JPS62113366A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPS62113366A
JPS62113366A JP60252164A JP25216485A JPS62113366A JP S62113366 A JPS62113366 A JP S62113366A JP 60252164 A JP60252164 A JP 60252164A JP 25216485 A JP25216485 A JP 25216485A JP S62113366 A JPS62113366 A JP S62113366A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
lithium
cadmium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60252164A
Other languages
Japanese (ja)
Inventor
Junichi Yamaura
純一 山浦
Yoshinori Toyoguchi
豊口 吉徳
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60252164A priority Critical patent/JPS62113366A/en
Publication of JPS62113366A publication Critical patent/JPS62113366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve a cycle characteristic, by forming a battery with a nonaqueous electrolyte inclusive of an alkali mettalic ion, a positive electrode using Cr3O8, and a negative electrode using an alloy containing lead, tin, etc., in the specified composition of cadmium, zinc or the like. CONSTITUTION:A nonaqueous electrolyte inclusive of a lithic ion, a positive electrode making Cr3O8 the main component, and a negative electrode using an alloy which makes at least one selected from a group of cadmium and zinc into an essential component with composition of more than 10wt% and less than 80wt%, and containing one of lead, tin or the like as the other component are all combined together whereby a nonaqueous electrolytic secondary battery is formed up. And, a component of the negative electrode is regulated whereby metallic lithium separated and a solvent being used for the electrolyte cause a chemical reaction and thereby such a possibility that the positive electrode is deteriorated is checked. Therefore, using inexpensive Cr3O8 for the positive electrode, a problem on dendrite of the negative electrode is solvent, thus improvement in cycle characteristic is well promotable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エネルギー密度の大きい、非水電解質二次電
池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-aqueous electrolyte secondary battery with high energy density.

従来の技術 従来より、アルカリ金属として、リチウムを用いたリチ
ウム二次電池が高エネルギー密度の電池になることが予
測され、種々の電池系が研究されて来た。例えば負極に
リチウム、正極に二硫化チタン、電解質にLiAsF6
を溶解した2−メチルテトラヒドロフランを用いた電池
系が知られている。
BACKGROUND OF THE INVENTION It has been predicted that lithium secondary batteries using lithium as an alkali metal will have a high energy density, and various battery systems have been studied. For example, lithium is used as the negative electrode, titanium disulfide is used as the positive electrode, and LiAsF6 is used as the electrolyte.
A battery system using 2-methyltetrahydrofuran dissolved in 2-methyltetrahydrofuran is known.

発明が解決しようとする問題点 二硫化チタンからなる正極を用いた二次電池の平均放電
電圧は1.9vと低く、さらに、二硫化チタンが高価で
あるという欠点を持っている。
Problems to be Solved by the Invention The average discharge voltage of a secondary battery using a positive electrode made of titanium disulfide is as low as 1.9V, and furthermore, titanium disulfide has the disadvantage of being expensive.

この問題を解決する方法として、正極にCr30Bを用
いることが考えられた。例えば、負極に金属リチウム、
正極に0r50B 、電解質に過塩素酸リチウム(以後
Li(JO4と略す)を溶解したプロピレンカーボネー
ト(以後PCと略す)を用いたものである。しかし、こ
の二次電池では、サイクル特性に問題があった。当初、
この二次電池のサイクル特性の悪さは負極に原因がある
と考えられた。
As a way to solve this problem, it has been considered to use Cr30B for the positive electrode. For example, metallic lithium is used as the negative electrode.
The positive electrode used was 0r50B, and the electrolyte was propylene carbonate (hereinafter referred to as PC) in which lithium perchlorate (hereinafter referred to as Li (hereinafter referred to as JO4) was dissolved).However, this secondary battery had a problem with its cycle characteristics. Initially,
The poor cycle characteristics of this secondary battery were thought to be caused by the negative electrode.

すなわち、リチウムを充電するとデンドライト状にリチ
ウムが析出する。このために短縮の原因となったり、充
電効率の低下の原因となって、サイクル特性が低下する
というものであった。
That is, when lithium is charged, lithium is deposited in a dendrite shape. This causes a reduction in battery life, a decrease in charging efficiency, and a deterioration in cycle characteristics.

この負極の問題を解決するだめ、負極に鉛を使用するこ
とが提案された(特開昭57−141889号公報)。
In order to solve this negative electrode problem, it was proposed to use lead in the negative electrode (Japanese Patent Application Laid-open No. 141889/1989).

