JPS6211303A - Yig thin film microwave device - Google Patents

Yig thin film microwave device

Info

Publication number
JPS6211303A
JPS6211303A JP60150431A JP15043185A JPS6211303A JP S6211303 A JPS6211303 A JP S6211303A JP 60150431 A JP60150431 A JP 60150431A JP 15043185 A JP15043185 A JP 15043185A JP S6211303 A JPS6211303 A JP S6211303A
Authority
JP
Japan
Prior art keywords
yig
temperature
thin film
frequency
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60150431A
Other languages
Japanese (ja)
Other versions
JPH0738528B2 (en
Inventor
Yoshikazu Murakami
義和 村上
Hideo Tanaka
秀夫 田中
Masami Miyake
正美 三宅
Seigo Ito
誠吾 伊藤
Hitoshi Tamada
仁志 玉田
Toshiro Yamada
山田 敏郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60150431A priority Critical patent/JPH0738528B2/en
Priority to CA000513293A priority patent/CA1266101A/en
Priority to US06/883,605 priority patent/US4745380A/en
Priority to KR1019860005541A priority patent/KR950005158B1/en
Priority to DE8686305293T priority patent/DE3687929T2/en
Priority to EP86305293A priority patent/EP0208547B1/en
Publication of JPS6211303A publication Critical patent/JPS6211303A/en
Publication of JPH0738528B2 publication Critical patent/JPH0738528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Abstract

PURPOSE:To attain excellent temperature compensation with a simple constitu tion without supplying external energy by using a permanent magnet which the linear temperature coefficient of remanence at room temperature is specific so as to apply a bias magnetic field. CONSTITUTION:The magnetic circuit is formed by using the permanent magnet whose remanence at the room temperature is a value or above expressed in formula I and whose linear temperature coefficient is within + or -5% of a value expressed in formula II. In applying a DC bias magnetic field to a YIG thin film microwave element utilizing the ferri resonance by the circuit, the condition is satisfied, where the resonance frequency is a frequency f0 independently of temperature. As a result, excellent temperature compensation is applied without requiring external energy and increasing power consumption with the simple constitution. In the formula f0 is operating frequency, gamma is gyromagnetic ratio, NZY is anti-magnetic field coefficient of YIG thin film, 4piMSOY is the saturated magnetization of YIG at the room temperature and alpha1Y is the linear temperature coefficient of saturated magnetization of YIG around room temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、YIG (イツトリウム・鉄・ガーネット)
WiIilのフェリ磁性共鳴を用いたマイクロ波素子に
直流バイアス磁界を印加する手段を具備するYIG薄膜
マイクロ波装置に係わる。
[Detailed description of the invention] [Industrial application field] The present invention is directed to YIG (yttrium, iron, garnet).
The present invention relates to a YIG thin film microwave device equipped with means for applying a DC bias magnetic field to a microwave element using WiIil ferrimagnetic resonance.

〔発明の概要〕[Summary of the invention]

本発明はYIGi膜のフェリ磁性共鳴を用いたマイクロ
波素子に直流バイアス磁界を印加する磁気回路に特定の
磁気特性を有する永久磁石を用いるものであり、これに
より、温度特性の良好なY!G薄膜マイクロ波装置を構
成する。
The present invention uses a permanent magnet having specific magnetic properties in a magnetic circuit that applies a DC bias magnetic field to a microwave element using ferrimagnetic resonance of a YIGi film. Construct a G thin film microwave device.

〔従来の技術〕[Conventional technology]

