JPS62112910A - Catalyst combustion type hot air generating method - Google Patents

Catalyst combustion type hot air generating method

Info

Publication number
JPS62112910A
JPS62112910A JP25195685A JP25195685A JPS62112910A JP S62112910 A JPS62112910 A JP S62112910A JP 25195685 A JP25195685 A JP 25195685A JP 25195685 A JP25195685 A JP 25195685A JP S62112910 A JPS62112910 A JP S62112910A
Authority
JP
Japan
Prior art keywords
combustion
catalyst
gas
fuel
molecular oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25195685A
Other languages
Japanese (ja)
Inventor
Kazuo Hata
和男 秦
Makoto Horiuchi
真 堀内
Keijirou Takasaki
高崎 恵次郎
Shoichi Ichihara
市原 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP25195685A priority Critical patent/JPS62112910A/en
Publication of JPS62112910A publication Critical patent/JPS62112910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)

Abstract

PURPOSE:To get a high calorie and enable a portable unit to be provided by a method wherein raw material gas in which low class hydrocarbon fuel and gas including molecular oxygen are premixed to have a composition within a range of combustion is supplied to a monolithic type catalyst. CONSTITUTION:A full volume of fuel and gas containing molecular oxygen having a volume required for a complete combustion of the fuel, for example, air are premixed to have a composition within a range of combustion, whereby an initial speed of passage through a catalyst layer is controlled to show a low value. As a fuel to be used, a low-class hydrocarbon such as a gaseous fuel, i.e. methane, propane, butane and natural gas or a liquid fuel such as methanol can be used. Ignition is carried by facilitating an ignition of mixed raw material gas containing fuel of a range of combustion and gas containing molecular oxygen by an electrical heater placed near the catalyst layer. With this ignition and combustion, the catalyst layer is heated, dilution gas is supplied to it to start up the catalyst combustion. Use of the monolithic catalyst enables a large amount of clean hot air to be attained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は触媒燃焼式熱風発生法に関する。さらに詳しく
は、ブタン等の低級炭化水素燃料を触媒上で燃焼させ得
られた熱量を熱風として取り出す目□的に適した触媒燃
焼器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a catalytic combustion hot air generation method. More specifically, the present invention relates to a catalytic combustor that is visually suitable for extracting the heat obtained by burning a lower hydrocarbon fuel such as butane on a catalyst as hot air.

〈従来の技術〉 燃料を触媒上で燃焼させ得られる熱量を利用する試みは
古くから知られており、燃焼が自立するとか必要とする
温度を自在にかつ均一に得られるとか無炎燃焼であるた
め安全性が高いといった特徴を生かして、懐炉、小型暖
房器、ヘアーカーラ−等の小型毛髪美容器など可搬型民
生機器に応用されている。
<Prior art> Attempts to utilize the heat obtained by burning fuel on a catalyst have been known for a long time, and have been known for a long time, such as self-sustaining combustion, the ability to freely and uniformly obtain the required temperature, and flameless combustion. Taking advantage of its high safety characteristics, it has been applied to portable consumer devices such as hand warmers, small heaters, and small hair beauty devices such as hair curlers.

しかもこの場合、可搬型民生機器としての構造と着火性
から触媒の熱容量が小さく、かつ構造を任意に変えられ
る繊維状マットが有利な触媒として広く用いられている
Moreover, in this case, a fibrous mat is widely used as an advantageous catalyst because of its structure as a portable consumer device and its ignitability, which has a small heat capacity and whose structure can be changed arbitrarily.

しかしながら、上記の技術は機器の簡略化と逆火等の危
険性を配慮して、燃料と酸化剤としての分子状酸素含有
ガスを予備混合せず、触媒層内側から拡散して来た燃料
が自然拡散によって表面から触媒層内部へ拡散する空気
と接触し触媒燃焼せしめられてなる拡散燃焼方式が主と
して採用されているだめ、この方式では分子状酸素含有
ガスの拡散速度が律速となシ、触媒単位表面あたりの発
熱量は1.51<cal /cIi1hrと小さく抑え
られる傾向゛にあシ、これ以上の燃料を供給した場合は
未燃焼炭化水素(UHC)および−酸化炭素(CO)の
排出が急増してしまうという欠点を有している。
However, in order to simplify the equipment and take into consideration risks such as backfire, the above technology does not pre-mix the fuel and molecular oxygen-containing gas as an oxidizer, so that the fuel diffused from inside the catalyst layer is Diffusion combustion is mainly used, in which catalytic combustion occurs in contact with air that diffuses from the surface into the interior of the catalyst layer due to natural diffusion. The calorific value per unit surface tends to be kept low at 1.51<cal/cIi1hr, but if more fuel is supplied, unburned hydrocarbons (UHC) and carbon oxides (CO) will be emitted. It has the disadvantage of increasing rapidly.

従って、これらの従来技術をよシ大きな発熱量を必要と
する機器へ適用することは、触媒量が増大し、ひいては
機器が大型化するため実用化が困難であシ、又、触媒燃
焼によって発生した熱量を熱風として利用するヘアード
ライヤーなどの場合は繊維状触媒が粉化飛散し、環境を
汚染するというゆゆしい問題が生じざるをえなかった。
Therefore, it is difficult to apply these conventional technologies to equipment that requires a large amount of heat, as the amount of catalyst increases, which in turn increases the size of the equipment. In the case of hair dryers, etc., which use the generated heat as hot air, the fibrous catalyst becomes powdered and scattered, causing serious problems such as polluting the environment.

〈発明の目的〉 本発明は上記先行技術の問題点を解決し、触媒単位表面
積当りの発熱量(燃焼可能量)を増大させ、小型でかつ
発熱量の大きな触媒燃焼式熱風発生法を提供し、該熱風
発生法によって電源コードを必要とせず、手軽にどこへ
でも自由に携帯できる新規な手製美容器、簡易乾燥器、
温風暖房器、無炎トーチあるいは熱電変換素子との組み
合せによる小型発電器等への適用を可能にすることを目
的とする。
<Object of the Invention> The present invention solves the problems of the prior art described above, increases the calorific value (combustible amount) per unit surface area of the catalyst, and provides a method for generating hot air using catalytic combustion that is small and has a large calorific value. , a new handmade beauty device and simple dryer that can be easily carried anywhere without the need for a power cord using the hot air generation method;
The purpose is to enable application to small power generators, etc. in combination with warm air heaters, flameless torches, or thermoelectric conversion elements.

〈発明の手段〉 本発明は低級炭化水素燃料と分子状酸素含有ガスとを燃
焼範囲内の組成となるように予備混合した原料ガスをモ
ノリス型触媒に供給し、着の組成となるようにさらに分
子状酸素含有ガスで希釈して該触媒に供給して触媒燃焼
せしめ、一方、触媒体側面に冷却希釈用の不活性ガスま
たは分子状酸素含有ガスを通気供給して触媒燃焼によっ
て得られた燃焼ガスとを混合せしめることを特徴とする
<Means of the Invention> In the present invention, a raw material gas prepared by premixing a lower hydrocarbon fuel and a molecular oxygen-containing gas so as to have a composition within the flammable range is supplied to a monolith type catalyst, and then further mixed so as to have a composition within the flammable range. Combustion obtained by catalytic combustion by diluting with a molecular oxygen-containing gas and supplying it to the catalyst to cause catalytic combustion, while supplying an inert gas or molecular oxygen-containing gas for cooling and dilution to the side of the catalyst body. It is characterized by being mixed with gas.

つ、まり、本発明は表面拡散方式とは異なり、燃料の全
量とその完全燃焼に必要な量の分子状酸素含有ガス、た
とえば空気を燃焼範囲内の組成となるように予備混合す
ることによって当初の触媒層通過空間速度を低くコント
ロールし、かつ、繊維状マット触媒に比較して熱容量が
大きいセラミック製のモノリス触媒でも容易に着火せし
めるようにし触媒燃焼が自立するのに十分な触媒層燃焼
活性温度とせしめるものである。
In other words, the present invention differs from the surface diffusion method in that the entire amount of fuel and the amount of molecular oxygen-containing gas, such as air, required for its complete combustion are premixed initially so that the composition is within the combustible range. The space velocity through the catalyst layer is controlled to be low, and even ceramic monolithic catalysts, which have a larger heat capacity than fibrous matte catalysts, can be easily ignited. It is something that urges us to do so.

このように着火せしめたのち、燃焼範囲下限値未満の組
成となるようにさらに原料ガスを空気等の分子状酸素含
有ガスや炭酸ガス、窒素などの不活性ガスで希釈して供
給して触媒燃焼せしめ、さらに触媒体側面へはモノリス
触媒層からの高温燃焼ガスを冷却希釈するだめの空気等
の分子状酸素含有ガスや不活性ガスを導入する。
After igniting in this way, the raw material gas is further diluted with a molecular oxygen-containing gas such as air, or an inert gas such as carbon dioxide or nitrogen, so that the composition is below the lower limit of the flammability range, and then supplied for catalytic combustion. Furthermore, a molecular oxygen-containing gas such as air or an inert gas is introduced into the side surface of the catalyst body to cool and dilute the high-temperature combustion gas from the monolithic catalyst layer.

そのため、触媒燃焼によって発生した燃焼ガスは即座に
冷却希釈されて目的とする温度と量の熱風とすることが
でき、その結果、小さな容量の触媒で多量の熱風を得る
ことが可能になシ、触媒単位表面積当シの発熱量は10
〜5Qkcal/cr!・hrにも達せしめることがで
きる。
Therefore, the combustion gas generated by catalytic combustion can be immediately cooled and diluted to produce hot air at the desired temperature and amount, making it possible to obtain a large amount of hot air with a small capacity catalyst. The calorific value per unit surface area of the catalyst is 10
~5Qkcal/cr!・It is possible to reach even hr.

又、モノリス型触媒を用いることによって、繊維状マッ
ト触媒のように触媒自身の粉化飛散はなくなシ、該熱風
は未燃焼UHC,Co、窒素酸化物(NOx)を実質的
に含まないクリーンな熱風が得られるとともに触媒によ
る圧力損失も繊雄状マット触媒に比べて小さく冷却希釈
用等のな 送風用モーターも小さ■出力のもので使用可能という特
徴を有する。
In addition, by using a monolithic catalyst, there is no possibility of the catalyst itself being powdered and scattered, as is the case with fibrous matte catalysts, and the hot air is clean and does not substantially contain unburned UHC, Co, and nitrogen oxides (NOx). It has the characteristics that not only hot air can be obtained, but also the pressure loss due to the catalyst is smaller than that of a fibrous matte catalyst, and the blower motor for cooling and dilution can also be used with a small output.

予備混合および触媒燃焼に用いられる分子状酸素含有ガ
ス、好適には空気の量は触媒量、燃料量およびその発熱
量、目的とする熱風の温度および量等によって最適量が
決定される。
The optimal amount of the molecular oxygen-containing gas, preferably air, used for premixing and catalytic combustion is determined by the amount of catalyst, the amount of fuel and its calorific value, the temperature and amount of the intended hot air, and the like.

特に予備混合に用いられる分子状酸素含有ガス量は、瞬
時に着火せしめて触媒活性温度にまで昇温せしめる量で
あればよいが、次いで、さらに分子状酸素含有ガスを供
給してすみやかに燃焼範囲下限値未満のガス組成にして
、安定かつ安全な触媒燃焼へ移行せしめるために、触媒
層通過全分子状酸素含有ガス量に対して20〜60%、
好ましくは30〜50チの範囲で混合することが適して
おり、かつ安定な触媒燃焼を遂行するために燃焼範囲外
の希薄混合ガス組成とせしめたときの燃焼ガス到達温度
は400℃から1200℃の範囲となるように調節せし
められる量が好ましい。400℃に達しない場合は′ 
温度が低くかつ風量が多くなるため触媒燃焼が自立し難
くなり、一方1200℃を超えると、燃焼範囲に近づく
結果、火炎が発生し易くなり、又、触媒の耐久性も短く
なる。
In particular, the amount of molecular oxygen-containing gas used for premixing may be an amount that instantly ignites and raises the temperature to the catalyst activation temperature, but then further molecular oxygen-containing gas is supplied to quickly increase the combustion range. In order to achieve a stable and safe catalytic combustion with a gas composition below the lower limit, 20 to 60% of the total amount of molecular oxygen-containing gas passing through the catalyst layer,
Preferably, it is suitable to mix in the range of 30 to 50 inches, and in order to achieve stable catalytic combustion, the temperature reached by the combustion gas is from 400°C to 1200°C when a lean mixed gas composition is made outside the combustion range. It is preferable to adjust the amount so that it falls within the range of . If the temperature does not reach 400℃,
Since the temperature is low and the amount of air is large, it becomes difficult for catalytic combustion to become self-sustaining. On the other hand, when the temperature exceeds 1200°C, flames are more likely to occur as a result of approaching the combustible range, and the durability of the catalyst is also shortened.

触媒担体は、燃料と分子状酸素含有ガスとの拡散を容易
にかつ均一にさせ、又着火時以外は触媒燃焼を自立させ
る目的から空隙率、開孔度が大きく、かつ比重、比熱の
小さいものが適しており燃料の吹き抜けを防止するため
、一体物の積層体もしくは成型体が適している。
The catalyst carrier must have a large porosity and porosity, and a small specific gravity and specific heat in order to facilitate and uniform diffusion of the fuel and molecular oxygen-containing gas, and to enable independent catalytic combustion except during ignition. A one-piece laminate or molded body is suitable to prevent fuel from blowing through.

これらを満足させる担体としては0.02〜0.8の充
填比重(I/CC)をもつアルミナ、シリカ、アルミナ
−シリカ等の無機質繊維積層体あるいは成型体が最も好
ましいが、上記のように繊維の粉化飛散という問題のた
め同様の比重を持つコージェライト、ムライト等のセラ
ミックよりなるハニカム構造体が最も適している。
As a carrier that satisfies these requirements, inorganic fiber laminates or molded bodies such as alumina, silica, and alumina-silica having a packing specific gravity (I/CC) of 0.02 to 0.8 are most preferable. Because of the problem of powdering and scattering, a honeycomb structure made of ceramics such as cordierite or mullite having similar specific gravity is most suitable.

又、アルミナ−シリカ等よりなるセラミックペーパーハ
ニカム構造体あるいはセラミックフオーム等の三次元網
目状構造体も好適に用いられる。さらに場合によって金
属製のモノリス担体を用いることも可能である。
Furthermore, a three-dimensional network structure such as a ceramic paper honeycomb structure or ceramic foam made of alumina-silica or the like is also suitably used. Furthermore, it is also possible to use a metal monolith carrier depending on the case.

触媒活性成分は燃料の種類によって最適に選定されるが
、通常、白金、パラジウム、ロジウム等の白金族元素が
適しており、これらを単独であるいは2種以上組み合せ
て上記担体に担持し、又、前もって上記担体に表面積が
50〜200ぜ/Iのγ、η、θ等結晶形の活性アルミ
ナを被覆し、該被覆層に白金族元素を担持して完成触媒
■ とせしめて用いる白金属元素活性成分の担持■は完成触
媒当り0.01〜10重量%、好ましくは0.1〜2重
量%が適しており、活性アルミナの被覆量は完成触媒当
95〜40重量%、好ましくは10〜30重量%である
The catalytic active component is optimally selected depending on the type of fuel, but platinum group elements such as platinum, palladium, and rhodium are usually suitable, and these can be supported on the above carrier alone or in combination of two or more, and The above-mentioned carrier is coated in advance with activated alumina in the crystal form of γ, η, θ, etc. having a surface area of 50 to 200 z/I, and platinum group elements are supported on the coating layer to form the finished catalyst. Suitable component loading (2) is 0.01 to 10% by weight, preferably 0.1 to 2% by weight, based on the finished catalyst, and the coating amount of activated alumina is 95 to 40% by weight, preferably 10 to 30% by weight, based on the finished catalyst. Weight%.

触媒の大きさは燃料−分子状酸素含有ガスとの混合ガス
の通過空間速度を小さくし、燃焼を安定して行なわしめ
るため一定の大きさが必要であり、又、触媒単位表面積
も大きい程好ましいが、一方、触媒容量、触媒径、触媒
層長の増大は通風抵抗の増大や燃焼器全体の大型化につ
ながり、熱風発生器設計上好ましくない場合が多い。
The size of the catalyst needs to be a certain size in order to reduce the passing space velocity of the fuel-molecular oxygen-containing gas mixture and ensure stable combustion, and the larger the catalyst unit surface area, the better. However, on the other hand, an increase in catalyst capacity, catalyst diameter, and catalyst layer length leads to an increase in ventilation resistance and an increase in the size of the entire combustor, which is often unfavorable in terms of hot air generator design.

従って本発明に使用されるモノリス触媒の形状は円柱状
もしくは角状が好ましく、セルサイズで60〜600セ
ル/in2、好ましくは200〜400セル/in!、
大きさは円柱状の場合10〜4〇九φの径、好ましくは
20〜30%φの径、触媒層長は10〜100%、好ま
しくは20〜60♂であり、燃料と分子状酸素含有ガス
の混合原料ガスの触媒層通過空間速度が常温換算におい
て10,000〜soo、ooohr−’ 、好ましく
は20,000〜300,0OOhr−’(8TP)に
相当する触媒量が適し、また該混合ガスの常温における
平均通過線速度が0.1〜20m/秒、好ましくは1〜
IQm/秒に相当する触媒層長が適しておシ、それぞれ
上記範囲内になるように触媒形状とともに最適に選定し
て設計される。
Therefore, the shape of the monolithic catalyst used in the present invention is preferably cylindrical or angular, and the cell size is 60 to 600 cells/in2, preferably 200 to 400 cells/in! ,
The size is 10 to 409 φ in the case of a cylindrical shape, preferably 20 to 30% φ, the catalyst layer length is 10 to 100%, preferably 20 to 60♂, and contains fuel and molecular oxygen. A suitable amount of catalyst is such that the space velocity of the mixed raw material gas passing through the catalyst layer is 10,000 to soo, ooohr-', preferably 20,000 to 300,000hr-' (8TP) in terms of room temperature, and The average passing linear velocity of the gas at room temperature is 0.1 to 20 m/sec, preferably 1 to 20 m/sec.
The catalyst layer length corresponding to IQm/sec is suitable, and the catalyst shape and the catalyst shape are optimally selected and designed so that each falls within the above range.

空気などの分子状酸素含有ガスの全流量は得ようとする
熱風の温度および風量によって決定されるものであって
、触媒の大きさあるいは燃料供給量によって選定される
ものであシ、供給 ′方法は携帯用を目的として小型フ
ァンを組込み電池あるいは熱電変換素子で発生した電力
によって該小型ファンを回転させる方法がとられる。
The total flow rate of molecular oxygen-containing gas such as air is determined by the temperature and volume of the hot air to be obtained, and is not selected depending on the size of the catalyst or the amount of fuel supplied. For portable use, a method is adopted in which a small fan is built in and the small fan is rotated by electric power generated by a battery or a thermoelectric conversion element.

本発明において、使用される燃料としてはメタン、プロ
パン、ブタン、天然ガス等の気体燃料やメタノール等の
液体燃料などの低級炭化水素を使用することができるが
、携帯用を目的とするためにはブタンあるいはプロパン
が最適である。
In the present invention, gaseous fuels such as methane, propane, butane, and natural gas, and lower hydrocarbons such as liquid fuels such as methanol can be used as fuels, but for portable purposes, Butane or propane are best.

着火は触媒層近傍に設置した電熱ヒーターによシ燃焼範
囲内の燃料と分子状酸素含有ガスとの混合原料ガスを容
易に着火せしめうる。この着火燃焼によシ触媒層を加熱
し、希釈ガスを供給して触媒燃焼を開始し自立せしめる
ことが可能となる。
The ignition can be easily ignited by using an electric heater installed near the catalyst layer to easily ignite the mixed raw material gas of the fuel within the combustible range and the molecular oxygen-containing gas. This ignition combustion heats the catalyst layer, and by supplying diluent gas, it becomes possible to start catalytic combustion and make it self-sustaining.

以上のような触媒燃焼式による熱風発生方法によって携
帯用ドライヤーが可能となると共に可搬型の大型毛髪美
容器、簡易乾燥器、温風暖房器、無炎トーチあるいは熱
電変換素子との組み合せによる小型発電器等にも好適に
適用することができる。
The hot air generation method using the catalytic combustion method described above makes it possible to create a portable hair dryer, as well as a portable large hair beauty device, a simple dryer, a warm air heater, a flameless torch, or a small power generator in combination with a thermoelectric conversion element. It can also be suitably applied to vessels and the like.

以下に本発明を実施例等によシ、さらに具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 400セル/平方インチの開孔部を有する直径25.4
mm、長さ501mのコージェライトハニカム担体にγ
形の結晶構造をもつ活性アルミナ粉末のスラリーを被覆
処理し、空気中600℃で4時間焼成して活性アルミナ
を完成触媒当り18重量%被覆相持せしめた。
Example 1 25.4 diameter with 400 cells/inch square aperture
γ on a cordierite honeycomb carrier with a length of 501 m.
A slurry of activated alumina powder having a crystalline structure was coated and calcined in air at 600° C. for 4 hours to coat 18% by weight of activated alumina on the finished catalyst.

次いでこれをジニトロジアミノ白金を含有する水溶液に
浸漬し乾燥して空気中500℃で2時間焼成して完成触
媒当シ白金として0.1重量%を担持せしめて完成触媒
を得た。
Next, this was immersed in an aqueous solution containing dinitrodiaminoplatinum, dried, and calcined in air at 500° C. for 2 hours to support 0.1% by weight of platinum on the finished catalyst to obtain a finished catalyst.

実施例2 350セル/平方インチの開孔部を有する直径25.4
mm、長さ50%の85 % 8+0215 %AIL
03からなるセラミックペーパーハニカムに実施例1と
同様にして完成触媒当りγ形活性アルミナを15重量%
被覆相持せしめた。
Example 2 25.4 diameter with 350 cells/in2 aperture
mm, 85% of 50% length 8+0215%AIL
In the same manner as in Example 1, 15% by weight of γ-type activated alumina was added to the ceramic paper honeycomb made of 03 per completed catalyst.
The coating was mutually compatible.

次いで80℃のジニトロジアミノ白金を含有する水溶液
に浸漬し、実施例1と同様にして完成触媒当り白金とし
て0.2重量%を担持せしめて完成触媒を得た。
The catalyst was then immersed in an aqueous solution containing dinitrodiaminoplatinum at 80° C., and 0.2% by weight of platinum was supported on the catalyst in the same manner as in Example 1 to obtain a completed catalyst.

実施例3 200セル/平方インチの開孔部を有する直径25.4
 yx露、長さ50酊、気孔率50チ、平均細孔径14
μmの多孔質コージェライトハニカム担体に2重量−の
酸化ランタンを含有する活性アルミナのスラリーな実施
例1と同様に被覆処理、焼成して完成触媒当り30重量
%を被覆担持せしめ8た。
Example 3 25.4 diameter with 200 cells/inch square aperture
yx dew, length 50cm, porosity 50cm, average pore diameter 14
A slurry of activated alumina containing 2 wt. of lanthanum oxide was coated on a μm porous cordierite honeycomb carrier and fired in the same manner as in Example 1, so that 30 wt. % of the finished catalyst was coated.

次いで、これをジニトロジアミノ白金と硝酸パラジウム
を含有する水溶液に浸漬し、空気中800℃で2時間焼
成して完成触媒当り白金として0.18重量%、パラジ
ウムとして0.02重量%を担持せしめて完成触媒を得
た。
Next, this was immersed in an aqueous solution containing dinitrodiaminoplatinum and palladium nitrate, and calcined in air at 800°C for 2 hours to support 0.18% by weight of platinum and 0.02% by weight of palladium per finished catalyst. A finished catalyst was obtained.

実施例4 実施例1〜3によって得た触媒を第1図に示すような外
筒を有する燃焼実験装置に装着し、着火テストを行なっ
た。
Example 4 The catalysts obtained in Examples 1 to 3 were installed in a combustion experiment apparatus having an outer cylinder as shown in FIG. 1, and an ignition test was conducted.

燃料は市販の液化ブタン(発熱量約29,600kca
l/Nm”)を使用し着火には触媒層燃焼ガス出口側の
触媒面から5 mytt前方に設置した電熱ヒーターを
使用した。
The fuel is commercially available liquefied butane (calorific value approximately 29,600 kca).
1/Nm"), and an electric heater installed 5 mytt ahead of the catalyst surface on the combustion gas outlet side of the catalyst layer was used for ignition.

又、分子状酸素含有ガスとしては空気を使用した。結果
は第1表に示すようにブタンの燃焼範囲内である2、0
〜4.8容積チの燃料濃度のときは着火したが、燃焼範
囲外の1.8チ未満あるいは8.4−以上の燃料濃度の
ときは着火しなかった。
Moreover, air was used as the molecular oxygen-containing gas. As shown in Table 1, the results are 2.0, which is within the flammability range of butane.
It ignited when the fuel concentration was ~4.8 volume, but it did not ignite when the fuel concentration was less than 1.8 volume or above 8.4 volume, which was outside the flammability range.

着火時の燃料濃度を3.2チと一定にし、着火後さらに
空気を触媒に供給し、同時に燃焼ガスの冷却希釈用の空
気を通気供給して燃焼実験を行ない、触媒後方100%
の点における熱風温度および燃焼ガス中のUHC、CO
、NOx濃度を測定した。
Combustion experiments were conducted by keeping the fuel concentration at ignition constant at 3.2 cm, supplying additional air to the catalyst after ignition, and at the same time supplying air for cooling and diluting the combustion gas.
Hot air temperature and UHC, CO in combustion gas at point
, NOx concentration was measured.

その結果は第2表に示す如く、本発明による触媒燃焼式
熱風発生方式によって、実質的に完全燃焼し、発熱量と
しテ200〜600 kcal /hrが得られてお9
40〜150℃等の比較的低温の熱風を大量に必要とす
る可搬型のドライヤーとして応用できるものであった。
As shown in Table 2, the results show that the catalytic combustion hot air generation method according to the present invention achieves substantially complete combustion and a calorific value of 200 to 600 kcal/hr.
It could be applied as a portable dryer that requires a large amount of hot air at a relatively low temperature of 40 to 150°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例4で用いた燃焼テスト装置の概略を示す
ものである。 特許出願人     日本触媒化学工業株式会社図面1
1内πr変更なし) 熱戦 [/′  7〕〕上□77.1丈し一ターー18= 手  続  補  正  書  (方式)%式% 1、事件の表示 昭和60年特許願第251956号 2、発明の名称 触媒燃焼式熱Jl1発生法 3、補正をする者 事件との関係  特許出願人 大阪府大阪市東区高麗橋5丁目1番地 (462)  日本触媒化学工業株式会社代表取締役 
石 川 三 部 4、代理人 〒−100 東京都千代田区内幸町1丁目2番2号 日本触媒化学工業株式会社 東京支社内火鉢:S′およ
V:定ぐし 5、補正命令の日付 昭和61年1月8日 (発送日 昭和61年1 月28日) 6、補正の対象 図    面 7、補正の内容 願書に最初に添付した図面の浄書・別紙のとおり (内容に変更なし) 8、添付書類の目録 (1)図  面      1 通 手  続  補  正  書  く自発)昭和61年Z
月 731]
FIG. 1 schematically shows the combustion test apparatus used in Example 4. Patent applicant Nippon Shokubai Chemical Co., Ltd. Drawing 1
1 within πr no change) Hot battle [/' 7]] Upper □ 77.1 length 1 ter - 18 = Procedural amendment (Method) % formula % 1, Indication of incident Patent Application No. 251956 of 1985 2, Name of the invention Catalytic combustion heat generation method 3, relationship with the amended person case Patent applicant 5-1 Koraibashi, Higashi-ku, Osaka-shi, Osaka (462) Representative director of Nippon Shokubai Chemical Co., Ltd.
Ishikawa 3 Department 4, Agent Address: 1-2-2 Uchisaiwai-cho, Chiyoda-ku, Tokyo 1-2-2 Nippon Shokubai Chemical Industry Co., Ltd. Tokyo Branch Hibachi: S' and V: Rule 5, Date of Amendment Order 1986 January 8th (Delivery date: January 28th, 1986) 6. Drawings to be amended 7. Contents of amendments As shown in the engraving of the drawing originally attached to the application (no change in content) 8. Attached documents Catalog (1) Drawings 1 Correspondence Procedures Amendment Written spontaneously) 1986 Z
Month 731]

Claims (4)

【特許請求の範囲】[Claims] (1)低級炭化水素燃料と分子状酸素含有ガスとを燃焼
範囲内の組成となるように予備混合した原料ガスをモノ
リス型触媒に供給し、着火源により着火して該触媒を燃
焼活性温度以上に保持し、ついで原料ガスが燃焼範囲下
限値未満の組成となるようにさらに分子状酸素含有ガス
で希釈して該触媒に供給して触媒燃焼せしめ、一方該触
媒体側面に冷却希釈用の不活性ガスまたは分子状酸素含
有ガスを通気供給して触媒燃焼によつて得られた燃焼ガ
スと混合せしめ加熱気体を供給することを特徴とする触
媒燃焼式熱風発生法。
(1) A raw material gas prepared by premixing a lower hydrocarbon fuel and a molecular oxygen-containing gas to a composition within the combustion range is supplied to a monolithic catalyst, and is ignited by an ignition source to bring the catalyst to a combustion activation temperature. Then, the feed gas is further diluted with molecular oxygen-containing gas so that the composition is below the lower limit of the flammability range, and then supplied to the catalyst for catalytic combustion. A catalytic combustion hot air generation method characterized by supplying heated gas by supplying an inert gas or molecular oxygen-containing gas through ventilation and mixing it with combustion gas obtained by catalytic combustion.
(2)該予備混合原料ガスは、その燃焼により昇温する
温度が400〜1200℃の範囲となるように分子状酸
素含有ガスと予備混合せしめられてなることを特徴とす
る特許請求の範囲(1)記載の方法。
(2) The premixed raw material gas is premixed with a molecular oxygen-containing gas so that the temperature raised by combustion is in the range of 400 to 1200°C. 1) The method described.
(3)該モノリス型触媒がハニカム構造を有する担体に
少くとも1種の白金族元素を触媒活性物質として担持せ
しめてなることを特徴とする特許請求の範囲(1)また
は(2)記載の方法。
(3) The method according to claim (1) or (2), wherein the monolithic catalyst is formed by supporting at least one platinum group element as a catalytically active substance on a carrier having a honeycomb structure. .
(4)該モノリス型触媒が基材としてのセラミックハニ
カムに担体としての活性アルミナと触媒活性物質として
の白金族金属のうちの少くとも1種とを被覆担持せしめ
てなることを特徴とする特許請求の範囲(1)または(
2)記載の方法。
(4) A patent claim characterized in that the monolithic catalyst is formed by coating and supporting activated alumina as a carrier and at least one platinum group metal as a catalytically active substance on a ceramic honeycomb as a base material. range (1) or (
2) The method described.
JP25195685A 1985-11-12 1985-11-12 Catalyst combustion type hot air generating method Pending JPS62112910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25195685A JPS62112910A (en) 1985-11-12 1985-11-12 Catalyst combustion type hot air generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25195685A JPS62112910A (en) 1985-11-12 1985-11-12 Catalyst combustion type hot air generating method

Publications (1)

Publication Number Publication Date
JPS62112910A true JPS62112910A (en) 1987-05-23

Family

ID=17230485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25195685A Pending JPS62112910A (en) 1985-11-12 1985-11-12 Catalyst combustion type hot air generating method

Country Status (1)

Country Link
JP (1) JPS62112910A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458737A2 (en) * 1990-05-21 1991-11-27 Gebrüder Sulzer Aktiengesellschaft Process and installation for deoxidising water
US5081451A (en) * 1988-10-20 1992-01-14 Diesel Kiki Co., Ltd. Display system for use in vehicle
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
JP2010522668A (en) * 2007-03-30 2010-07-08 カーハーエス・アクチエンゲゼルシヤフト Shrink wrap tunnel for shrink wrap foil on package or package unit
CN102650429A (en) * 2011-02-23 2012-08-29 中国科学院工程热物理研究所 Finite space vortex combustion method for carbon monoxide emission reduction for methane mixture gas rich in carbon dioxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104014A (en) * 1980-12-18 1982-06-28 Matsushita Electric Ind Co Ltd Catalytic combustion device
JPS5736203B2 (en) * 1977-10-20 1982-08-03
JPS58104409A (en) * 1981-12-16 1983-06-21 Matsushita Electric Ind Co Ltd Catalyst burning unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736203B2 (en) * 1977-10-20 1982-08-03
JPS57104014A (en) * 1980-12-18 1982-06-28 Matsushita Electric Ind Co Ltd Catalytic combustion device
JPS58104409A (en) * 1981-12-16 1983-06-21 Matsushita Electric Ind Co Ltd Catalyst burning unit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081451A (en) * 1988-10-20 1992-01-14 Diesel Kiki Co., Ltd. Display system for use in vehicle
EP0458737A2 (en) * 1990-05-21 1991-11-27 Gebrüder Sulzer Aktiengesellschaft Process and installation for deoxidising water
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
JP2010522668A (en) * 2007-03-30 2010-07-08 カーハーエス・アクチエンゲゼルシヤフト Shrink wrap tunnel for shrink wrap foil on package or package unit
US11958646B2 (en) 2007-03-30 2024-04-16 Khs Gmbh Shrink tunnel for shrinking shrink films onto packages, such as boxes, bottles, cans, or similar containers, or packaging units, and a method of operating a shrink tunnel to shrink wrap packages or packaging units
CN102650429A (en) * 2011-02-23 2012-08-29 中国科学院工程热物理研究所 Finite space vortex combustion method for carbon monoxide emission reduction for methane mixture gas rich in carbon dioxide

Similar Documents

Publication Publication Date Title
US5993192A (en) High heat flux catalytic radiant burner
JPS62112910A (en) Catalyst combustion type hot air generating method
JP3364492B2 (en) Multi-stage combustion method for fuel mixtures
JPS61180818A (en) Hot air generation by catalytic burning
JPS61235609A (en) Combustion method for methane fuel in catalyst system
JP2797840B2 (en) Catalytic combustion device
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPS61184319A (en) Method of generating hot blast by catalytic combustion
JPS6380849A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPS6280420A (en) Combustion catalyst system for low class hydro-carbon fuel and combustion method of using same
JPS583641A (en) Catalyst for catalytic combustion
JP2006501435A (en) Post-combustion device
JP3732034B2 (en) Hybrid catalytic combustion apparatus and combustion method
JP2805996B2 (en) Catalytic combustion device
JPH0519043B2 (en)
JPS60207818A (en) Liquid fuel burner
JP2631762B2 (en) Contact combustion method
JP2720614B2 (en) Catalytic combustion device
JP2506943B2 (en) Catalytic combustion device and combustion catalyst body
JPH04174201A (en) Catalytic burner
JPH04161253A (en) Composite catalyst for high temperature combustion
JP2000055312A (en) Catalyst combustion device and combustion control method of the same
JP2903640B2 (en) Catalytic combustion device
JPH0432601A (en) Burner employing catalyst
JPS643952Y2 (en)