for trace amount of metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286698A (en) * 2007-05-18 2008-11-27 Toyota Motor Corp Analytical method for trace amount of metal

Also Published As

Publication number Publication date
JPH0480744B2 (en) 1992-12-21

Similar Documents

Publication Publication Date Title
RU2146171C1 (en) Catalytic system for catalytic hydrodesulfurization hydrodehydrogenation, reforming, hydrogenation - dehydrogenation and isomerization of hydrocarbon raw material; method of production, activation, regeneration and use
EP0359356B1 (en) A method of presulfiding a hydrotreating catalyst
EP0545931B1 (en) Preparation of three-way catalysts with highly dispersed ceria
US20060153765A1 (en) Method for preparing catalysts for heterogeneous catalysis by multiple-phase impregnation, catalysts and use of said catalysts
US3985682A (en) Method of preparing solid contact materials
KR100194483B1 (en) NOx Adsorbent
US4152301A (en) Catalyst for automotive emission control and method for making same
JPS59142849A (en) Doubly promoted platinum metal catalyst for controlling waste material
LT3597B (en) Process for preparing catalyst for amination of monoethanolamine
US10258965B2 (en) Sulfur-resistant catalyst for aromatics saturated hydrogenation and preparation method thereof
JP3442382B2 (en) Support materials for platinum group metal containing three-way catalysts for purifying exhaust gases of internal combustion engines
US3980589A (en) Method for preparing a catalyst comprising ruthenium supported on a group IIA oxide
JP4381071B2 (en) Method for producing exhaust gas treatment catalyst
US5141912A (en) Chrome/platinum/palladium catalyst for hydrocarbon emission control
US5780384A (en) Hydrated manganese dioxide oxidation catalysts and process of producing same
BR112018012623B1 (en) oxidation catalyst for exhaust gas from compressed natural gas combustion system
US4061713A (en) Purification of exhaust gases
JPS62114659A (en) Preparation of catalyst
US4380510A (en) Method of making layered catalysts
DE2531770B2 (en) Process for applying a catalytically active coating to a catalyst carrier
US4374047A (en) Process for application of a catalytically active coating containing platinum, palladium or rhodium or their mixtures to a carrier and product made by said process
US5716897A (en) Sulfur tolerant hydrocarbon conversion catalyst
US4218341A (en) Process for the application of a catalytically active coating on a catalyst carrier
RU2714677C1 (en) Method of recovering activity of a zeolite-containing catalyst
JP3324746B2 (en) Sulfur compound adsorbent