すなわち、充電により負極の鉛は鉛−リチウム合金を作
り、この鉛−リチウム合金中のリチウムは放電により、
電解質中に溶解すると言った原理にもとづくものである
。充電により、負極の鉛はリチウムと合金を作るが、リ
チウム量が多くなると負極は微粉化してしまい、形状の
観点より不適当なものであるが、充電量を小さくすなわ
ち、浅い充電を行って、サイクル特性を良くしようとす
るものである。これにより、リチウム/Cr50B二次
電池のサイクル特性は向上したが十分なものではなかっ
た。すなわち、負極のサイクル特性は向上しだが、正極
の劣化が起こったからである。しかも後述するように、
正極が劣化を起こす原因は、負極にあるため、負極の改
良を必要とするものであった。
That is, upon charging, the lead in the negative electrode forms a lead-lithium alloy, and upon discharging, the lithium in this lead-lithium alloy becomes
It is based on the principle that it dissolves in an electrolyte. When charging, lead in the negative electrode forms an alloy with lithium, but if the amount of lithium increases, the negative electrode becomes finely powdered, which is inappropriate from the viewpoint of shape, but by reducing the amount of charge, i.e. shallow charging, This is intended to improve cycle characteristics. Although this improved the cycle characteristics of the lithium/Cr50B secondary battery, it was not sufficient. That is, although the cycle characteristics of the negative electrode improved, the positive electrode deteriorated. Moreover, as explained later,
Since the negative electrode is the cause of the deterioration of the positive electrode, it has been necessary to improve the negative electrode.

問題点を解決するだめの手段 本発明は、リチウムイオンなどのアルカ1y金属イオン
を含む非水電解質と、正極活物質としての0r50Bと
、充電により非水電解質中のアルカリ金属イオンを吸蔵
し、放電によりアルカリ金属イオンとして、電解質中に
放出する負極として、カドミウム、亜鉛の群から選ばれ
た少くとも1つを10重量%以上、80重量%以下の組
成で必須成分とし、他の成分として、鉛、スズ、ビスマ
ス。
Means to Solve the Problems The present invention uses a non-aqueous electrolyte containing alkali metal ions such as lithium ions, 0r50B as a positive electrode active material, and absorbs alkali metal ions in the non-aqueous electrolyte by charging, and then discharges the non-aqueous electrolyte. As a negative electrode released into the electrolyte as alkali metal ions, at least one selected from the group of cadmium and zinc is an essential component in a composition of 10% by weight or more and 80% by weight or less, and other components include lead. , tin, bismuth.

インジウム、アルミニウムの群から選ばれた少くとも1
つからなる合金を用いたものである。これによりサイク
ル特性の良好な、かつ高電圧の二次電池を得ることがで
きる。
At least one selected from the group of indium and aluminum
It uses an alloy consisting of: This makes it possible to obtain a high-voltage secondary battery with good cycle characteristics.

作用 先に記したように、Cr306を正極とする非水電解質
二次電池では、負極のデンドライトの問題を解消しても
、正極で劣化が起こり、サイクル特性は悪いものであっ
た。
As mentioned above, in non-aqueous electrolyte secondary batteries using Cr306 as the positive electrode, even if the problem of dendrites in the negative electrode was solved, the positive electrode deteriorated and the cycle characteristics were poor.

本発明者らは、実施例の項で述べるように検討し、以下
のように考察した。すなわち、充放電をくり返す際に、
負極で析出した金属リチウムや、リチウム鉛合金中のリ
チウムと電解質に用いている溶媒が化学反応を起こし、
この反応生成物、例えば二酸化炭素が、電解質中を拡散
し、正極だ吸着または反応し、このだめに正極のサイク
ル特性が低下すると考えた。
The present inventors conducted studies as described in the Examples section, and made the following considerations. In other words, when repeatedly charging and discharging,
A chemical reaction occurs between the metallic lithium precipitated at the negative electrode, the lithium in the lithium-lead alloy, and the solvent used in the electrolyte.
It was thought that this reaction product, such as carbon dioxide, would diffuse through the electrolyte and be adsorbed or react with the positive electrode, resulting in a decline in the cycle characteristics of the positive electrode.