マイクロ波装置として、C,GG (ガドリニウム・ガ
リウム・ガーネット)非磁性基板上に、フェリ磁性体で
あるYIG(イツトリウム・鉄・ガーネット)薄膜を液
相エピタキシャル成長(以下LPEという)させたYI
GllQをフォトリソグラフィ、−技術による選択的エ
ツチングによって円形成いは矩形等の所要形状に加工し
、これのフェリ磁性共鳴を利用することによってフィル
タ、オシレータ等のマイクロ波装置を構成するものが提
案されている。これらマイクロ波装置は、マイクロスト
リップライン等を伝送線路としてマイクロ波集積回路を
作製することが可能であり、他のマイクロ波集積回路と
ハイブリッド接続を容易に行なうことができるという利
点がある。
As a microwave device, a YI film is produced by liquid phase epitaxial growth (hereinafter referred to as LPE) of a ferrimagnetic YIG (yttrium iron garnet) thin film on a C, GG (gadolinium gallium garnet) nonmagnetic substrate.
It has been proposed that microwave devices such as filters and oscillators can be constructed by processing GllQ into a desired shape such as a circle or a rectangle by selective etching using photolithography and technology, and by utilizing the ferrimagnetic resonance of this. ing. These microwave devices have the advantage that a microwave integrated circuit can be fabricated using a microstrip line or the like as a transmission line, and that hybrid connections with other microwave integrated circuits can be easily performed.

また、YIG薄膜磁気共鳴によるマイクロ波素子は、上
述したようにLPEとリソグラフィー技術によって作製
することができることから量産性にすぐれている。
Moreover, the microwave device based on YIG thin film magnetic resonance can be manufactured by LPE and lithography techniques as described above, and therefore has excellent mass productivity.

このようにYIG薄膜磁気共鳴素子によるマイクロ波装
置は、従前のYIG球を用いたものに比し、実用上の多
くの利点を有する。
As described above, a microwave device using a YIG thin film magnetic resonance element has many practical advantages over a conventional device using a YIG sphere.

ところが、このようなYIG薄膜のフェリ磁性共鳴を利
用したマイクロ波装置は、YIG薄膜のフェリ磁性共鳴
周波数fの温度Tの依存性が大であることから温度特性
が悪いという実用上に大きな問題点がある。
However, such a microwave device that utilizes the ferrimagnetic resonance of a YIG thin film has a major practical problem in that the temperature characteristics are poor because the ferrimagnetic resonance frequency f of the YIG thin film is highly dependent on the temperature T. There is.

以下、これについて説明する。This will be explained below.

YIGM膜のフェリ磁性共鳴周波数fは、異方性磁界の
寄与が小さいとしてこれを無視すると、キラチル(にi
 L te l)の式を用いて、次式(1)のように表
すことができる。
The ferrimagnetic resonance frequency f of the YIGM film is calculated by ignoring the anisotropic magnetic field as its contribution is small.
It can be expressed as the following equation (1) using the equation L te l).

f(IJ)−γ (Hg(fl  N X 4πMsY
(T))・・・(1)但し、Tは磁気回転比でγ−2,
8MHz/ Oe、、Hgは直流バイアス磁界、N 2
YはYIG薄膜の反磁界係数で静磁モード理論を用いて
計算される値、4πM SYはYIGの飽和磁化である
。r、tig。
f(IJ)-γ (Hg(fl N X 4πMsY
(T))...(1) However, T is the gyromagnetic ratio γ-2,
8MHz/Oe, Hg is DC bias magnetic field, N2
Y is the demagnetizing field coefficient of the YIG thin film, a value calculated using magnetostatic mode theory, and 4πM SY is the saturation magnetization of YIG. r, tig.

4πM、Yは全て温度Tの関数となる。具体例としては
、アスペクト比(厚み/直径)が、0.01のYIG円
板の垂直共鳴では、N−1−0,9774であり、仮に
バイアス磁界Hgが温度によらず一定とした場合、4r
cMBYは、−20℃で1916G (ガウス)、+6
0℃では、1622Gとなるから共鳴周波数fはこの温
度範囲で、823MHzもの変化をする。
4πM and Y are all functions of temperature T. As a specific example, in the vertical resonance of a YIG disk with an aspect ratio (thickness/diameter) of 0.01, it is N-1-0,9774, and if the bias magnetic field Hg is constant regardless of temperature, 4r
cMBY is 1916G (Gauss) at -20℃, +6
At 0° C., it is 1622G, so the resonance frequency f changes by as much as 823MHz in this temperature range.

このようなYIGwtlfi!マイクロ波装置においζ
、外囲温度による共鳴周波数の変動を回避する方法とし
ては、YIG薄膜磁気共鳴素子を恒温槽内に配置して素
子自体を一定の温度に保持するとか電磁石によって温度
に依存して磁界を変化させて素子の共鳴周波数を一定に
保持させるなどの方法が考えられるが、これらは、電流
制御など外部からのエネルギー供給を必要とすることか
らその構成は複雑となる。
YIGwtlfi like this! Microwave equipment odor ζ
Methods to avoid fluctuations in resonance frequency due to ambient temperature include placing the YIG thin film magnetic resonance element in a thermostatic oven to maintain the element itself at a constant temperature, or using an electromagnet to change the magnetic field depending on the temperature. One possible method is to keep the resonance frequency of the element constant, but these methods require external energy supply such as current control, making their configurations complicated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上述した問題点が解消された、すなわち、温度
特性を補償するための外部回路を必要とせず、更にこれ
に伴って温度特性を補償するための電力消背がなく、し
かも固定周波数、可変周波数の両方のYIG薄膜マイク
ロ波装置に適用できて、広範囲の使用周波数のYIG薄
膜マイクロ波装置において温度特性の補償を良好に行な
うことができるようにするものである。
The present invention solves the above-mentioned problems, that is, there is no need for an external circuit to compensate for temperature characteristics, there is no need for power consumption to compensate for temperature characteristics, and there is a fixed frequency. The present invention is applicable to both YIG thin film microwave devices with variable frequencies, and enables good compensation of temperature characteristics in YIG thin film microwave devices with a wide range of operating frequencies.

〔問題点を解決するための手段〕[Means for solving problems]

第1図はYIG薄腰マイクロ波装置の構成図で、図中+
1)はYIG″/W、膜によるマイクロ波素子、(2)
はこのマイクロ波素子(1)にバイアス磁界を与える磁
気回路で、この磁気回路(2)は、例えばコ字状ヨーク
(3)とその両端部の相対向する面に、夫々厚さ1mの
永久磁石(4)が配置され、両磁石(4)及び(4)間
に間隔I!gをもって磁気ギャップgが形成され、この
磁気ギヤツブg内にマイクロ波素子+1)が配置される
Figure 1 is a configuration diagram of the YIG thin microwave device.
1) is YIG''/W, a microwave element using a film, (2)
is a magnetic circuit that applies a bias magnetic field to this microwave element (1), and this magnetic circuit (2) is made of, for example, a permanent 1 m thick plate on each of the opposing surfaces of the U-shaped yoke (3) and its opposite ends. A magnet (4) is arranged with a spacing I! between both magnets (4) and (4). A magnetic gap g is formed with g, and a microwave element +1) is disposed within this magnetic gear g.

本発明においては、この磁気回路(2)中の磁石(4)
として、foを使用周波数、γを磁気回転比、N zY
をYIG薄膜の反磁界係数、4πMsざを室温における
YIGの飽和磁化α1Yを室温付近におけるYIGの飽
和磁化の1次の温度係数とするとき、室温でのレマネン
スBrが(f o / r)+ N2Y4 rcMBざ
以上で、且つ室温付近でのBrの1次の温度係数内に入
るような永久磁石とする。
In the present invention, the magnet (4) in this magnetic circuit (2)
, fo is the frequency used, γ is the gyromagnetic ratio, N zY
When is the demagnetizing field coefficient of the YIG thin film and 4πMs is the saturation magnetization of YIG at room temperature α1Y is the first-order temperature coefficient of the saturation magnetization of YIG near room temperature, the remanence Br at room temperature is (f o / r) + N2Y4 A permanent magnet is used that has an rcMB or more and is within the first-order temperature coefficient of Br near room temperature.

尚、ここに使用周波数fOとは、マイクロ波装置の使用
周波数が固定である場合は、その周波数を指称し、可変
とするときは、固定のバイアス磁界に重畳して磁気回路
に図示しζいないが電磁コイルへの通電制御によってバ
イアス磁界が可変されるようになされているが、この電
磁コイルへの通電電流をオフとしたときの周波数を指称
する。
In addition, the working frequency fO here refers to the frequency when the working frequency of the microwave device is fixed, and when it is variable, it is superimposed on the fixed bias magnetic field and indicated in the magnetic circuit. Although the bias magnetic field is varied by controlling the current flowing through the electromagnetic coil, it refers to the frequency when the current flowing through the electromagnetic coil is turned off.

〔作用〕[Effect]

第1図に示す磁気回路において、磁束はすべて磁気ギヤ
ツブg内を通り、このギヤツブg内の磁界は一様であり
、またヨークの透磁率が無限大であるとすると、マック
スウェルの方程式により次式が成り立つ。
In the magnetic circuit shown in Figure 1, all of the magnetic flux passes through the magnetic gear g, the magnetic field within the gear g is uniform, and the magnetic permeability of the yoke is infinite. According to Maxwell's equations, The formula holds true.

Bn+ =Bg            ・・・(2)
1mHm=1gHg       ・・・(3)但し、
Bm及び9gは、夫々永久磁石(4)及び磁気ギャップ
内の磁束密度、Ha及びH,は、夫々同様に永久磁石(
4)及び磁気ギヤツブg内の磁界で、Haはその向きが
Hg 、Bm、Bgの向きと逆となる。
Bn+ =Bg...(2)
1mHm=1gHg...(3) However,
Bm and 9g are the magnetic flux densities in the permanent magnet (4) and the magnetic gap, respectively, and Ha and H are the magnetic flux densities in the permanent magnet (4), respectively.
4) and the magnetic field within the magnetic gear g, the direction of Ha is opposite to that of Hg, Bm, and Bg.

更に、永久磁石(4ンがクリック点を持たないものであ
って、リコイル透磁率μrが一定、つまり減磁特性が直
接性を示すものと仮定すると、次式(4)が成立する。
Furthermore, assuming that the permanent magnet (4) does not have a click point and that the recoil permeability μr is constant, that is, that the demagnetization characteristic exhibits directness, the following equation (4) holds true.

μr                μr・ ・ ・
(4) (3]式、及び(4)式よりギャップ磁界Hgが次式(
5)のように求められる。
μr μr・・・・
(4) From equations (3) and (4), the gap magnetic field Hg can be calculated using the following equation (
5).

今、熱膨張による磁気回路の寸法変化の寄与は、充分小
さく無視できると仮定すると、ギャップ磁界Hgは、温
度Tの関数として次式(6)のように表わすことができ
る。
Assuming that the contribution of dimensional changes in the magnetic circuit due to thermal expansion is sufficiently small and can be ignored, the gap magnetic field Hg can be expressed as a function of temperature T as shown in the following equation (6).

一方、永久磁石のレマネンスBr及びYIGの飽和磁化
4πMsYは、室温Toを中心として士数十℃の温度範
囲で、具体滴には±40℃の温度範囲では、夫々2次ま
での温度係数α1’+  α2B及びα1Y+α2Yを
考慮すれば、充分精度良く表現することがrjJ能であ
る。
On the other hand, the remanence Br of the permanent magnet and the saturation magnetization 4πMsY of YIG have a temperature coefficient α1' up to the second order in a temperature range of several tens of degrees Celsius centering on the room temperature To, and in a temperature range of ±40 degrees Celsius for a concrete droplet. +α2B and α1Y+α2Y, it is possible to express it with sufficient accuracy.

Brω−Br0(1+α1” (T−To )+α2’
 (T−To )’)     ・・・(714gMS
Y(T)−4gMsJ(1+α1Y(T−To)+α2
Y(T−To )’)      ・・・(8)そし°
ζ、共鳴周波数r■が温度Tに依存せず、一定の値f0
になるためには、(1)式と(6)式とにより次式(9
)が成立する必要がある。
Brω-Br0(1+α1"(T-To)+α2'
(T-To)') ... (714gMS
Y(T)-4gMsJ(1+α1Y(T-To)+α2
Y(T-To)')...(8) Then°
ζ, the resonance frequency r■ does not depend on the temperature T and is a constant value f0
In order to obtain the following equation (9) using equations (1) and (6),
) must hold true.

・・・(9) この(9)式に(7)弐及び(8)式を代入し、温度T
につイテの0次、1次及び2次の各項を等しいとするご
とにより次式が求められる。
...(9) Substituting equations (7) 2 and (8) into this equation (9), the temperature T
The following equation is obtained by assuming that the 0th, 1st, and 2nd order terms of the unit are equal.

・・・ (10) ・・・ (11) ・・・ (12) (10)式から ByO> (f o / r ) +NZ’ 4gMS
ざ −・−(13)の条件が必要であることが分る。
... (10) ... (11) ... (12) From equation (10), ByO> (f o / r ) +NZ' 4gMS
It turns out that the condition -・-(13) is necessary.

また、(11)式、及び(12)式をみると、永久磁石
(4)のレマネンスBrの1次及び2次の温度係数α1
’ +α2Bのwt通値は、共鳴周波数fo、YIG薄
膜の反磁界係数NZY、YIGの飽和磁化4πMsざ及
びその温度係数α1Yだけから求められることが分る。
Also, looking at equations (11) and (12), the first and second temperature coefficients α1 of the remanence Br of the permanent magnet (4)
It can be seen that the wt normal value of +α2B can be obtained only from the resonance frequency fo, the demagnetizing field coefficient NZY of the YIG thin film, the YIG saturation magnetization 4πMs distribution, and its temperature coefficient α1Y.

具体例としてアスペクト比が、0.OlのYIG円板の
垂直共鳴では、N2Y−0,9774であり、T。
As a specific example, the aspect ratio is 0. In the vertical resonance of the YIG disk of Ol, it is N2Y-0,9774 and T.

−20℃(室温)でのYIGの飽和磁化及びその温度係
数は、4gMSざ=1771.8G、  α1Y−2,
07X10−’ 、α2Y= −0,996X 10−
’となるので、これらからレマネンスBrの1次及び2
次の温度係数αIB及びα2Bを(11)式及び(12
)式から計算して求めると、第2図の表に示す通りにな
る。
The saturation magnetization of YIG at -20°C (room temperature) and its temperature coefficient are 4gMS = 1771.8G, α1Y-2,
07X10-', α2Y= -0,996X 10-
', so from these, the first and second order of remanence Br
The following temperature coefficients αIB and α2B are expressed by equations (11) and (12).
), the results are as shown in the table in Figure 2.

しかしながら現実の問題として、YIG薄膜マイクロ波
装置の使用周波数foが決められたとき、上述したよう
に、(11)弐及び(12)式から求められるα−及び
α2Bの値を同時に実現できる永久磁石材料を用意する
ことは容易ではない。しかしながら、第2図において2
次の温度係数α2Bをみると、これについては、foの
比較的小さい変化に対しては、αLBに比してその変化
が小さいことから一次の温度係数αII′1だけについ
てみると、このαIBの(11)式から決る理想値(α
IB)oとしたとき、この値(αIB)oから±5%の
値のαlsを得る永久磁石材料を用意することは、それ
ほど困難ではない。そして、このときの永久磁石のレマ
ネンスBr及び室温におけるYIGの飽和磁化の1次の
温度係数の寄与だけから決る周波数変化Δfは、 ・・・ (14) となる。
However, as a practical matter, when the operating frequency fo of the YIG thin film microwave device is determined, as mentioned above, a permanent magnet that can simultaneously realize the values of α- and α2B obtained from equations (11) 2 and (12) Preparing the materials is not easy. However, in Figure 2, 2
Looking at the next temperature coefficient α2B, for a relatively small change in fo, the change is small compared to αLB, so if we look only at the first-order temperature coefficient αII′1, this αIB The ideal value (α
IB)o, it is not so difficult to prepare a permanent magnet material that obtains a value αls of ±5% from this value (αIB)o. Then, the frequency change Δf determined only from the contribution of the remanence Br of the permanent magnet and the first-order temperature coefficient of the saturation magnetization of YIG at room temperature is as follows: (14)

この(14)式から通常要求される温度変化ΔT=±4
0℃において、ΔαIB/(αIB)0−±5%とした
ときのΔfを求めるとΔf=±20MIIzに収まる。
From this equation (14), the normally required temperature change ΔT = ±4
At 0° C., when Δf is set to ΔαIB/(αIB)0−±5%, Δf is found to be Δf=±20MIIz.

つまり、良好な温度特性が実現できることが確かめられ
る。
In other words, it is confirmed that good temperature characteristics can be achieved.

〔実施例〕〔Example〕

第1図の構成において、fo=6GHzのYIG薄膜マ
イクロ波装置を得る場合について説明する。
A case will be described in which a YIG thin film microwave device with fo=6 GHz is obtained using the configuration shown in FIG.

この場合、永久磁石(4)としてそのレマネンスBrが
6000G、 1次の温度係数αIBが−0,9X 1
0−3、α2BがOのCeCo5の磁石を用いる。
In this case, the permanent magnet (4) has a remanence Br of 6000G and a first-order temperature coefficient αIB of -0.9X 1
0-3, a CeCo5 magnet with α2B of O is used.

このとき、2次の温度係数までを考慮しても、−20℃
〜+60℃の温度変化の範囲でΔf=±11.5MHz
の良好な温度特性を実現することができる。
At this time, even if we consider the second-order temperature coefficient, -20℃
Δf=±11.5MHz within a temperature change range of ~+60℃
Good temperature characteristics can be achieved.

次に、本発明を周波数可変型のYIG薄膜マイクロ波装
置に通用する場合について説明する。第3図は、その−
例を示し、第1図と対応する部分には同一符号を付して
重複説明を省略するが、この場合、ヨーク(3)にNi
回数のコイル(5)を巻回した場合である。
Next, a case will be described in which the present invention is applied to a variable frequency YIG thin film microwave device. Figure 3 shows the -
An example will be shown, and parts corresponding to those in FIG.
This is a case where the coil (5) is wound several times.

この場合、前記(3)式に対応する式として次の(15
)式が成立する。
In this case, the following equation (15
) holds true.

1taH慣+NI=βgHg    ・・・ (15)
但し、■はコイル電流である。
1taH habit+NI=βgHg... (15)
However, ■ is the coil current.

また、前記(6)式に対応する式として次の(16)式
が成立する。
Furthermore, the following equation (16) holds true as an equation corresponding to the above equation (6).

そして、第1図の場合と同じように、(9)式を満たす
ように、永久磁石(4)の材料と厚さを選定すれば(1
6)式から、次式(17)が成立する。
Then, as in the case of Fig. 1, if the material and thickness of the permanent magnet (4) are selected so as to satisfy equation (9), then (1
From equation 6), the following equation (17) holds true.

Hg (T)= (f o /γ)+N2Y4πM s
X ef)(1)式及び(17)式から共鳴周波数fは
、次式(18)のように、温度に依存せず、コイル電流
Iたけで決ることが分る。
Hg (T) = (f o /γ) + N2Y4πM s
X ef) From equations (1) and (17), it can be seen that the resonance frequency f does not depend on the temperature and is determined only by the coil current I, as shown in the following equation (18).

すなわち、中心の周波数を上述したように永久磁石(4
)の特性によって本発明による構成によってその温度補
償をなせば、コイル(5)への通電による発熱による影
響が大きくないとすれば、可変型のYIG薄膜マイクロ
波装置においても有効であることが分る。
In other words, the center frequency is set by a permanent magnet (4
), it has been found that if temperature compensation is achieved by the configuration according to the present invention, it is effective even in a variable YIG thin film microwave device, provided that the effect of heat generation due to energization to the coil (5) is not large. Ru.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、第1図にボしたように
YIG薄膜による磁気共鳴を利用するマイクロ波素子(
11に対してバイアス磁界を与えるための磁気回路中に
、室温でのレマネンスBrが(fo /γ)+NZY4
πMsざ以上で、且つ室温付近でのBrの1次の温度係
数か に入るような1種類の永久磁石材料を用いることによっ
て良好な温度特性を有するマイクロ波装置が実現できる
As described above, according to the present invention, a microwave element (
In the magnetic circuit for applying a bias magnetic field to 11, remanence Br at room temperature is (fo/γ)+NZY4
A microwave device with good temperature characteristics can be realized by using one type of permanent magnet material that has a temperature coefficient of πMs or more and that is within the first-order temperature coefficient of Br near room temperature.

したがって冒頭に述べたように量産性にすぐれたY I
 0M膜によるマイクロ波装置の特徴を活かして、より
その利用度が高められその工業的利益は大である。
Therefore, as mentioned at the beginning, YI with excellent mass productivity
By taking advantage of the characteristics of the microwave device using the 0M membrane, its usage can be further increased, and its industrial benefits are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は夫々本発明によるYfG薄膜マイク
ロ波装置の各側の構成図、第2図はその使用周波数と温
度係数α1’+  α2Bの計箆値表図である。 (11はマイクロ波素子、(2)は磁気回路、gはその
磁気ギャップ、(3)はヨーク、(4)は永久磁石、(
5)はコイルである。 −2(: ■パ 。 代理人 伊藤 貞 1.仁1,2.′ 同  松隈秀盛、3Jl! +さ YIG膚j潰マイクロ壕31!の構成肥第1図 第2図
FIGS. 1 and 3 are block diagrams of each side of the YfG thin film microwave device according to the present invention, and FIG. 2 is a table showing the used frequencies and temperature coefficients α1'+α2B. (11 is a microwave element, (2) is a magnetic circuit, g is its magnetic gap, (3) is a yoke, (4) is a permanent magnet, (
5) is a coil. -2 (: ■Pa. Agent: Sada Ito 1. Hitoshi 1, 2.' Same as Hidemori Matsukuma, 3Jl! +Sa YIG skin j crushing micro trench 31! Composition of Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims]  YIG薄膜のフェリ磁性共鳴を利用したマイクロ波素
子にバイアス磁界を与える磁気回路中に、f_0を使用
周波数(固定周波数ではその周波数、可変周波数装置で
は周波数制御用の電磁石コイルに電流を通じない状態で
の周波数)、γを磁気回転比、N_Z^YをYIG薄膜
の反磁界係数、4πM_s_o^Yを室温におけるYI
Gの飽和磁化α_1^Yを室温付近におけるYIGの飽
和磁化の1次温度係数とするとき、室温でのレマネンス
Brが(f_0/γ)+N_Z^Y4πM_s_o^Y
以上で、且つ室温付近でのBrの1次の温度係数が{(
N_Z^Y4πM_s_o^Y)/[(f_0/γ)+
N_Z^Y4πM_s_o^Y]}・α_1^Yの±5
%以内に入るような永久磁石が用いられて成るYIG薄
膜マイクロ波装置。
In a magnetic circuit that applies a bias magnetic field to a microwave element that utilizes the ferrimagnetic resonance of a YIG thin film, f_0 is the frequency used (for a fixed frequency, that frequency; for a variable frequency device, it is the frequency when no current is passed through the electromagnetic coil for frequency control). frequency), γ is the gyromagnetic ratio, N_Z^Y is the demagnetizing field coefficient of the YIG thin film, and 4πM_s_o^Y is the YI at room temperature.
When the saturation magnetization α_1^Y of G is the first-order temperature coefficient of the saturation magnetization of YIG near room temperature, the remanence Br at room temperature is (f_0/γ)+N_Z^Y4πM_s_o^Y
Above, the first-order temperature coefficient of Br near room temperature is {(
N_Z^Y4πM_s_o^Y)/[(f_0/γ)+
N_Z^Y4πM_s_o^Y]}・α_1^Y ±5
A YIG thin film microwave device using a permanent magnet that falls within %.
JP60150431A 1985-07-09 1985-07-09 YIG thin film microwave device Expired - Fee Related JPH0738528B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60150431A JPH0738528B2 (en) 1985-07-09 1985-07-09 YIG thin film microwave device
CA000513293A CA1266101A (en) 1985-07-09 1986-07-08 Yig thin film microwave apparatus
US06/883,605 US4745380A (en) 1985-07-09 1986-07-09 YIG thin film microwave apparatus
KR1019860005541A KR950005158B1 (en) 1985-07-09 1986-07-09 Yig thin film microwave device
DE8686305293T DE3687929T2 (en) 1985-07-09 1986-07-09 MICROWAVE DEVICE WITH THICK LAYERED YTTRIUM IRON GARNET.
EP86305293A EP0208547B1 (en) 1985-07-09 1986-07-09 Yig thin film microwave apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150431A JPH0738528B2 (en) 1985-07-09 1985-07-09 YIG thin film microwave device

Publications (2)

Publication Number Publication Date
JPS6211303A true JPS6211303A (en) 1987-01-20
JPH0738528B2 JPH0738528B2 (en) 1995-04-26

Family

ID=15496775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150431A Expired - Fee Related JPH0738528B2 (en) 1985-07-09 1985-07-09 YIG thin film microwave device

Country Status (1)

Country Link
JP (1) JPH0738528B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191504A (en) * 1988-01-27 1989-08-01 Hitachi Metals Ltd Microwave oscillator
JPH01191502A (en) * 1988-01-27 1989-08-01 Hitachi Metals Ltd Magnetic device
JPH0224553A (en) * 1988-07-13 1990-01-26 Kanebo Ltd Measuring apparatus of triboelectric voltage
US4977870A (en) * 1989-02-17 1990-12-18 Nissan Motor Co., Ltd. Internal combustion engine
US6460503B2 (en) * 2000-04-18 2002-10-08 Yamaha Hatsudoki Kabushiki Kaisha Oil pump layout structure for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713210A (en) * 1970-10-15 1973-01-30 Westinghouse Electric Corp Temperature stabilized composite yig filter process
JPS5570101A (en) * 1978-11-22 1980-05-27 Hitachi Metals Ltd Microwave ferrite element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713210A (en) * 1970-10-15 1973-01-30 Westinghouse Electric Corp Temperature stabilized composite yig filter process
JPS5570101A (en) * 1978-11-22 1980-05-27 Hitachi Metals Ltd Microwave ferrite element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191504A (en) * 1988-01-27 1989-08-01 Hitachi Metals Ltd Microwave oscillator
JPH01191502A (en) * 1988-01-27 1989-08-01 Hitachi Metals Ltd Magnetic device
JPH0224553A (en) * 1988-07-13 1990-01-26 Kanebo Ltd Measuring apparatus of triboelectric voltage
US4983923A (en) * 1988-07-13 1991-01-08 Kanebo Ltd. Frictional electrostatic voltage measuring equipment
US4977870A (en) * 1989-02-17 1990-12-18 Nissan Motor Co., Ltd. Internal combustion engine
US6460503B2 (en) * 2000-04-18 2002-10-08 Yamaha Hatsudoki Kabushiki Kaisha Oil pump layout structure for internal combustion engine

Also Published As

Publication number Publication date
JPH0738528B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
Yang et al. Low-loss magnetically tunable bandpass filters with YIG films
US10804870B2 (en) Magnetoresistance effect device and high frequency device
JPS60257614A (en) Receiver
JPS6211303A (en) Yig thin film microwave device
US4755780A (en) Ferromagnetic resonator having temperature compensation means using pre-coded compensation data
US3231835A (en) High power microwave components
JPH0518244B2 (en)
KR950005158B1 (en) Yig thin film microwave device
JPS6211302A (en) Yig thin film microwave device
Kim et al. Prototyping of novel isolator design based on cavity magnonics
CA1266100A (en) Yig thin film microwave apparatus
Popov et al. An electric field controlled dual resonator magneto‐electric band‐stop filter
JPS62200709A (en) Yig thin film microwave device
Celinski et al. Planar magnetic devices for signal processing in the microwave and millimeter wave frequency range
JPS62256501A (en) Yig thin film microwave equipment
Murakami et al. A bandpass filter using YIG film grown by LPE
Li et al. Bi-stable magnetoelectric data flip-flop triggered by magnetic field
Stern et al. Temperature stabilization of unsaturated microwave ferrite devices
JPH04346089A (en) Composite permanent magnet and magnetic device
Nilsen et al. Microwave Properties of a Calcium‐Vanadium‐Bismuth Garnet
JPH03280602A (en) Microwave device
JPH01191502A (en) Magnetic device
JP2910015B2 (en) Microwave oscillator
JP3417032B2 (en) Ferromagnetic resonance device
JP2672434B2 (en) Magnetic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees