JPS62113794A - Production of band silicon - Google Patents

Production of band silicon

Info

Publication number
JPS62113794A
JPS62113794A JP25409985A JP25409985A JPS62113794A JP S62113794 A JPS62113794 A JP S62113794A JP 25409985 A JP25409985 A JP 25409985A JP 25409985 A JP25409985 A JP 25409985A JP S62113794 A JPS62113794 A JP S62113794A
Authority
JP
Japan
Prior art keywords
crystal
silicon
crucible
silicon melt
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25409985A
Other languages
Japanese (ja)
Other versions
JPH0375514B2 (en
Inventor
Michiya Kobayashi
道哉 小林
Toshiro Matsui
松井 都四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25409985A priority Critical patent/JPS62113794A/en
Publication of JPS62113794A publication Critical patent/JPS62113794A/en
Publication of JPH0375514B2 publication Critical patent/JPH0375514B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce band silicon crystal for a long period continuously, by penetrating the tips of crystal end support members from the outside of an outer container through small holes and silicon melt and setting the support members at given positions. CONSTITUTION:Carbon filaments as crystal end support members 4a and 4b are wound round drums 8a and 8b, respectively, parts 9a and 9b at the tips of the filaments are coated with carbon cement and the parts 9a and 9b are dried while applying tension to them. After the drying, the parts 9a and 9b become a rod state to keep linearity without being pressed by external force. In a state wherein silicon is melted in a crucible 1, the rod parts 9a and 9b of the support members 4a and 4b having solidified the tip parts are inserted from the outside of an outer container into guide passageways so the support members 4a and 4b can be put out on liquid level of the silicon melt. The drums 8a and 8b are set at lower parts of the outer container, successively seed crystal 5 is brought from the upper part into contact with the silicon melt 3 and the support members 4a and 4b and pulled up so that band silicon crystal can be produced.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は帯状シリコン結晶の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing band-shaped silicon crystals.

[発明の技術的背lI] 太陽光発電コストの低下のため、太陽電池用シリコン基
板の価格低下が望まれており、帯状シリコン結晶は、イ
ンゴット状結晶を切断・加工する際に生じるような材料
損失がなく、加工費も極くわずかであることから有望視
されている。帯状シリコン結晶を安価に製造するための
ひとつの重要点は、結晶成長を長時間連続させることで
ある。
[Technical Background of the Invention] In order to reduce the cost of solar power generation, it is desired to reduce the price of silicon substrates for solar cells. It is viewed as promising because there is no loss and processing costs are minimal. One important point for manufacturing band-shaped silicon crystals at low cost is to continue crystal growth for a long period of time.

帯状シリコン結晶を製造するためのひとつの方法として
以下に述べる手法がある。(T、F。
One of the methods for manufacturing band-shaped silicon crystals is the method described below. (T.F.

C15zek et  at、 Proceeding
s  of  theSylaposia on  E
 Iectronic and 0pticalPro
pertiesof  Po1ycrystallin
e  orImpure Sem1conductor
s and Novel  S iliconGrow
th  Methods、 1980. Electr
ochelll。
C15zek et at, Proceedings
s of theSylaposia on E
Electronic and OpticalPro
parties of polycrystallin
e or Impure Sem1conductor
s and Novel SiliconGrow
th Methods, 1980. Electr
ochell.

Soc、’、 Penn1naton 、 NJ :v
ol 、 80−5 :pp213−222およびT、
 F、 C15zek et  al。
Soc,', Penn1naton, NJ:v
ol, 80-5: pp213-222 and T,
F, C15zek et al.

J、 Electrochem、 Soc、 、 12
9 (1982)2838など)この方法の原理を第2
図に示す。
J, Electrochem, Soc, , 12
9 (1982) 2838, etc.) The principle of this method is
As shown in the figure.

底部に2個の小孔2a、2bのあるるつぼ1にシリコン
融液3を収容し、一方、2本の結晶端支持材4a 、4
bをそれぞれるつぼ1の下部から上方に配置し、その後
、前記2本の支持材4a、4bの間のシリコン融液3と
2本の支持材4a 、 4bとに種結晶5を接触させ、
この種結晶5を引上げるというものである。これにより
、2本の支持材4a 、4bおよび種結晶5の間に表面
張力によって張られたシリコン融液(すなわち、メニス
カス)6が連続的に結晶化することにより、帯状シリコ
ン結晶7が得られる。通常るつぼ1等の高温部は不活性
ガスを満たした外囲器(図示せず)に収納されている。
A silicon melt 3 is contained in a crucible 1 having two small holes 2a and 2b at the bottom, while two crystal edge supports 4a and 4 are placed in the crucible 1.
b are respectively arranged from the bottom to the top of the crucible 1, and then the seed crystal 5 is brought into contact with the silicon melt 3 between the two supporting materials 4a and 4b and the two supporting materials 4a and 4b,
This seed crystal 5 is pulled up. As a result, the silicon melt (i.e., meniscus) 6 stretched by surface tension between the two supporting materials 4a, 4b and the seed crystal 5 is continuously crystallized, and a band-shaped silicon crystal 7 is obtained. . Usually, a high temperature part such as the crucible 1 is housed in an envelope (not shown) filled with an inert gas.

本方法に用いる結晶端支持材4a、4bおよび支持材4
a 、4bのるつぼ1への配置の手法は次のように行わ
れていた。すなわち、 ■ 支持材4a、4bとしてグラファイト棒、石英棒、
サファイア棒など、シリコン融液に浸しても支持材の直
線性が失われ難いものを用い、第3図に示すように、支
持材4a、4bを種結晶5に予め接続させておき、この
第3図に示した種結晶5−支持材4a 、4bの一体物
をシリコン融液3を収容したるつぼ1に上方から挿入し
、種結晶5がシリコン融液3に接触した後引上げる。こ
の際、るつぼが十分深ければ底部に孔はなくともよい。
Crystal edge supports 4a, 4b and support material 4 used in this method
The method for placing a and 4b in crucible 1 was as follows. That is, ■ graphite rods, quartz rods, as supporting materials 4a and 4b;
Using something that does not easily lose its linearity even when immersed in silicon melt, such as a sapphire rod, the supporting materials 4a and 4b are connected to the seed crystal 5 in advance as shown in FIG. The integrated seed crystal 5 and supporting materials 4a and 4b shown in FIG. 3 is inserted from above into the crucible 1 containing the silicon melt 3, and after the seed crystal 5 comes into contact with the silicon melt 3, it is pulled up. At this time, if the crucible is deep enough, there may be no hole at the bottom.

■ るつは1の底が浅い場合、第3図の種結晶5−支持
材4a 、4bの一体物をシリコン融液3上方から挿入
していき、るつぼ1の底部にあけた小孔2a、2bに支
持材4a、4bを通す。種の結晶5の部分がシリコン融
液3に接触した後、引上げを開始する。
■ If the bottom of the crucible 1 is shallow, insert the integrated seed crystal 5-supporting materials 4a and 4b shown in FIG. Support members 4a and 4b are passed through 2b. After the seed crystal 5 comes into contact with the silicon melt 3, pulling is started.

■ 支持材4a 、4bとして、前記■に述べた如きシ
リコン融液中でも比較的直線性を保つ素材を用い、るつ
ぼ1内でシリコンが溶融している時点でるつぼ等を収納
した外囲器の外の下方から、支持材4a、4bをるつぼ
1の底にあけた小孔2a。
■ As the supporting materials 4a and 4b, materials that maintain relatively linearity even in the silicon melt as described in (■) above are used, and when the silicon is melted in the crucible 1, the outside of the envelope containing the crucible etc. is used. A small hole 2a is formed in the bottom of the crucible 1 through the supports 4a and 4b from below.

2bに通るように挿入する。しかる後、シリコン融液3
の上方から種結晶5をおろして、シリコン融液3および
支持材4a、4bと接触させた後引上げる。
Insert it so that it passes through 2b. After that, silicon melt 3
Seed crystal 5 is lowered from above, brought into contact with silicon melt 3 and supporting materials 4a and 4b, and then pulled up.

■ 支持材4a、4bとして、直径数十μmの炭素I!
維、炭化硅素繊維などを(数百−数千水)束ねた織糸を
用い、結晶成長前の装置組込みの際(室温で)るつぼ1
底部の小孔2a、2bに上記支持材4a、4bを通して
おき、同時にシリコン原料をるつぼに入れる。しかる後
、温度を上昇させてシリコン原料を融解させた後、種結
晶5を上方からおろしてシリコン融液3および支持材4
a。
■ Carbon I with a diameter of several tens of μm is used as the supporting materials 4a and 4b!
Using a weaving yarn made by bundling fibers, silicon carbide fibers, etc. (hundreds to thousands of water), the crucible 1 is used (at room temperature) when incorporated into the equipment before crystal growth.
The supporting materials 4a and 4b are passed through the small holes 2a and 2b at the bottom, and at the same time, the silicon raw material is put into the crucible. After that, the temperature is increased to melt the silicon raw material, and then the seed crystal 5 is lowered from above to form the silicon melt 3 and the support material 4.
a.

4bと接触させて結晶成長を開始する。4b to start crystal growth.

[背景技術の問題点] 前述した■、■、■の従来方法では、それぞれ以下のよ
うな問題があった。すなわち、■の方法では、長尺の帯
状シリコン結晶を得ようとすればるつぼの深さを相当深
くしなければならず、実用的でない。また、種結晶と支
持材を一体化した部品を結晶成長ごとに製作しなければ
ならず、甚だ手数がかかる方法である。
[Problems with Background Art] The conventional methods (1), (2), and (3) described above each have the following problems. That is, in method (2), if a long band-shaped silicon crystal is to be obtained, the depth of the crucible must be increased considerably, which is not practical. Furthermore, a part that integrates the seed crystal and the supporting material must be manufactured for each crystal growth, which is a very time-consuming method.