この問題を解決するには、電解質と負極との反応を抑制
する必要がある。本発明者らは、種々の負極を検討した
結果、負極はカドミウム、亜鉛の群から選ばれた少くと
も1つを10重量多以上、80重量%以下の組成で必須
成分とし、他の成分として、鉛、スズ、ビスマス、イン
ジウム、アルミニウムの群から選ばれた少くとも1つか
らなる合金を用いることが好しく、これによって電解質
と負極との反応生成物の発生を抑制できることを見出し
た。
To solve this problem, it is necessary to suppress the reaction between the electrolyte and the negative electrode. As a result of studying various negative electrodes, the present inventors found that the negative electrode has at least one selected from the group of cadmium and zinc as an essential component in a composition of 10% by weight or more and 80% by weight or less, and other components. It has been found that it is preferable to use an alloy consisting of at least one selected from the group consisting of lead, tin, bismuth, indium, and aluminum, and that this can suppress the generation of reaction products between the electrolyte and the negative electrode.

実施例 〈実施例1〉 正極活物質であるcr5o8のサイクルに伴う充放電特
性の劣化を第6図に示しだ電気化学セルを用いて検討し
た。第5図中1は260’Cで5時間加熱した0r50
870重量係、導電剤としてのアセチレフフジ1215
重量係、結着剤としてのポリ4フツ化エチレン樹脂15
重量%よりなる、2(7)×2CIl厚さ0.7ffj
lのCr3O8を活物質とする正極である。2はリチウ
ム照合電極であり、3は負極である。4は液絡橋である
。2 C15X 2 (7ff厚さ0.5肩肩の負極と
して、金属リチウム(IL)、予めリチウムと合金化さ
せたスズ−リチウム合金(b)、予めリチウムを吸蔵さ
せたスズ70重量係、カドミウム30重量%の合金(C
)を用いた。電解液5としては1モル/lのLiC90
4を溶解させたPCを用いた。
Examples (Example 1) Deterioration of charge/discharge characteristics of cr5o8, which is a positive electrode active material, due to cycling was investigated using an electrochemical cell as shown in FIG. 6. 1 in Figure 5 is 0r50 heated at 260'C for 5 hours.
870 weight, acetyrefuji 1215 as a conductive agent
Weight factor, polytetrafluoroethylene resin 15 as a binder
Weight %, 2(7)×2CIl thickness 0.7ffj
This is a positive electrode using 1 Cr3O8 as an active material. 2 is a lithium reference electrode, and 3 is a negative electrode. 4 is a liquid junction bridge. 2 C15 Weight% alloy (C
) was used. 1 mol/l LiC90 as electrolyte 5
PC in which 4 was dissolved was used.

0r30B正極を、 リチウム照合電極との間で、4m
人で1.6vになるまで放電した後、4m人で25時間
充電し、この充放電サイクルをくり返した。
4m between the 0r30B positive electrode and the lithium reference electrode.
After discharging to 1.6V with a person, charging was performed for 25 hours with a 4m person, and this charge/discharge cycle was repeated.

この実験では、Cr50B正極に対して、照合電極との
間の電圧の規制であり、充電は時間に対しの規制である
ことより、負極の種類にかかわらず、同一のサイクル特
性の結果が得られるはずであるが、第1図て示したサイ
クル特性の結果より、相当負極の種類により影響されて
いることがわかる。
In this experiment, the voltage between the Cr50B positive electrode and the reference electrode is regulated, and charging is regulated by time, so regardless of the type of negative electrode, the same cycle characteristics can be obtained. As expected, the cycle characteristics shown in Figure 1 show that the cycle characteristics are considerably influenced by the type of negative electrode.

なお、鉛リチウム合金を負極に用いてもbと同様の結果
となった。
Note that even when a lead-lithium alloy was used for the negative electrode, the same results as in b were obtained.

