JPS62114226A - Ion beam exposure equipment - Google Patents

Ion beam exposure equipment

Info

Publication number
JPS62114226A
JPS62114226A JP25541285A JP25541285A JPS62114226A JP S62114226 A JPS62114226 A JP S62114226A JP 25541285 A JP25541285 A JP 25541285A JP 25541285 A JP25541285 A JP 25541285A JP S62114226 A JPS62114226 A JP S62114226A
Authority
JP
Japan
Prior art keywords
distance
ion source
ion
exposure
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25541285A
Other languages
Japanese (ja)
Inventor
Toru Itakura
徹 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25541285A priority Critical patent/JPS62114226A/en
Publication of JPS62114226A publication Critical patent/JPS62114226A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To improve the matching of an ion beam axis by varying a distance between an ion source and detecting means. CONSTITUTION:A moving mechanism 12 for moving a direction regulating mechanism 10 in a direction of an arrow to vary a distance from detecting means 7 of an ion source 1 is added. Bellows are altered to bellows 11a which are increased in extending contracting range. Since the image of an image pick-up surface S is enlarged when a distance L from the end of an emitter chip 1a to the means 7 is increased even if the deciding accuracy of the coinciding state of desired IB to the center C by observing the surface S is the same as that in the conventional apparatus, the axis matching accuracy of IB can be improved. Accordingly, an accurate axis matching can be performed.

Description

【発明の詳細な説明】 〔概要〕 イオン源に対向しイオン源から放射されるイオンの放射
方向による強度分布を検知する検知手段を具え、イオン
ビームの軸合わせが可能なイオンビーム露光装置におい
て、 イオン源と検知手段との間の距離を可変にすることによ
り、 イオンビームの軸合わせの精度向上を可能にしたもので
ある。
[Detailed Description of the Invention] [Summary] An ion beam exposure apparatus that is equipped with a detection means that faces an ion source and detects the intensity distribution according to the emission direction of ions emitted from the ion source, and that is capable of aligning the axis of the ion beam. By making the distance between the ion source and the detection means variable, it is possible to improve the accuracy of ion beam alignment.

〔産業上の利用分野〕[Industrial application field]

本発明は、イオンビームの軸合わせが可能なイオンビー
ム露光装置の構成に関す。
The present invention relates to the configuration of an ion beam exposure apparatus that can align the axis of an ion beam.

イオンと一ム(IB)露光は、半導体装置の製造などに
おいて微細パターンの露光に現在多用されている電子ビ
ーム(EB)露光のEBをIBに変えたもので、EBW
光に見られる固体中での電子の散乱による近接効果が殆
どないため、非常に高い分解能を持つ特徴があり、更に
ビームがイオンであるところからイオン注入機能やエツ
チング加工機能をも兼ね備えている。
Ion and beam (IB) exposure is a variation of electron beam (EB) exposure, which is currently widely used for exposure of fine patterns in semiconductor device manufacturing, by replacing EB with IB.
Because there is almost no proximity effect caused by scattering of electrons in solids, which is seen in light, it has an extremely high resolution, and since the beam is ions, it also has ion implantation and etching functions.

そしてIB露光装置は、電子銃がイオン源に変わる点を
除けば、EB露光装置と略同じ構成をなしている。
The IB exposure apparatus has substantially the same configuration as the EB exposure apparatus, except that the electron gun is replaced with an ion source.

イオン源には、液体金属をイオン化する液体金属イオン
源と、ガスをイオン化する電界電離型ガスイオン源があ
り、何れも先端が鋭くとがった(半径が、液体金属イオ
ン源にあっては1〜10μm程度、電界電離型ガスイオ
ン源にあっては102〜103人程度)高融点金属例え
ばタングステンのエミッタチップを具え、エミッタチッ
プの先端からIBを放射する。
Ion sources include liquid metal ion sources that ionize liquid metal, and field ionization type gas ion sources that ionize gas, and both have a sharp tip (the radius of the liquid metal ion source is 1 to 1). An emitter tip of a high melting point metal such as tungsten is provided, and IB is emitted from the tip of the emitter tip.

特に後者は、IBのエネルギー分布幅が狭く (1eV
程度以下)、且つ集束性に優れ(試算上100人φまで
到達)、またかなり長時間にわたり電流が安定している
ので、IBリソグラフィ用に適している。
In particular, the latter has a narrow IB energy distribution width (1 eV
It is suitable for IB lithography because it has excellent focusing properties (up to 100 φ according to a trial calculation), and the current is stable for quite a long time.

しかしながらこのイオン源は、エミッタチップ先端の形
状や原子レベルの凹凸を反映した電界分布により、大小
様々の強度(即ち角電流密度)を有する複数のIBを離
散的に放射するので、露光に使用するのに通した強度の
高いIBの方向は、エミッタチップの軸方向に一致しな
いことが多い。
However, this ion source discretely emits multiple IBs with varying intensities (i.e., angular current density) due to the electric field distribution reflecting the shape of the tip of the emitter tip and the unevenness at the atomic level. The direction of the strong IB passed through the emitter chip often does not coincide with the axial direction of the emitter chip.

このため所望のIBを露光に使用するためには、エミッ
タチップの軸方向を調整して該IBの軸合わせを行う必
要があるが、この軸合わせは精度を良くすることが望ま
れる。
Therefore, in order to use a desired IB for exposure, it is necessary to align the IB by adjusting the axial direction of the emitter chip, and it is desirable to improve the accuracy of this alignment.

〔従来の技術〕 第2図は上記軸合わせが可能な従来のIB露光装置例の
模式側断面図である。
[Prior Art] FIG. 2 is a schematic side sectional view of an example of a conventional IB exposure apparatus capable of the above-mentioned axis alignment.

同図において、1はイオン源、1aはイオン源1のエミ
ッタチップ、2と3はレンズ、4はブランキング電極、
5はスキャニング電極、6はステージ、Wはウェーハな
どの被露光体である。
In the figure, 1 is an ion source, 1a is an emitter chip of ion source 1, 2 and 3 are lenses, 4 is a blanking electrode,
5 is a scanning electrode, 6 is a stage, and W is an exposed object such as a wafer.

また、7は例えば電子増倍板(通称マイクロチャンネル
プレート)付き螢光スクリーンからなりイオン源1から
放射されるイオンの放射方向による強度分布を可視の影
像に変換する検知手段、8は上記影像を窓9から観察出
来るようにするミラー、10はイオン源1の軸方向を可
変にする方向調整機構(通称ジンバル)、11は方向調
整機構10の操作により動くイオン源1に追随し露光装
置の真空を保つベローズ、である。
Further, 7 is a detection means which is made of, for example, a fluorescent screen equipped with an electron multiplier plate (commonly known as a microchannel plate) and converts the intensity distribution of the ions emitted from the ion source 1 according to the radiation direction into a visible image, and 8 is a detection means that converts the above image into a visible image. A mirror that allows observation through a window 9; 10 a direction adjustment mechanism (commonly known as a gimbal) that changes the axial direction of the ion source 1; and 11 a direction adjustment mechanism (commonly known as a gimbal) that changes the axial direction of the ion source 1; There is a bellows, which keeps the

この露光装置は、エミッタチップ1aから放射したIB
を、レンズ2と3とによりステージ6に載置された被露
光体W上に集束し、スキャニング電極5により偏向させ
ながら露光する。非露光の際偏向させる。この操作を行
う際には、検知手段7とミラー8をIBの通路から退避
させておく。
This exposure apparatus uses an IB emitted from an emitter chip 1a.
is focused by the lenses 2 and 3 onto the exposed object W placed on the stage 6, and exposed while being deflected by the scanning electrode 5. Deflect when not exposed. When performing this operation, the detection means 7 and mirror 8 are moved away from the IB passage.

この露光に先立ち、先に述べたIBの軸合わせを行う。Prior to this exposure, the aforementioned IB axis alignment is performed.

即ち、検知手段7とミラー8をイオン源1の下に位置さ
せて、先ずイオン源1から離散的に放射される複数のI
Bの強度分布を観察する。強度分布は、検知手段7の下
面に第3図のような影像として現れ、影像面S上のパタ
ーンや輝度により各IBの強度の違いと位置が判る。
That is, the detection means 7 and the mirror 8 are positioned below the ion source 1, and a plurality of I
Observe the intensity distribution of B. The intensity distribution appears as an image on the lower surface of the detection means 7 as shown in FIG. 3, and the difference in intensity and position of each IB can be determined from the pattern and brightness on the image plane S.