°■の方法では、■のようにるつぼを深くする必要はな
いが、長い帯状シリンコ結晶を得るには支持材を長くし
、これをシリコン融液上方からるつぼ底部の小孔に通さ
ねばならず、この操作はかなり困難である。というのは
、支持材がシリコン融−液に浸っても比較的直線性を保
つとはいっても、多少の変形が生じるからであり、これ
をシリコン融液に隠れて見えないるつぼ底部の2個の小
孔に同時に通すことは困難である。
In method °■, it is not necessary to make the crucible deep as in method ■, but in order to obtain long band-shaped silinco crystals, the supporting material must be lengthened and passed through the small hole at the bottom of the crucible from above the silicon melt. , this operation is quite difficult. This is because although the supporting material maintains its relative straightness even when immersed in the silicon melt, some deformation occurs, and this is caused by the two invisible parts at the bottom of the crucible that are hidden in the silicon melt. It is difficult to pass through the small holes at the same time.

■の方法では、るつぼを深くせずとも長い帯状シリコン
結晶を得ることができ、また、支持材を配置するにも■
のような困難さはない。しかしながら、■、■について
も言えることであるが、グラファイト棒、石英棒、サフ
ァイア棒などのようなシリコン液中でも直線性を保つ材
料は高価であり、支持材だけを結晶からはずして再使用
することもほとんど不可能であるため、得られるシリコ
ン結晶基板も高価になってしまう。また、結晶成長の連
続性の目的には長い支持材が必要であるが、上述の材料
による長い素材は入手し難い。光通信用などのグラスフ
ァイバは長尺物が入手できるが、それほど安価ではなく
、小さく巻いておくことができず(直径250μmのフ
ァイバでは巻取り直径は30−400必要)、装置が大
型化する。
With method ①, long band-shaped silicon crystals can be obtained without making the crucible deep, and it is also possible to arrange the supporting material ②
It's not as difficult as . However, as can be said about ■ and ■, materials that maintain linearity even in silicone liquid, such as graphite rods, quartz rods, and sapphire rods, are expensive, and it is difficult to reuse only the supporting material by removing it from the crystal. Since this is almost impossible, the resulting silicon crystal substrate also becomes expensive. Further, long supporting materials are necessary for the purpose of continuous crystal growth, but long materials made of the above-mentioned materials are difficult to obtain. Glass fibers for optical communications are available in long lengths, but they are not very cheap and cannot be wound into small pieces (a fiber with a diameter of 250 μm requires a winding diameter of 30-400 μm), which increases the size of the equipment. .

これに対し、■に述べた炭素繊維などの織糸は、長さ数
順のものでも容易に入手でき、価格も前記のグラファイ
ト棒、石英棒などとは比較にならないほど安く、支持材
として適した材料と言える。
On the other hand, weaving threads such as carbon fiber mentioned in (■) are easily available even in numerical order of length, and the price is much lower than that of the graphite rods, quartz rods, etc. mentioned above, making them suitable as supporting materials. It can be said that it is a good material.

しかしながら、炭素4INなどの織糸は結晶成長の過程
で切れてしまうことがある。これは、シリコン融液中に
ある程度の時間浸しておくと、シリコンと炭素が反応し
て織糸が細くなることがひとつの原因である。■に述べ
たような、織糸を予めるつぼに組込んでおく方法によれ
ば、上述のように結晶成長の過程で織糸が切れた場合や
、なんらかの理由により、結晶成長を種付けからやり直
そうとする場合、そのままではもはや成長を行うことが
できず、結晶製造装置の温度を下げ、再び組込みから始
める以外に方法がなかった。すなわち、炭素繊維などの
織糸はシリコン融液中では外力がなければ直線性を保て
ず、外囲器外部からるつぼの小孔を通してシリコン融液
上に出すという■に述べた手法を執ることはできない。
However, weaving threads such as carbon 4IN may break during the crystal growth process. One reason for this is that when immersed in silicon melt for a certain amount of time, silicon and carbon react and the threads become thinner. According to the method described in (2), in which the weaving threads are assembled in a pot in advance, if the weaving threads break during the crystal growth process as described above, or for some other reason, the crystal growth must be restarted from seeding. In this case, it was no longer possible to grow the crystal as it was, and the only way was to lower the temperature of the crystal manufacturing equipment and start again by assembling the crystal. In other words, weaving threads such as carbon fibers cannot maintain their linearity in silicon melt without external force, so the method described in item (2) is taken, in which they are brought out from the outside of the envelope through the small holes of the crucible onto the silicon melt. I can't.