この原因として、本発明者らは、負極を充電する際に、
析出したリチウム、あるいは、スズ−リチウム合金中の
リチウムと非水電解質中の溶媒であるPCとが反応して
できる生成物が正極に拡散して行き、正極の劣化につな
がると考えたoPCとリチウムは反応し、一般には、炭
酸リチウムが生成すると考えられている。しかし、炭酸
リチウムは、PCに不溶であることより、本発明者らは
、炭酸リチウムが次のように解離して、PCに可溶の炭
酸ガスとなり、 Li2CO3−+ Li2O+ 002これが正極に拡
散したためと考えた。そこで、0r508の劣化が起こ
らない電池Cの負極を用いるとともに、充放電の間中、
電解液に炭酸ガスを通気して、炭酸ガスの影響を調べる
と、第1図のdに示すように0r50B正極の劣化が現
われた。
As the cause of this, the present inventors found that when charging the negative electrode,
oPC and lithium were thought to cause the precipitated lithium, or the product formed by the reaction between lithium in the tin-lithium alloy and PC, the solvent in the non-aqueous electrolyte, to diffuse into the positive electrode, leading to deterioration of the positive electrode. It is generally believed that lithium carbonate is produced. However, since lithium carbonate is insoluble in PC, the present inventors found that lithium carbonate dissociates as follows and becomes carbon dioxide gas that is soluble in PC, resulting in Li2CO3-+ Li2O+ 002, which diffuses into the positive electrode. I thought. Therefore, we used the negative electrode of battery C that does not cause 0r508 deterioration, and during charging and discharging,
When carbon dioxide gas was passed through the electrolytic solution and the influence of carbon dioxide gas was investigated, deterioration of the 0r50B positive electrode appeared as shown in d of FIG.

これより正極の0r30Bの劣化は、負極の表面で、リ
チウムが電解質と反応してできる生成物によるものであ
ることがわかる。また電解質の溶媒をPCから、テトラ
ヒドロフラン、ジオキソランに変えても、aやbの負極
では同様な正極の劣化が起こるが、Cでは起こらず、ま
た硼フッ化リチウム(LiBF4 )を溶解したジメト
キシエタンを電解質に用いた場合にも同様の結果となっ
た。なお、第1図には、第2サイクル以降の放電量をプ
ロットした。第1サイクルは、充電されていない0r5
0Bの放電によるものであるので除外した。
From this, it can be seen that the deterioration of 0r30B of the positive electrode is due to a product formed by lithium reacting with the electrolyte on the surface of the negative electrode. Furthermore, even if the electrolyte solvent is changed from PC to tetrahydrofuran or dioxolane, similar deterioration of the positive electrode occurs in negative electrodes a and b, but not in case C. Similar results were obtained when used as an electrolyte. In addition, in FIG. 1, the amount of discharge after the second cycle is plotted. The first cycle is 0r5, which is not charged.
This was excluded because it was caused by 0B discharge.

以上の結果より、スズとカドミウムの合金を負極に用い
ることにより、充電に際して、リチウムと電解質との反
応を抑制でき、正極のサイクル特性を向上することがで
きた。
From the above results, by using an alloy of tin and cadmium for the negative electrode, it was possible to suppress the reaction between lithium and the electrolyte during charging, and improve the cycle characteristics of the positive electrode.

スズとカドミウムを負極に用いることにより、十分なリ
チウムを吸蔵しても、負極は微粉化せず、負極のサイク
ル特性が大幅に向上することは既に知られているが、本
発明で示すように、この合金を負極に用いることにより
、リチウムと電解質との反応を抑制でき、Cr506の
ように、リチウムと電解質との反応物によりサイクル特
性が低下する活物質には、特に有効である。
It is already known that by using tin and cadmium in the negative electrode, even if sufficient lithium is occluded, the negative electrode will not become pulverized and the cycle characteristics of the negative electrode will be significantly improved. By using this alloy in the negative electrode, the reaction between lithium and the electrolyte can be suppressed, and it is particularly effective for active materials such as Cr506, whose cycle characteristics are degraded by reactants between lithium and the electrolyte.

〈実施例2〉 第6図と同様のセルを用い、実施例1で述べたのと同じ
正極を用い、負極に、スズ・カドミウム合金の組成を変
えて、その組成の正極のサイクル特性に対する影響を調
べた。負極の合金は、2画×20厚さ0.5fflのも
のを用い、予め電気化学的に200 mAh相当のリチ
ウムを吸蔵したものを用イタ。セル中の電解質は、10
CCの1モル/4のLiCe04を溶解したPCである
。実施例1と同様の充放電試験を行い、第2サイクルの
放電量の半分の放電量になるサイクル数をサイクル特性
として、第2図には、スズ−カドミウム合金中のカドミ
ウム量に対して、プロットシた。これよりサイクル特性
としては、カドミウム量が10ffiit%以上で良好
になることがわかる。またカドミウム量が80重量係を
起えると、合金中へのリチウム吸蔵速度が遅くなり、上
述の実験条件下では、一部金属リチウムの析出が見られ
た。この析出したリチウムと、電解質が反応し、正極の
サイクル特性を低下させた。これより、カドミウム量は
1゜重量%以上、80重量%以下が望ましいことがわか
った。
<Example 2> Using a cell similar to that shown in Fig. 6, using the same positive electrode as described in Example 1, and changing the composition of the tin-cadmium alloy in the negative electrode, the influence of the composition on the cycle characteristics of the positive electrode was investigated. I looked into it. The negative electrode alloy used was 2 x 20 x 0.5 ffl thick, and had previously electrochemically occluded lithium equivalent to 200 mAh. The electrolyte in the cell is 10
This is PC in which LiCe04 of 1 mole/4 of CC is dissolved. A charge/discharge test was conducted in the same manner as in Example 1, and the number of cycles at which the discharge amount was half that of the second cycle was taken as the cycle characteristic. Figure 2 shows the relationship between the amount of cadmium in the tin-cadmium alloy and The plot was. From this, it can be seen that the cycle characteristics are good when the amount of cadmium is 10 ffiit% or more. Furthermore, when the amount of cadmium exceeds 80% by weight, the rate of lithium absorption into the alloy slows down, and under the above experimental conditions, precipitation of some metallic lithium was observed. This precipitated lithium reacted with the electrolyte, reducing the cycle characteristics of the positive electrode. From this, it was found that the amount of cadmium is preferably 1% by weight or more and 80% by weight or less.

同様に、スズの代りに、鉛、ビスマス、インジウム、ア
ルミニウムを用いたカドミウムとの合金においても、カ
ドミウム量が10重量係以上、80重量%以下で良好な
サイクル特性を得た。しかし、これら合金においても、
Cr50B正極に対する影響に差があり、最も良いのは
、スズカドミウム合金、次いでビスマスカドミウム合金
、鉛カドミウム合金、インジウム、鉛、アルミニウムの
各カドミウム合金の順であった。
Similarly, in an alloy with cadmium using lead, bismuth, indium, and aluminum instead of tin, good cycle characteristics were obtained when the amount of cadmium was 10% by weight or more and 80% by weight or less. However, even in these alloys,
There were differences in the effects on the Cr50B positive electrode, with tin-cadmium alloy being the best, followed by bismuth-cadmium alloy, lead-cadmium alloy, and each cadmium alloy of indium, lead, and aluminum.

〈実施例3〉 実施例2で示した、カドミウム合金の他に、亜鉛合金に
おいても同様な効果があった。
<Example 3> In addition to the cadmium alloy shown in Example 2, a zinc alloy also had similar effects.

実施例2と同じようにして、スズ亜鉛合金に対して、亜
鉛の重量係と、正極のCr506の放電量が第2サイク
ルの半分になるサイクル特性とをプロットしたものが第
3図である。この場合にも、亜鉛の量が10重重量板上
、80重量係以下において、正極のサイクル特性が良好
であることがhかる。同様な結果が、各々、鉛、ビスマ
ス、インジウム、アルミニウムと亜鉛の合金を負極に用
いた場合に得られた。
In the same manner as in Example 2, FIG. 3 is a plot of the weight ratio of zinc and the cycle characteristics in which the discharge amount of Cr506 in the positive electrode is half of that in the second cycle for a tin-zinc alloy. In this case as well, it can be seen that the cycle characteristics of the positive electrode are good when the amount of zinc is 80% by weight or less on a 10% weight plate. Similar results were obtained when lead, bismuth, indium, aluminum and zinc alloys were used in the negative electrode, respectively.

〈実施例4〉 リチウムと電解質との反応生成物により、正極0r50
Bの劣化が起こるのであるから、自己放電特性において
も、本発明の、カドミウム、亜鉛を添加した合金負極は
良好結果を示した。実施例1と同様の正極、負極、電解
質を用いて、ボタン型電池を作った。正極の大きさは、
直径17.5fl厚さ0.4MM、負極は、直径18朋
厚さ0.5ffのスズカドミウム合金に、100mAh
相当のリチウムを予め吸蔵させたものである。第6サイ
クルまで、電池電圧が1.oVになるまで2m人で放電
し、3.TVになるまで2m人で充電した。第6サイク
ルの充電が終了したのち、80’Cで1ケ月間保存した
<Example 4> The reaction product of lithium and electrolyte made the positive electrode 0r50
Since deterioration of B occurs, the alloy negative electrode to which cadmium and zinc are added according to the present invention also showed good results in terms of self-discharge characteristics. A button-type battery was made using the same positive electrode, negative electrode, and electrolyte as in Example 1. The size of the positive electrode is
The negative electrode is made of tin-cadmium alloy with a diameter of 17.5fl and a thickness of 0.4mm, and a 100mAh
A considerable amount of lithium is occluded in advance. Until the 6th cycle, the battery voltage is 1. Discharge with 2m person until it reaches oV, 3. It took 2m of charging until it became a TV. After the sixth cycle of charging was completed, the battery was stored at 80'C for one month.

保存後、同様の条件で放電し、第6サイクルとの放電量
を比較した。第4図には、第6サイクルの放電量を第5
サイクルの放電量で除した、保存率と、合金中のカドミ
ウム量との関係を示す。この場合にも、カドミウム量が
10重量係以上、80重量%以下で良好な結果を得た。
After storage, discharge was performed under the same conditions, and the amount of discharge was compared with that in the 6th cycle. Figure 4 shows the discharge amount in the 6th cycle.
The relationship between the storage rate divided by the discharge amount of the cycle and the amount of cadmium in the alloy is shown. In this case as well, good results were obtained when the amount of cadmium was 10% by weight or more and 80% by weight or less.

また同様な結果を、鉛、ビスマス、インジウム。Similar results were also obtained for lead, bismuth, and indium.

アルミニウムとカドミウムの合金、鉛、スズ、ビスマス
、インジウム、アルミニウムと亜鉛の合金でも得られた
It was also obtained in alloys of aluminum and cadmium, lead, tin, bismuth, indium, and alloys of aluminum and zinc.

以上の実施例では、電解質にLi(JO4を溶解したP
Cを用いたが、これ以外にも、Li(JO4を溶解した
テトラヒドロフラン、ジオキソラン、LiBFaを溶解
したジメトキシエタン、γ−ブチロラクトン及びこれら
の混合溶媒においても同様な結果となった。
In the above example, the electrolyte contains Li (P in which JO4 is dissolved).
Although Li(JO4) was dissolved in tetrahydrofuran, dioxolane, LiBFa was dissolved in dimethoxyethane, γ-butyrolactone, and a mixed solvent thereof, similar results were obtained.

発明の効果 以上のように、本発明の二次電池は、サイクル特性、自
己放電特性が良好で、かつ安価なものとなり、その産業
上の価値は大である。
Effects of the Invention As described above, the secondary battery of the present invention has good cycle characteristics and self-discharge characteristics, and is inexpensive, so it has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は負極を変えた時の正極のサイクル数と放電量と
の関係を示す図、第2図は負極にスズカドミウム合金を
用いた時のカドミウム含量と、正極のサイクル特性との
関係を示す図、第3図は負極にスズ亜鉛合金を用いた時
の亜鉛含量と、正極のサイクル特性との関係を示す図、
第4図は負極にスズカドミウム合金を用いた時のカドミ
ウム含量と、電池の保存特性の関係を示す図、第6図は
正極のサイクル特性を検討した電気化学セルの概念図で
ある。 a・・・・・・リチウム負極電池、b・・・・・・スズ
リチウム合金負極電池、C・・・・・・スズカドミウム
合金負極電池、d・・・・・・スズカドミウム合金負極
であって電解液中に炭酸ガスを通気した電池。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ヅイフル数 第2図 ススp)″ミツ入社1?グ刀ドミクムク!1[(外〕第
3図 Om 4−0gθ80  /θθ スズ豆鉛94爺市りj4シaりj【量C凭ノ第4図
Figure 1 shows the relationship between the number of cycles of the positive electrode and the amount of discharge when changing the negative electrode, and Figure 2 shows the relationship between the cadmium content and the cycle characteristics of the positive electrode when a tin-cadmium alloy is used for the negative electrode. Figure 3 is a diagram showing the relationship between the zinc content and the cycle characteristics of the positive electrode when a tin-zinc alloy is used for the negative electrode.
FIG. 4 is a diagram showing the relationship between cadmium content and battery storage characteristics when a tin-cadmium alloy is used for the negative electrode, and FIG. 6 is a conceptual diagram of an electrochemical cell in which the cycle characteristics of the positive electrode were studied. a...Lithium negative electrode battery, b...Tin lithium alloy negative electrode battery, C...Tin cadmium alloy negative electrode battery, d...Tin cadmium alloy negative electrode. A battery in which carbon dioxide gas is bubbled through the electrolyte. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Full Number Figure 2 Susp) ``Mitsu Joining 1? Gu Sword Domikumuku! 1 [(Outside) Figure 3 Om 4-0g θ80 / θθ Tin Bean Lead 94 Jiichirij4 Shearj [Amount C Kannodai Figure 4

Claims (1)

【特許請求の範囲】[Claims] アルカリ金属イオンを含む非水電解質と、正極と、充電
により非水電解質中のアルカリ金属イオンを吸蔵し、放
電により電解質中に放出する負極を具備し、前記正極は
Cr_3O_8を主成分とし、前記負極はカドミウム、
亜鉛の群から選ばれた少くとも1つを10重量%以上、
80重量%以下の組成で必須成分とし、他の成分として
、鉛、スズ、ビスマス、インジウム、アルミニウムの群
から選ばれた少くとも1つからなる合金を用いることを
特徴とする非水電解質二次電池。
It comprises a non-aqueous electrolyte containing alkali metal ions, a positive electrode, and a negative electrode that occludes alkali metal ions in the non-aqueous electrolyte by charging and releases them into the electrolyte by discharging, the positive electrode having Cr_3O_8 as a main component, and the negative electrode containing Cr_3O_8 as a main component. is cadmium,
10% by weight or more of at least one selected from the group of zinc,
A non-aqueous electrolyte secondary, characterized in that the composition is 80% by weight or less as an essential component, and the other component is an alloy consisting of at least one selected from the group of lead, tin, bismuth, indium, and aluminum. battery.
JP60252164A 1985-11-11 1985-11-11 Nonaqueous electrolytic secondary battery Pending JPS62113366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60252164A JPS62113366A (en) 1985-11-11 1985-11-11 Nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60252164A JPS62113366A (en) 1985-11-11 1985-11-11 Nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JPS62113366A true JPS62113366A (en) 1987-05-25

Family

ID=17233376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60252164A Pending JPS62113366A (en) 1985-11-11 1985-11-11 Nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JPS62113366A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673860A (en) * 1979-10-01 1981-06-18 Duracell Int Secondary chemical battery
JPS6049575A (en) * 1983-08-29 1985-03-18 Matsushita Electric Ind Co Ltd Noaqueous electrolyte secondary battery
JPS60218774A (en) * 1984-04-13 1985-11-01 Matsushita Electric Ind Co Ltd Manufacture of rechargeable negative electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673860A (en) * 1979-10-01 1981-06-18 Duracell Int Secondary chemical battery
JPS6049575A (en) * 1983-08-29 1985-03-18 Matsushita Electric Ind Co Ltd Noaqueous electrolyte secondary battery
JPS60218774A (en) * 1984-04-13 1985-11-01 Matsushita Electric Ind Co Ltd Manufacture of rechargeable negative electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7183018B2 (en) 1998-09-18 2007-02-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7534528B2 (en) 1998-09-18 2009-05-19 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
EP2219253A2 (en) 1998-09-18 2010-08-18 Canon Kabushiki Kaisha Electrode material
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery

Similar Documents

Publication Publication Date Title
JP2000067852A (en) Lithium secondary battery
JPS62290072A (en) Organic electrolyte secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPS62290071A (en) Organic electrolyne secondary battery
JPS62272473A (en) Nonaqueous solvent secondary battery
JP2701327B2 (en) Non-aqueous electrolyte secondary battery
JPS62113366A (en) Nonaqueous electrolytic secondary battery
JPH08329929A (en) Lithium secondary battery
JP3451601B2 (en) Lithium battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPS60131776A (en) Nonaqueous electrolyte secondary battery
JPS62272472A (en) Nonaqueous solvent secondary battery
JP3358482B2 (en) Lithium secondary battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2621213B2 (en) Organic electrolyte lithium secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPS62110272A (en) Nonaqueous electrolyte secondary cell
JPS62160671A (en) Nonaqueous solvent secondary battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JPS6191864A (en) Nonaqueous electrolyte secondary battery
US4683182A (en) Rechargeable electrochemical apparatus
JPS62140358A (en) Nonaqueous electrolyte secondary cell
JPH0746606B2 (en) Non-aqueous electrolyte secondary battery