露光軸に軸が合致しているIBが影像面Sの中心Cに位
置するが、露光に使用するのに適した強度の高い所望の
IBは、中心Cから外れている場合が多い。これは、エ
ミッタチップ1aが例えばタングステンの場合、通常タ
ングステン結晶の(111)面から放射されるIBに所
望のIBが存在するからである。
An IB whose axis coincides with the exposure axis is located at the center C of the image plane S, but a desired IB with high intensity suitable for use in exposure is often located away from the center C. This is because when the emitter tip 1a is made of tungsten, for example, a desired IB exists in the IB emitted from the (111) plane of the tungsten crystal.

次いで、方向調整機構10を操作して所望のIBが影像
面Sの中心Cに合致するようにイオン源1の軸方向を調
整する。方向調整機構10は、その操作にかかわらずエ
ミッタチップ1aの先端位置を変化させないようになっ
ている。この調整が終了したところで露光に先立つIB
の軸合わせを完了する。
Next, the direction adjustment mechanism 10 is operated to adjust the axial direction of the ion source 1 so that the desired IB coincides with the center C of the image plane S. The direction adjustment mechanism 10 is configured not to change the position of the tip of the emitter tip 1a regardless of its operation. Once this adjustment is completed, the IB before exposure
Complete the alignment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記IBの軸合わせを行うに際して、影像
面Sの中心Cに対する所望のIBの合致状態の判定は、
影像面Sの観察で行われるため精度に限界がある。
However, when performing the axis alignment of the IB, the determination of the desired state of alignment of the IB with the center C of the image plane S is as follows:
Since this is performed by observing the image plane S, there is a limit to accuracy.

一方上記IB露光装五は、収差を小さくするためエミッ
タチップ1aの先端(IBの放射点)からレンズ2まで
の距離が小さく設定されており、これに伴い検知手@7
までの距離しも小さくなっている。
On the other hand, in the above-mentioned IB exposure device 5, the distance from the tip of the emitter chip 1a (IB radiation point) to the lens 2 is set small in order to reduce aberrations, and accordingly, the detection hand @ 7
The distance is also getting smaller.

このため上記構成のIB露光装置では、精度の良い軸合
わせが困難である問題がある。
For this reason, the IB exposure apparatus having the above configuration has a problem in that accurate axis alignment is difficult.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、上述した方向調整機構10と検知手段7
とを具えるIB露光装置に、イオン源1と検知手段7と
の間の距離を可変にする移動機構を付加した本発明のI
Bi光装置によって解決される。
The above problem is caused by the direction adjustment mechanism 10 and the detection means 7 described above.
The IB exposure apparatus of the present invention includes a moving mechanism for varying the distance between the ion source 1 and the detection means 7.
This problem is solved by Bi optical equipment.

〔作用〕[Effect]

影像面Sの観察による中心Cに対する所望のIBの合致
状態の判定精度が従来と同じであっても、エミッタチッ
プlaの先端から検知手段7までの距離りを大きくすれ
ば影像面Sの影像が拡大されるので、IBO軸合わせ精
度を向上させることが出来る。
Even if the accuracy of determining the matching state of the desired IB with respect to the center C by observing the image plane S is the same as before, if the distance from the tip of the emitter chip la to the detection means 7 is increased, the image on the image plane S will be Since it is enlarged, the IBO alignment accuracy can be improved.

従って上記移動機構を付加して距離りを大きくすること
が出来るようにしたIB露光装置は、精度の良い軸合わ
せが可能になる。
Therefore, an IB exposure apparatus that can increase the distance by adding the above-mentioned moving mechanism can perform axis alignment with high precision.

〔実施例〕〔Example〕

以下本発明の実施例について第1図の模式側断面図によ
り説明する。全図を通じ同一符号は同一対象物を示す。
Embodiments of the present invention will be described below with reference to the schematic side sectional view of FIG. The same reference numerals indicate the same objects throughout the figures.

第1図に示す実施例なるIB露光装置は、第2図図示の
従来例に、イオン源1の検知手段7からの距離を可変に
するよう方向調整機構10を矢印方向に移動させる移動
機構12を付加したものである。
The IB exposure apparatus shown in FIG. 1 has a moving mechanism 12 which moves a direction adjustment mechanism 10 in the direction of the arrow so as to vary the distance from the detection means 7 of the ion source 1 to the conventional example shown in FIG. is added.

゛これに伴いベローズ(従来例の11)は、伸縮範囲を
大きくしたllaに変わっている。その他は基本的に従
来例と同じである。
``Along with this, the bellows (11 in the conventional example) has been replaced with lla, which has a larger expansion and contraction range. Other aspects are basically the same as the conventional example.