これまで述べたように、結晶端支持材を用いて帯状シリ
コン結晶を製造するに際しては、長尺の結晶を連続して
しかも安価に得る方法がなかった。
As described above, when manufacturing band-shaped silicon crystals using crystal edge support materials, there has been no method to obtain long crystals continuously and at low cost.

[発明の目的] 本発明は前述の従来方法のさまざまな問題点に鑑みてな
されたもので、結晶端支持材を用いて製造する帯状シリ
コン結晶を、長時間連続して、しかも安価に製造する帯
状シリコン結晶の製造方法を提供することを目的とする
[Object of the Invention] The present invention has been made in view of the various problems of the conventional methods described above, and it is an object of the present invention to continuously manufacture band-shaped silicon crystals using crystal edge supporting materials over a long period of time and at low cost. An object of the present invention is to provide a method for manufacturing band-shaped silicon crystals.

[発明の概要コ 上記目的を達成する本発明の概要は以下の通りである。[Summary of the invention] The outline of the present invention for achieving the above object is as follows.

すなわち、結晶端支持材として、それぞれの先端の一部
が棒状すなわち張力を加えずとも直線的であり、他の部
分が糸状即ち柔軟で張力を加えることにより直線状とな
る如き支持材を用い、結晶製造を開始するにあたり、前
記るつぼ内でシリコンを溶融させた状態下において、前
記支持材先端を、前記るつぼ等の高温部を収納しておく
外囲器の外部から、前記るつぼの小孔および前記シリコ
ン融液に貫通させることで前記支持材を所定位置に配置
させた後、結晶製造を行うことを特徴とするものである
That is, as a crystal edge support material, a part of each tip is rod-like, that is, straight even without applying tension, and the other part is thread-like, that is, flexible, and becomes straight when tension is applied. To start crystal production, with the silicon melted in the crucible, the tip of the support material is inserted into the small hole of the crucible and The method is characterized in that crystal production is performed after the supporting material is placed at a predetermined position by penetrating the silicon melt.

また、前記支持材としては、糸状の支持材の先端一部分
をバインダなどにより固めるが、或いは、所望の長さの
棒状支持材と糸状支持材を予め接続させて成ることを特
徴とする。
Further, the supporting material is characterized in that a portion of the tip of a thread-like supporting material is hardened with a binder or the like, or a rod-like supporting material of a desired length and a thread-like supporting material are connected in advance.

[発明の実施例] 本発明を実施するにあたって用いた帯状シリコン結晶の
製造装置を第2図を参照して説明する。
[Embodiments of the Invention] An apparatus for producing band-shaped silicon crystals used in carrying out the present invention will be described with reference to FIG. 2.

シリコン融液3を収容するるっぽ1として、グラファイ
ト製で底部に径約1.5履の小孔2 a、 2 bを1
00m+間隔で2カ所あけたものを使用し、グラファイ
ト製の抵抗加熱ヒータ(図示せず)で加熱できるように
した。るつぼ1.ヒータ等の高温部は外囲器(図示せず
)に収納し、アルゴンガスで外囲圏内部を満たした。一
方、るつぼ1の底部にあけた2個の小孔2a、2bとそ
の下方の外囲器とは、支持材4a、4bをそれぞれ導く
ための2本の案内路(図示せず)にて連結した。すなわ
ち、内径2mm程度の円筒状グラファイトを前記案内路
としてるつぼ1と外囲器の間に設置することで、支持材
4a、4b用のそれぞれの通路ができることとなる。こ
の通路長は約20crttであった。
A small hole 2a, 2b made of graphite and having a diameter of about 1.5 mm is provided at the bottom of the hole 1 to accommodate the silicon melt 3.
Two locations were used, spaced apart by 00 m, and could be heated with a graphite resistance heater (not shown). Crucible 1. High-temperature parts such as heaters were housed in an envelope (not shown), and the inside of the envelope was filled with argon gas. On the other hand, the two small holes 2a and 2b drilled in the bottom of the crucible 1 and the envelope below are connected by two guide paths (not shown) for guiding the supporting materials 4a and 4b, respectively. did. That is, by installing a cylindrical graphite having an inner diameter of about 2 mm as the guide path between the crucible 1 and the envelope, passages for the supporting materials 4a and 4b are created. The path length was approximately 20 crtt.