移動機構12は、例えば油圧で駆動されるものであり、
方向調整機構10の移動可能範囲は、エミッタチップ1
a先端の検知手段7からの距%1tLが露光時の状態か
らその5〜10倍程度に至る範囲、例えば露光時におい
て約20鶴の場合100〜200H程度まで大きく出来
る範囲である。
The moving mechanism 12 is driven by hydraulic pressure, for example,
The movable range of the direction adjustment mechanism 10 is the emitter chip 1
The distance % 1tL of the tip a from the detection means 7 can be increased from the state at the time of exposure to about 5 to 10 times, for example, in the case of about 20 cranes at the time of exposure, it can be increased to about 100 to 200H.

このIBn光装置におけるIBO軸合わせは次の手順で
行う。
IBO axis alignment in this IBn optical device is performed in the following procedure.

即ち、先ず距離りを小さく例えば露光時と同じにして従
来例で説明した軸合わせ(第3図参照)を行う。次いで
距離りを太き(例えば最大にする。
That is, first, the distance is made small, for example, the same as that during exposure, and the axis alignment described in the conventional example (see FIG. 3) is performed. Then increase the distance (for example, maximize it).

さすれば影像面Sの影像は距%lILが増加した倍率に
拡大され、所望のIBの中心Cに対する合致状態がより
精度良く観察出来るようになる。そこで再度方向調整機
構10を操作して合致不足分の調整を行う。次いで距離
りを露光時の状態に復帰させてIBの軸合わせを完了す
る。
Then, the image on the image plane S is enlarged to a magnification that increases the distance %lIL, and the state of coincidence of the desired IB with the center C can be observed with higher accuracy. Then, the direction adjustment mechanism 10 is operated again to make adjustments for the lack of matching. Next, the distance is returned to the state at the time of exposure, and the alignment of the IB is completed.

この軸合わせは、影像面Sの観察による判定精度が従来
と同じであっても従来より拡大された影像で判定出来る
ので、IBの軸合わせ精度が従来より上記倍率に応じて
向上する。
Even if the determination accuracy based on observation of the image plane S is the same as in the past, this alignment can be determined using an image that is more enlarged than in the past, so the accuracy of IB alignment improves more than in the past in accordance with the magnification.

またこの軸合わせにおいて、最初から距離りを大きくし
ても良いが、その場合は影像面Sの視野が狭まっている
ので最適な所望のIBが視野外に来て見落とされる恐れ
がある。このため面倒でも上に述べたようにするのが望
ましい。
In addition, in this alignment, the distance may be increased from the beginning, but in that case, since the field of view of the image plane S is narrowed, there is a risk that the optimal desired IB may come out of the field of view and be overlooked. For this reason, it is desirable to do as described above, even if it is troublesome.

なお上記実施例では距離りの最短を露光時と同じにし拡
大倍率を5〜10にしたがそれに限定されるものではな
く、また移動機構12は油圧駆動にしたが他の手段によ
っても良いことは、本発明の原理からして容易に理解出
来る。
In the above embodiment, the shortest distance was the same as that during exposure and the magnification was set to 5 to 10, but the invention is not limited thereto, and although the moving mechanism 12 was hydraulically driven, other means may also be used. , can be easily understood from the principle of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の構成によれば、IBO軸合
わせが可能なIB露光装置において、軸合わせの精度を
向上させる効果がある。
As described above, the configuration of the present invention has the effect of improving the accuracy of axis alignment in an IB exposure apparatus capable of IBO axis alignment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の模式側断面図、第2図は従来の
IBi光装置例の模式側断面図、第3図はイオンの強度
分布影像の説明図、である。 図において、 1はイオン源、 1aはエミッタチップ、 2.3はレンズ、 4はブランキング電極、 5はスキャニング電極、 6はステージ、 7は検知手段、 8はミラー、 9は窓、 10は方向調整機構、 11、llaはベローズ、 12は移動機構、 Lは1a先端と7との間の距離、 Wは被露光体、 Sは影像面、 CはSの中心、 である。 図Iの浄3(内容に変更なし) 木ノ角≦ 914  t Q+l  d) オヂ j久
こ イロ11  珪ji  レフ第 1 図 第2 図 イオン61強廣4巧ト景うイ楡0説叫U図% 3 図 手続補正書(旗 0年月日 61.2.1? 昭和60年特許願第255412号 1の名称 イオンビームMO装置 二をする者 二との関係  特許出願人 住所 神奈川県用崎市中原区上小田中1015番地(5
22)名称富士通株式会社 埋入 住所 神奈川県川崎市中原区上小田中1015番地富士
通株式会社内 昭和61年 1月28日 (発送日) 三の対象 図面(全1 7、補正の内容                  
  lO。
FIG. 1 is a schematic side sectional view of an embodiment of the present invention, FIG. 2 is a schematic side sectional view of an example of a conventional IBi optical device, and FIG. 3 is an explanatory diagram of an ion intensity distribution image. In the figure, 1 is an ion source, 1a is an emitter chip, 2.3 is a lens, 4 is a blanking electrode, 5 is a scanning electrode, 6 is a stage, 7 is a detection means, 8 is a mirror, 9 is a window, 10 is a direction The adjustment mechanism, 11 and lla are bellows, 12 is a moving mechanism, L is the distance between the tip of 1a and 7, W is the object to be exposed, S is the image plane, and C is the center of S. Figure I, Jyo 3 (No change in content) Kinokaku ≦ 914 t Q+l d) Oji j Kuko Iro 11 Keiji Lev 1 Figure 2 Figure Aeon 61 Takuhiro 4 Takuto Kei Yue 0 Theory shout U Figure % 3 Drawing procedure amendment (flag 0 year/month/date 61.2.1? 1985 Patent Application No. 255412 1) Name of ion beam MO device 2 Relationship with person 2 Patent applicant address Yozaki, Kanagawa Prefecture 1015 Kamiodanaka, Nakahara-ku, City (5
22) Name Fujitsu Ltd. Address 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Fujitsu Ltd. January 28, 1986 (Shipping date) 3 subject drawings (total 1 7, contents of amendments)
lO.

Claims (1)

【特許請求の範囲】[Claims] イオン源の軸方向を可変にする方向調整機構と、該イオ
ン源に対向し該イオン源から放射されるイオンの放射方
向による強度分布を検知する検知手段と、該イオン源と
該検知手段との間の距離を可変にする移動機構とを具え
ることを特徴とするイオンビーム露光装置。
a direction adjustment mechanism that changes the axial direction of the ion source; a detection means that faces the ion source and detects the intensity distribution of ions emitted from the ion source according to the emission direction; An ion beam exposure apparatus characterized by comprising a moving mechanism that changes the distance between the ion beams.
JP25541285A 1985-11-14 1985-11-14 Ion beam exposure equipment Pending JPS62114226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25541285A JPS62114226A (en) 1985-11-14 1985-11-14 Ion beam exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25541285A JPS62114226A (en) 1985-11-14 1985-11-14 Ion beam exposure equipment

Publications (1)

Publication Number Publication Date
JPS62114226A true JPS62114226A (en) 1987-05-26

Family

ID=17278405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25541285A Pending JPS62114226A (en) 1985-11-14 1985-11-14 Ion beam exposure equipment

Country Status (1)

Country Link
JP (1) JPS62114226A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319744A (en) * 1986-07-11 1988-01-27 Sony Corp Ion-beam generator for gaseous ion-source system
JPH02192727A (en) * 1989-01-20 1990-07-30 Sony Corp Focusing ion beam device
JP2008140557A (en) * 2006-11-30 2008-06-19 Hitachi High-Technologies Corp Gas field ionization ion source, and scanning charged particle microscope
JP2009517838A (en) * 2005-12-02 2009-04-30 アリス コーポレーション Ion source, system and method
JP2009164110A (en) * 2007-12-14 2009-07-23 Hitachi High-Technologies Corp Gas field ionization ion source, scanning charged particle microscope, optical axis adjustment method, and sample observation method
WO2009147894A1 (en) * 2008-06-05 2009-12-10 株式会社日立ハイテクノロジーズ Ion beam device
JP2011141037A (en) * 2006-10-25 2011-07-21 Akebono Brake Ind Co Ltd Friction pad assembly for disk brake
JP2011524072A (en) * 2008-06-13 2011-08-25 カール ツァイス エヌティーエス エルエルシー Ion source, system and method
DE112010002774T5 (en) 2009-06-30 2012-10-18 Hitachi High-Technologies Corporation ION MICROSCOPE
US9012867B2 (en) 2003-10-16 2015-04-21 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US11320011B2 (en) 2017-09-06 2022-05-03 Akebono Brake Industry Co., Ltd. Caliper for opposed piston-type disc brake

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319744A (en) * 1986-07-11 1988-01-27 Sony Corp Ion-beam generator for gaseous ion-source system
JPH02192727A (en) * 1989-01-20 1990-07-30 Sony Corp Focusing ion beam device
US9236225B2 (en) 2003-10-16 2016-01-12 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
US9012867B2 (en) 2003-10-16 2015-04-21 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
JP2012138360A (en) * 2005-12-02 2012-07-19 Arisu Corporation:Kk Ion sources, system and method
JP2009517838A (en) * 2005-12-02 2009-04-30 アリス コーポレーション Ion source, system and method
JP2011141037A (en) * 2006-10-25 2011-07-21 Akebono Brake Ind Co Ltd Friction pad assembly for disk brake
JP2008140557A (en) * 2006-11-30 2008-06-19 Hitachi High-Technologies Corp Gas field ionization ion source, and scanning charged particle microscope
JP2009164110A (en) * 2007-12-14 2009-07-23 Hitachi High-Technologies Corp Gas field ionization ion source, scanning charged particle microscope, optical axis adjustment method, and sample observation method
JP5097823B2 (en) * 2008-06-05 2012-12-12 株式会社日立ハイテクノロジーズ Ion beam equipment
US8779380B2 (en) 2008-06-05 2014-07-15 Hitachi High-Technologies Corporation Ion beam device
WO2009147894A1 (en) * 2008-06-05 2009-12-10 株式会社日立ハイテクノロジーズ Ion beam device
US9508521B2 (en) 2008-06-05 2016-11-29 Hitachi High-Technologies Corporation Ion beam device
JP2011524072A (en) * 2008-06-13 2011-08-25 カール ツァイス エヌティーエス エルエルシー Ion source, system and method
US9029765B2 (en) 2008-06-13 2015-05-12 Carl Zeiss Microscopy, Llc Ion sources, systems and methods
DE112010002774T5 (en) 2009-06-30 2012-10-18 Hitachi High-Technologies Corporation ION MICROSCOPE
US8455841B2 (en) 2009-06-30 2013-06-04 Hitachi High-Technologies Corporation Ion microscope
DE112010002774B4 (en) 2009-06-30 2019-12-05 Hitachi High-Technologies Corporation ION MICROSCOPE
US11320011B2 (en) 2017-09-06 2022-05-03 Akebono Brake Industry Co., Ltd. Caliper for opposed piston-type disc brake

Similar Documents

Publication Publication Date Title
USRE49784E1 (en) Apparatus of plural charged-particle beams
US20050263715A1 (en) Objective lens, electron beam system and method of inspecting defect
US20050133733A1 (en) Electron beam system and method of manufacturing devices using the system
EP0298495B1 (en) Method and apparatus for correcting defects of x-ray mask
JPS5856332A (en) Correction of defect in mask and device thereof
JPS6213789B2 (en)
JPS62114226A (en) Ion beam exposure equipment
JP2000123768A (en) Charged particle beam device, adjustment method of charged particle beam device and manufacture of semiconductor device
US4438336A (en) Corpuscular radiation device for producing an irradiation pattern on a workpiece
EP0104763B1 (en) An electron beam pattern transfer system having an autofocusing mechanism
US3219817A (en) Electron emission microscope with means to expose the specimen to ion and electron beams
JPH08274020A (en) Projective lithography device by charged particle
JPH05243112A (en) Ion optical plotting apparatus
US4158140A (en) Electron beam exposure apparatus
US4684809A (en) Method of adjusting optical column in energy beam exposure system
JP2002141010A (en) Electron beam device and manufacturing method of device using the same
US6677581B1 (en) High energy electron diffraction apparatus
US3253144A (en) Electron lens having means for correcting astigmatism
US2987641A (en) Irradiation system for an electron beam apparatus with cold cathode
KR20010014881A (en) Electron emitters for lithography tools
JPS58106746A (en) Axis alignment process of electron lens
JPS6236820A (en) Alignment device and its mask
JPH0511099A (en) X-ray optical element
JPH10199469A (en) Electron beam lighting device and electron beam aligner with the lighting device
JP2003173753A (en) Electron beam illumination optical system and electron beam device