前記るつぼ1内にシリコン原料を入れ、前記ヒータにて
所定温度まで加熱しシリコンを融解させた。この状態下
において、直径11n!Rのグラファイト棒、石英棒な
どの外力を加えずとも直線性を保つ材料を前記案内路を
通して外囲器外部から前記るつぼ1内のシリコン融液3
の液面上に出すことができた。ところが、帯状シリコン
結晶を連続して長尺に、しかも安価に製造するに適した
素材である炭素織糸を同様に案内路を通して外囲器外部
から挿入しても、シリコン融液面上に出るどころか、る
つぼ底部の小孔の部分で行止まり、その後いくら織糸を
挿入しても案内路内に織糸が詰まる状態になるだけであ
った。
A silicon raw material was placed in the crucible 1 and heated to a predetermined temperature using the heater to melt the silicon. Under this condition, the diameter is 11n! A material that maintains linearity without applying an external force, such as a graphite rod or a quartz rod, is passed through the guide path from the outside of the envelope to the silicon melt 3 in the crucible 1.
could be brought out above the liquid level. However, even if a carbon woven thread, which is a material suitable for producing continuous long silicon crystal strips at low cost, is inserted from the outside of the envelope through the guide path, it does not come out on the surface of the silicon melt. On the contrary, the thread would come to a dead end at the small hole in the bottom of the crucible, and no matter how much thread was inserted thereafter, the thread would only become clogged in the guide path.

そこで、本発明に係る帯状シリコン結晶の製造方法では
、以下のような手法を実施した。第1図は本発明の一実
施例であり、結晶端支持材4a。
Therefore, in the method for manufacturing a band-shaped silicon crystal according to the present invention, the following method was implemented. FIG. 1 shows an embodiment of the present invention, showing a crystal edge support member 4a.

4bとする炭素織糸を3mずつ2本用意し、それぞれ直
径3I−I+のドラム8a 、8bに巻付け、それぞれ
の織糸先端の約20C114程度の部分9a 、 9b
に炭素セメントを塗布し、前記部分9a、9bに張力を
加えながら乾燥させた。乾燥させた後はこの部分9a 
、9bは外力を加えずとも直線性を保っている棒状とな
った。前記るつぼ1内でシリコンを融解させた状態にお
いて、第1図の先端部を固めた支持材4a 、4bの棒
状部分9a 、9bを外囲器外部から案内路に挿入する
ことで、支持材4a 、4bをシリコン融液面上に出す
ことに成功した。前記ドラム8a 、8bをそれぞれ外
囲器下方に取付け、引続き種結晶5を上方からシリコン
融液3および支持材4a、4bに接触させ引上げること
により、長さ3TrL1幅10口の帯状シリコン結晶を
製造することができた。
Prepare two carbon woven yarns of 3 m each, each having a diameter of 3I-I+, and wrap them around drums 8a and 8b, each having a diameter of 3I-I+, and place approximately 20C114 portions 9a and 9b at the tip of each yarn.
Carbon cement was applied to the parts 9a and 9b and dried while applying tension to the parts 9a and 9b. After drying, this part 9a
, 9b has a rod shape that maintains linearity even without applying external force. In the state where the silicon is melted in the crucible 1, the rod-shaped parts 9a and 9b of the supports 4a and 4b whose tips shown in FIG. , 4b was successfully brought out onto the surface of the silicon melt. The drums 8a and 8b are attached to the lower part of the envelope, and the seed crystal 5 is brought into contact with the silicon melt 3 and the supports 4a and 4b from above and pulled up to form a band-shaped silicon crystal with a length of 3 TrL and a width of 10 openings. was able to manufacture it.

また、結晶成長途中になんらかの原因により織糸自体が
切れてしまい、成長が中断するという現象が生じること
があった。支持材4a、4bを室温状態でるつぼに配置
しておくという従来の手法では、このような状況になる
ともはや結晶成長ができないのであるが、本発明の方法
では、切れてしまった織糸のかわりに先端を固めた新し
い織糸を再び挿入し直すことにより成長を再開すること
ができた。種結晶としては、成長が中断した結晶をその
まま用いた。この間の時間損失は数分であった。結晶成
長が中断した後の再開の手段は上述に限らず、切れた織
糸を案内路から抜出し、その先端を固めて再び使用して
もよい。この手段は上述より多少時間がかかる。或いは
、それまでに成長した結晶を取出し、新しい支持材と種
結晶とで成長を始めからやり直すこともできる。
Further, there have been cases where the weaving threads themselves break due to some reason during crystal growth, causing a phenomenon in which the growth is interrupted. In the conventional method of placing the supporting materials 4a and 4b in a crucible at room temperature, crystal growth is no longer possible in such a situation, but in the method of the present invention, the broken weaving threads are replaced by Growth could be restarted by reinserting a new thread with a hardened tip. As a seed crystal, a crystal whose growth had been interrupted was used as it was. The time loss during this time was several minutes. The means for resuming crystal growth after it has been interrupted is not limited to the above-mentioned method, and the cut thread may be pulled out from the guide path, its tip may be hardened, and used again. This procedure is somewhat more time consuming than the one described above. Alternatively, the previously grown crystal can be removed and growth can be restarted from the beginning using a new support material and seed crystal.

上記の実施例においては、結晶端支持材としての織糸の
先端部分を固めるのに炭素セメントの使用について述べ
たが、これに限らず、エポキシ系樹脂、フォトリソグラ
フィ用のレジスト材、化学接着材、化学のり等を用いて
も同様の効果が得られた。
In the above example, the use of carbon cement to solidify the tip of the weaving thread as a crystal edge support material is described, but the use is not limited to this. A similar effect was obtained using chemical glue, etc.

さて、結晶端支持材の先端部分を固めてシリコン融液中
を通すため、得られる帯状シリコン結晶中に太陽電池素
子とした場合に悪影響を及ぼす不純物が混入することが
心配された。得られた結晶中のFe 、Cu 、Ti 
、V等の金属不純物について分析した結果、いずれも数
ppbもしくはそれ以下で、太陽電池の素子特性上問題
はなかった。この理由は、支持材を案内路に挿入した際
、案内路のるつぼ付近の部分が高温であるため、バイン
ダ中の不純物が溶剤などとともに抜けてしまうこと、お
よび、バインダで固めた部分が短く、融液中に浸ってい
る時間がごく短いため、バインダ中の不純物がシリコン
融液にあまり溶けないこと、更にはシリコン融液中に不
純物が溶けても結晶成長の際の偏析により、結晶中には
取込まれないことが考えられる。
Now, since the tip of the crystal end support material is solidified and passed through the silicon melt, there was concern that impurities that would have a negative impact on the resulting band-shaped silicon crystal would be mixed in when used as a solar cell element. Fe, Cu, Ti in the obtained crystal
As a result of analysis of metal impurities such as , V, etc., they were found to be several ppb or less, and there were no problems in terms of the device characteristics of the solar cell. The reason for this is that when the support material is inserted into the guide path, the part of the guide path near the crucible is high temperature, so impurities in the binder escape together with the solvent, and the part solidified with the binder is short. Since the time spent immersed in the silicon melt is very short, impurities in the binder do not dissolve very well in the silicon melt.Furthermore, even if impurities dissolve in the silicon melt, they do not dissolve into the crystal due to segregation during crystal growth. may not be incorporated.

[発明の他の実施例コ 前述の実施例においては、支持材として炭素織糸の先端
部をバインダ等で固めたものを用いる方法について述べ
たが、他の実施例として次のような方法もある。すなわ
ち、支持材の先端を固めるかわりに、例えば長さ約20
 cm、直径1s+のグラファイト棒の下端に炭素織糸
を炭素セメントなどで接続し、グラファイト棒の上端を
前述のように案内路を通して外囲器外からるつぼへ導く
のである。この手法によっても前述と同様の効果が得ら
れた。
[Other Embodiments of the Invention In the above-mentioned embodiments, a method was described in which the tip of the carbon woven yarn was hardened with a binder etc. as a support material, but as another embodiment, the following method may also be used. be. That is, instead of hardening the tip of the support, e.g.
A carbon woven thread is connected to the lower end of a graphite rod with a diameter of 1 s+ cm, using carbon cement, and the upper end of the graphite rod is guided from outside the envelope to the crucible through the guide path as described above. This method also produced the same effect as described above.

また、以下のような手法もとれる。すなわち、上記のグ
ラファイト棒の上端に炭素織糸を接続し、炭素織糸を下
方へ垂らす。グラファイト棒と炭素織糸を共に案内路へ
通して外囲器外からるつぼへ挿入し、種付けを行う。グ
ラファイト棒と炭素織糸の接続を弱くしておき、種付け
により種結晶と支持材である織糸とを接触させた後に、
グラファイト棒と炭素織糸とがはずれるようにしておけ
ば、グラファイト棒を何度も使用することができる。
In addition, the following methods can also be used. That is, a carbon woven thread is connected to the upper end of the graphite rod, and the carbon woven thread is hung downward. Both the graphite rod and the carbon woven yarn are passed through the guide path and inserted into the crucible from outside the envelope to perform seeding. After weakening the connection between the graphite rod and the carbon thread and bringing the seed crystal into contact with the support material, the thread,
If the graphite rod and the carbon woven yarn are separated, the graphite rod can be used many times.

その他、本発明の変形例として、目的に応じて支持材の
先端部のみではなく、ある途中の部分を固めたり、また
は、例えば先端から1rrLは織糸、そこから10CI
Rはグラファイト棒や石英棒、そこから後はまた織糸と
いうように、各種材質の支持材をつぎ足したものにより
結晶成長を行うこともできる。
In addition, as a modification of the present invention, depending on the purpose, not only the tip of the support material but also a certain intermediate portion may be stiffened, or, for example, 1rrL from the tip may be a weaving thread, and 10CI from there.
Crystal growth can also be performed using a support material made of various materials, such as a graphite rod or a quartz rod for R, and a weaving thread after that.

尚、本発明に係る帯状シリコン結晶の製造方法は、これ
までに述べた実施例に限られるものではなく、支持材の
材質、バインダの材質など様々な変形が可能であり、本
発明の趣旨の範囲で実施することができる。
Note that the method for manufacturing a band-shaped silicon crystal according to the present invention is not limited to the embodiments described so far, and various modifications such as the material of the supporting material and the material of the binder are possible, and the method of manufacturing the band-shaped silicon crystal according to the present invention is not limited to the embodiments described above. It can be carried out within a range.

[発明の効果コ 上述のように、本発明に係る帯状シリコン結晶の製造方
法によれば、2本の結晶端支持材同志の間で結晶を成長
させる手法において、支持材として安価で長尺のものが
容易に入手できる炭素111織糸や炭化硅素繊維織糸を
用いて、シリンコ原料が融解している状態でも外部から
所定の位置に支持材を配置することができる。このため
、従来の如くグラファイト棒、石英棒などを支持材とし
て使用するより長尺の帯状シリコン結晶が容易に得られ
るうえ、支持材自体が切れるなど結晶成長が中断しても
極く短い時間内に成長を再開できるという効果がある。
[Effects of the Invention] As described above, according to the method for manufacturing a band-shaped silicon crystal according to the present invention, in the method of growing a crystal between two crystal end supports, an inexpensive and long length support material can be used. By using readily available carbon-111 woven yarn or silicon carbide fiber woven yarn, the supporting material can be placed at a predetermined position from the outside even when the silicone raw material is molten. For this reason, longer band-shaped silicon crystals can be obtained more easily than conventional methods that use graphite rods, quartz rods, etc. as supporting materials, and even if crystal growth is interrupted due to cutting of the supporting material itself, it can be achieved within an extremely short period of time. This has the effect of allowing growth to resume.

従って、結晶成長の時間的な歩留りが向上し、一方、支
持材も安価であるため、帯状シリコン結晶の製造コスト
の低下に功を奏する等の効果がある。
Therefore, the temporal yield of crystal growth is improved, and since the supporting material is also inexpensive, it is effective in reducing the manufacturing cost of band-shaped silicon crystals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る帯状シリコン結晶製造に用いる支
持材の一例を示す説明図、第2図は帯状シリコン結晶製
造原理の説明図、第3図は従来技術である種結晶−支持
材一体物の構成図である。 1・・・るつぼ、2a、2b・・・小孔、3・・・シリ
コン融液、4a、4b・・・結晶端支持材、5・・・種
結晶、6・・・メニスカス、7・・・帯状シリコン結晶
、Ba。 81)・・・ドラム、9a 、9b・・・棒状部分。 出願人代理人 弁理士 鈴江武彦 第1図 第2図    第3図
Fig. 1 is an explanatory diagram showing an example of a support material used in the production of band-shaped silicon crystals according to the present invention, Fig. 2 is an explanatory diagram of the principle of producing band-shaped silicon crystals, and Fig. 3 is a conventional technique in which seed crystal and support material are integrated. It is a configuration diagram of an object. DESCRIPTION OF SYMBOLS 1... Crucible, 2a, 2b... Small hole, 3... Silicon melt, 4a, 4b... Crystal edge support material, 5... Seed crystal, 6... Meniscus, 7...・Striped silicon crystal, Ba. 81)...Drum, 9a, 9b...rod-shaped portion. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)底部に少なくとも2個の小孔のあいたるつぼの下
部より、少なくとも2本の結晶端支持材を、前記小孔そ
れぞれを通じて前記るつぼの上方に配置し、また、前記
るつぼにシリコン融液を収容し、その後、前記結晶端支
持材同志間の前記シリコン融液と前記結晶端支持材とに
種結晶を接触させ、この種結晶を引上げることにより、
前記結晶端支持材の間に表面張力により張られたシリコ
ン融液を連続的に結晶化させて帯状シリコン結晶を製造
する方法において、前記結晶端支持材として、それぞれ
の一部が棒状すなわち張力を加えずとも直線的であり、
他の部分が糸状即ち柔軟で張力を加えることにより直線
状となる如き結晶端支持材を用い、結晶製造を開始する
にあたり、前記るつぼ内でシリコンを溶融させた状態下
において、前記結晶端支持材を、るつぼ等の高温部を収
納しておく外囲器の外部から、前記るつぼの小孔および
前記シリコン融液に貫通させることで前記結晶端支持材
を所定位置に配置させた後、結晶製造を行うことを特徴
とする帯状シリコン結晶の製造方法。
(1) At least two crystal edge supports are placed above the crucible through each of the small holes from the bottom of the crucible having at least two small holes in the bottom, and silicon melt is poured into the crucible. Then, by bringing a seed crystal into contact with the silicon melt between the crystal edge supporting materials and the crystal edge supporting material, and pulling up the seed crystal,
In the method of manufacturing a band-shaped silicon crystal by continuously crystallizing a silicon melt stretched between the crystal edge supports by surface tension, each part of the crystal edge supports is rod-shaped, that is, a part of the silicon melt is stretched by surface tension. It is linear even without adding,
When starting crystal production using a crystal edge support material whose other parts are thread-like, that is, flexible, and which becomes straight when tension is applied, the crystal edge support material is melted in the crucible. is passed through the small holes of the crucible and the silicon melt from the outside of the envelope that houses a high-temperature part such as a crucible, so that the crystal end support material is placed in a predetermined position, and then crystal production is performed. A method for manufacturing a band-shaped silicon crystal, characterized by performing the following steps.
(2)結晶端支持材として、それぞれ糸状の素材の先端
の一部分をバインダ等により固められて成るものを用い
ていることを特徴とする特許請求の範囲第1項記載の帯
状シリコン結晶の製造方法。
(2) A method for manufacturing a band-shaped silicon crystal according to claim 1, characterized in that the crystal end support material is formed by solidifying a portion of the tip of each thread-like material with a binder or the like. .
(3)結晶端支持材として、それぞれ棒状の素材に糸状
の素材を接続して成るものを用いることを特徴とする特
許請求の範囲第1項記載の帯状シリコン結晶の製造方法
(3) The method for producing a band-shaped silicon crystal according to claim 1, characterized in that the crystal edge support material is made by connecting a thread-like material to a rod-like material.
JP25409985A 1985-11-13 1985-11-13 Production of band silicon Granted JPS62113794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25409985A JPS62113794A (en) 1985-11-13 1985-11-13 Production of band silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25409985A JPS62113794A (en) 1985-11-13 1985-11-13 Production of band silicon

Publications (2)

Publication Number Publication Date
JPS62113794A true JPS62113794A (en) 1987-05-25
JPH0375514B2 JPH0375514B2 (en) 1991-12-02

Family

ID=17260207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25409985A Granted JPS62113794A (en) 1985-11-13 1985-11-13 Production of band silicon

Country Status (1)

Country Link
JP (1) JPS62113794A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029761A1 (en) * 2007-08-31 2009-03-05 Evergreen Solar, Inc. Ribbon crystal string with extruded refractory material
US8304057B2 (en) 2007-08-31 2012-11-06 Max Era, Inc. Ribbon crystal end string with multiple individual strings

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194798A (en) * 1982-05-07 1983-11-12 Toshiba Corp Apparatus for growth of flat plate silicon crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194798A (en) * 1982-05-07 1983-11-12 Toshiba Corp Apparatus for growth of flat plate silicon crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029761A1 (en) * 2007-08-31 2009-03-05 Evergreen Solar, Inc. Ribbon crystal string with extruded refractory material
US7651768B2 (en) 2007-08-31 2010-01-26 Evergreen Solar, Inc. Reduced wetting string for ribbon crystal
CN101784701A (en) * 2007-08-31 2010-07-21 长青太阳能股份有限公司 Ribbon crystal string with extruded refractory material
US8304057B2 (en) 2007-08-31 2012-11-06 Max Era, Inc. Ribbon crystal end string with multiple individual strings
US8309209B2 (en) 2007-08-31 2012-11-13 Max Era, Inc. Ribbon crystal string for increasing wafer yield

Also Published As

Publication number Publication date
JPH0375514B2 (en) 1991-12-02

Similar Documents

Publication Publication Date Title
CN107151092B (en) A kind of preparation method and doped single crystal multi-core optical fiber of doped single crystal multi-core optical fiber
KR100799362B1 (en) Method for producing silicon single crystal
JPS62113794A (en) Production of band silicon
US5879449A (en) Crystal growth
JPH0582751B2 (en)
US4213940A (en) Apparatus for pulling monocrystalline ribbon-like bodies out of a molten crystalline film
JPS58194798A (en) Apparatus for growth of flat plate silicon crystal
JPS63166790A (en) Pulling up device for silicon single crystal
US3765843A (en) Growth of tubular crystalline bodies
JPH07300388A (en) Production of silicon single crystal
JPH08183696A (en) Crucible for producing fine wire-shaped silicon and fine wire-shaped silicon
KR100581045B1 (en) Method for porducing silicon single crystal
JPH08183691A (en) Crucible for producing fine wire-shaped silicon and wire-shaped silicon
JPS5973492A (en) Apparatus for preparation of silicon strip crystal
JPS5950627B2 (en) Single crystal silicon pulling equipment
KR0174390B1 (en) Single crystal growing apparatus according to the efg method
JPS62113792A (en) Production unit for band silicon crystal
JPH0648889A (en) Production of single crystal
JP2000327490A (en) Method and apparatus for producing silicon crystal
JPS62113791A (en) Production apparatus for beltlike silicon crystal
JPS62182198A (en) Production of ribbon-like silicon crystal
JPH08183695A (en) Crucible for producing fine wire-shaped silicon and fine wire-shaped silicon
WO2021087714A1 (en) Thermal field device for synchronous preparation of crystal fiber and cladding, and preparation method therefor
JPH0419194B2 (en)
JPS61291487A (en) Production of single crystal fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees