JPS62112751A - Manufacturer of ferrous shape memory alloy sheet metal or wire - Google Patents

Manufacturer of ferrous shape memory alloy sheet metal or wire

Info

Publication number
JPS62112751A
JPS62112751A JP24995685A JP24995685A JPS62112751A JP S62112751 A JPS62112751 A JP S62112751A JP 24995685 A JP24995685 A JP 24995685A JP 24995685 A JP24995685 A JP 24995685A JP S62112751 A JPS62112751 A JP S62112751A
Authority
JP
Japan
Prior art keywords
wire
shape memory
sheet metal
alloy
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24995685A
Other languages
Japanese (ja)
Other versions
JPH0333773B2 (en
Inventor
Hiroo Suzuki
洋夫 鈴木
Masahito Murakami
雅人 村上
Yuichi Sato
有一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24995685A priority Critical patent/JPS62112751A/en
Publication of JPS62112751A publication Critical patent/JPS62112751A/en
Publication of JPH0333773B2 publication Critical patent/JPH0333773B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled sheet metal (foil) or wire having high strength and high toughness and excellent in shape memory effect by subjecting a ferrous alloy containing each specified quantity of Mn and Si which is melted in vacuum or in an inert-gas atmosphere to direct solidification so as to be formed into sheet metal (foil) or wire. CONSTITUTION:A ferrous alloy containing, by weight, 20-40% Mn and 3.5-12% Si as essential components or the one containing, besides the above, one or more elements among Cr, Ni, Co, Mo, C, Al, Ca, REM, etc., is melted in vacuum or in an inert-gas atmosphere. Then the above molten alloy is allowed to flow into a well-known apparatus for solidification by rapid cooling, such as the one on the single-roll or double-roll system, which is disposed in a vacuum or in an inert-gas atmosphere in a similar manner as above, to undergo solidification by raid cooling. In this way, Fe-Mn-Si shape memory alloy sheet metal (foil) or wire having a thickness of <=0.5mm can be obtained. This sheet metal (foil) or wire is excellent in resistance to heat and corrosion, as well.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高強度高靭性でかつ形状記憶効果に優れ、さ
らには耐熱性、耐食性をもつ鉄−マンガン−シリコン系
形状記憶合金の製造法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a method for producing an iron-manganese-silicon-based shape memory alloy that has high strength, high toughness, excellent shape memory effect, and further heat resistance and corrosion resistance. It is related to.

(従来の技術) 特願昭59−187403号、同60−40561号等
に示されたF・−Kn−8i系形状記憶合金は、通常の
真空溶解や大気溶解で鋳塊を製造し、熱間圧延により板
を製造しても優れた形状記憶特性を示す。
(Prior art) The F-Kn-8i shape memory alloy shown in Japanese Patent Application No. 59-187403, No. 60-40561, etc. is produced by producing an ingot by ordinary vacuum melting or atmospheric melting, and then heat it. Even when the plate is produced by rolling, it exhibits excellent shape memory properties.

しかしながら、この合金を冷間で加圧すると、稠密六方
構造のeマルテンサイトが生成し割れを生じてしまう。
However, when this alloy is cold pressed, e-martensite with a dense hexagonal structure is generated and cracks occur.

このため線や薄板などを製造するためにはε相を生じな
い温間域での加工が必要である。しかしこの方法では0
.5 wm以下の厚さの板(帯)線等を製造することは
非常に難しい。
Therefore, in order to manufacture wires, thin plates, etc., it is necessary to process in a warm region where the ε phase does not occur. However, with this method, 0
.. It is very difficult to manufacture plate (strip) wire etc. with a thickness of 5 wm or less.

またSiの添加fiミラすと形状記憶効果は向上するが
、8チを越えて添加すると加工性が悪くなシ成形が困難
となる。
Further, the shape memory effect is improved when more than 8 Si is added, but when more than 8 Si is added, the workability becomes poor and it becomes difficult to form the Si.

(発明が解決しようとする問題点) 本発明は、上記のような問題点を解決し、0.5露以下
の厚さのre −Mn −Si系形状記憶合金薄板(帯
)線等を製造することを目的とするものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems and manufactures re-Mn-Si shape memory alloy thin plate (strip) wire etc. with a thickness of 0.5 dew or less. The purpose is to

(問題点を解決するための手段) 鉄系形状記憶合金薄板を製造する場合、合金を溶解し、
鋳塊乃至は連続鋳造鋳片とした後、熱間圧延およびそれ
に引続き温間圧延を行うため、圧延加工の限界が薄板の
厚さの限界をもたらしている。そこで溶融状態の合金を
直接凝固させて薄板に形成すれば圧延では製造が困難々
0.5 m以下の厚さの板(帯)・線を容易に製造する
ことができる。
(Means for solving the problem) When manufacturing iron-based shape memory alloy thin sheets, the alloy is melted and
After forming an ingot or continuously cast slab, hot rolling and subsequent warm rolling are performed, so the limits of the rolling process impose limits on the thickness of the thin plate. Therefore, by directly solidifying the molten alloy to form a thin plate, it is possible to easily produce plates (strips) and wires with a thickness of 0.5 m or less, which is difficult to produce by rolling.

また、この方法によれば、種々の元素を固溶限を越えて
含有させることも可能であフ、熱間加工による制約のた
め添加蓋に制限を加えていたSt量を増加させることが
可能である。また特定の合金系(例えばFe −Mn 
−81)では熱間加工および温間加工によシ製造した場
合、特性向上のために圧延後、焼鈍を必要とするが、溶
融合金を直接凝固させて薄板を形成させると工程に塑性
加工を含まないので焼鈍の必要がなAo 本発明はこのような知見に基いてなされたもので、重量
パーセントでMn 20〜40%、Si3.5〜12俤
を必須成分として含有した鉄基合金またはこれにCr 
、 Nl 、 Co 、 Mo 、 C、At 、 N
l 、 Cu 、 Co *REM等の1種以上を含有
した鉄基合金を真空あるいは不活性ガス雰囲気中で溶融
し、該溶融合金を直接凝固させることにより鉄基形状記
憶合金薄板(帯)・線を製造することを特徴とするもの
である。
In addition, according to this method, it is possible to contain various elements in excess of the solid solubility limit, and it is possible to increase the amount of St, which has been limited in the additive cap due to restrictions due to hot processing. It is. Also, certain alloy systems (e.g. Fe-Mn
-81), when manufactured by hot working and warm working, annealing is required after rolling to improve properties, but if the molten alloy is directly solidified to form a thin plate, plastic working is required during the process. The present invention was made based on this knowledge, and is based on the iron-based alloy containing 20 to 40% Mn and 3.5 to 12% Si as essential components in terms of weight percent. to Cr
, Nl, Co, Mo, C, At, N
By melting an iron-based alloy containing one or more of L, Cu, Co*REM, etc. in a vacuum or an inert gas atmosphere, and directly solidifying the molten alloy, an iron-based shape memory alloy thin plate (strip) or wire can be produced. It is characterized by manufacturing.

以下本発明について説明する。The present invention will be explained below.

本発明にzシ薄板(帯)・線を製造するには、先ず所定
の成分および量に調製したFe −MH−St系合金を
、例えばアルゴンガス等の不活性ガス雰囲気中あるいは
真空中で、高周波等を用いて溶解し、溶融合金とする。
In order to manufacture the Z sheet (band)/wire according to the present invention, first, a Fe-MH-St alloy prepared with predetermined components and amounts is heated in an inert gas atmosphere such as argon gas or in a vacuum. Melt it using high frequency etc. to make a molten alloy.

次いでこの溶融合金を上記と同様に不活性ガス雰囲気中
あるいは真空中に配置した血ロール方式あるいは双ロー
ル方式等周知の任意の急冷凝固装置に流出し、急冷凝固
させて、0.5■以下の厚さのFe −Mn −Si系
形状記憶合金薄板(帯)線を製造する。
Next, this molten alloy is flowed into any well-known rapid solidification equipment such as blood roll type or twin roll type placed in an inert gas atmosphere or vacuum in the same manner as above, and is rapidly solidified to form a liquid with a particle size of 0.5 or less. A thick Fe-Mn-Si shape memory alloy thin plate (strip) wire is manufactured.

ここで本発明における各元素とその量の限定理由につい
て説明する。
Here, each element in the present invention and the reason for limiting the amount thereof will be explained.

Mnは20チ未満では応力誘起によってe相の生成とと
もにα′相も導入され形状記憶効果を低下させる。また
40チを越えるとrが安定化され、γ→C変態よりもγ
のすべり変形が優先的に生じるようになる。
When the Mn content is less than 20 mm, the e-phase is generated and the α' phase is also introduced due to stress induction, reducing the shape memory effect. Moreover, when the temperature exceeds 40, r is stabilized, and γ becomes more stable than γ→C transformation.
Sliding deformation of will occur preferentially.

siはγ→e変態を促進させる元素であり、その充分な
効果1’!3.5%以上の添加によって得られる。
si is an element that promotes γ→e transformation, and its sufficient effect 1'! Obtained by adding 3.5% or more.

また本発明のように溶融合金から直接急冷凝固させる場
合には12%程度までは合金の加工性、成形性はそこな
われない。
Further, when the molten alloy is directly rapidly solidified as in the present invention, the workability and formability of the alloy are not impaired up to about 12%.

Crはγ→ε変態を容易にし、形状記憶特性を向上させ
る上、耐食性の向上にも役立つが、10チを越えて添加
すると、Stと低融点の金部間化合物を作り、合金の溶
製が不可能となる。
Cr facilitates the γ → ε transformation, improves shape memory properties, and is also useful for improving corrosion resistance, but when added in excess of 10 Cr, it forms a low-melting-point intermetallic compound with St, which hinders the melting of the alloy. becomes impossible.

Niは形状記憶特性を劣化させることなく靭性の向上に
寄与するが、10%を越えて添刀口すると熱間加工性が
悪くなる。
Ni contributes to improving toughness without deteriorating shape memory properties, but when added in excess of 10%, hot workability deteriorates.

COは形状記憶効果を向上させ、熱間加工性も向上させ
るが高価であシ、また多量に添加しても効果が顕著では
ないのでその上限を10チとした。
Although CO improves the shape memory effect and hot workability, it is expensive and the effect is not significant even when added in large amounts, so the upper limit was set at 10 inches.

Moは形状記憶効果を向上させるとともに耐熱性をも向
上させるが2%を越えると熱間加工性が悪くなり、形状
記憶特性も低下する。
Mo improves the shape memory effect and also improves heat resistance, but if it exceeds 2%, hot workability deteriorates and shape memory properties also deteriorate.

Cは形状記憶効果を向上させるが1チを越えると靭性が
著しく劣化する。
C improves the shape memory effect, but if it exceeds 1 inch, the toughness deteriorates significantly.

Atは脱酸剤として働らくとともに、形状記憶効果を向
上させるが1チを越えて添加しても効果に変化がない。
At works as a deoxidizing agent and improves the shape memory effect, but there is no change in the effect even if it is added in excess of 1.

Cuは形状記憶効果を劣化させることなく、耐食性を向
上させるがその添加は上限1チで十分である。
Cu improves corrosion resistance without deteriorating the shape memory effect, but an upper limit of 1 tin is sufficient for adding Cu.

(実施例) 第1表にアルゴンガス雰囲気中または真空中で合金を溶
解し、該溶融合金をロールを用いた急冷凝固装置によシ
直接凝固させて製造した薄板、薄帯(リボン〕および線
材の成分、厚さ、表面性状および90″曲げ加工を施し
九場合の形状回復率(SME )を示す。ここで表面性
状が全く問題にならない場合には01疵などが認められ
る場合にはΔ、割れが生じた場合は×で表示した。なお
形状回復率(SME )とは回復角度を曲げ角度(90
°)で除したものである。また比較例として鋳片を製造
し、さらに熱間圧延および温間圧延を行って製造した場
合を示した。この場合0.2■以下の厚さの薄板の製造
は不可能であった。
(Example) Table 1 shows thin plates, ribbons, and wires manufactured by melting an alloy in an argon gas atmosphere or vacuum, and directly solidifying the molten alloy in a rapid solidification device using rolls. The composition, thickness, surface texture, and shape recovery rate (SME) after 90" bending are shown. Here, if the surface texture is not a problem at all, if 01 flaws are observed, Δ, If a crack occurs, it is indicated by an x.The shape recovery rate (SME) is the bending angle (90
). In addition, as a comparative example, a case was shown in which a cast slab was manufactured and further subjected to hot rolling and warm rolling. In this case, it was impossible to manufacture thin plates with a thickness of less than 0.2 cm.

(発明の効果) 以上説明したように本発明によれば、厚さの薄い鉄基形
状記憶合金を容易に製造することができるので形状記憶
合金の使途範囲を拡げることができる。
(Effects of the Invention) As explained above, according to the present invention, a thin iron-based shape memory alloy can be easily manufactured, so that the range of uses of the shape memory alloy can be expanded.

手続補正帯(方式) 昭和61年2月25日 特許庁長官 宇 賀 道 部 殿 1、事件の表示 昭和60年特許願第249956号 2、発明の名称 鉄基形状記憶合金薄板・線の製造方法 3、補正をする者 事件との関係 特許出願人 代表者 武  1)   豊 4゜代理人〒100 東京都千代田区丸の内二丁目4番1号 5、補正命令の日付 昭和61年 1 月28日(発送
日)6 補正の対象 kll及び明細書の発明の名称の欄 (1)願書の発明の名称を別紙訂正願書の通り補正する
Procedural amendment band (method) February 25, 1985 Michibe Uga, Commissioner of the Patent Office1, Indication of the case 1985 Patent Application No. 2499562, Name of the invention Method for manufacturing iron-based shape memory alloy thin plates and wires 3. Relationship with the case of the person making the amendment Patent applicant representative Takeshi 1) Yutaka 4゜ Agent 2-4-1-5 Marunouchi, Chiyoda-ku, Tokyo 100, Japan Date of amendment order January 28, 1985 ( Date of dispatch) 6 Field of the subject of amendment kll and the title of the invention in the specification (1) The title of the invention in the application shall be amended as per the attached correction application.

(2)明細書第1頁3行の発明の名称を「鉄基形状記憶
合金薄板・線の製造方法」に補正する。
(2) The title of the invention on page 1, line 3 of the specification is amended to "Method for manufacturing iron-based shape memory alloy thin plates and wires."

Claims (1)

【特許請求の範囲】[Claims] (1)重量パーセントでMn20〜40%、Si3.5
〜12%を含有した鉄基合金を、真空あるいは不活性ガ
ス雰囲気中で溶融し、該溶融合金を直接凝固させて薄板
(帯)又は線に形成することを特徴とする鉄基形状記憶
合金薄板(帯)・線の製造方法(2)重量パーセントで
Mn20〜40%、Si3.5〜12%を主成分とし、
さらに10%以下のCr、Ni、Co、2%以下のMo
、1%以下のC、Al、Cuの1種または2種以上を含
有した鉄基合金を真空あるいは不活性ガス雰囲気中で溶
融し、該溶融合金を直接凝固させて薄板(帯)又は線に
形成することを特徴とする鉄基形状記憶合金薄板(帯)
・線の製造方法(3)製品の厚さが0.5mm以下であ
る特許請求の範囲第1項又は第2項記載の鉄基形状記憶
合金薄板(帯)・線の製造方法
(1) Mn20-40%, Si3.5 in weight percent
An iron-based shape memory alloy thin plate characterized by melting an iron-based alloy containing ~12% in a vacuum or an inert gas atmosphere, and directly solidifying the molten alloy to form a thin plate (strip) or wire. (Band)/Wire manufacturing method (2) The main components are Mn 20-40% and Si 3.5-12% in weight percent,
Furthermore, 10% or less Cr, Ni, Co, 2% or less Mo
, an iron-based alloy containing 1% or less of one or more of C, Al, and Cu is melted in a vacuum or an inert gas atmosphere, and the molten alloy is directly solidified to form a thin plate (strip) or wire. Iron-based shape memory alloy thin plate (strip) characterized by forming
・Method for manufacturing a wire (3) A method for manufacturing an iron-based shape memory alloy thin plate (strip)/wire according to claim 1 or 2, wherein the product has a thickness of 0.5 mm or less
JP24995685A 1985-11-09 1985-11-09 Manufacturer of ferrous shape memory alloy sheet metal or wire Granted JPS62112751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24995685A JPS62112751A (en) 1985-11-09 1985-11-09 Manufacturer of ferrous shape memory alloy sheet metal or wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24995685A JPS62112751A (en) 1985-11-09 1985-11-09 Manufacturer of ferrous shape memory alloy sheet metal or wire

Publications (2)

Publication Number Publication Date
JPS62112751A true JPS62112751A (en) 1987-05-23
JPH0333773B2 JPH0333773B2 (en) 1991-05-20

Family

ID=17200684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24995685A Granted JPS62112751A (en) 1985-11-09 1985-11-09 Manufacturer of ferrous shape memory alloy sheet metal or wire

Country Status (1)

Country Link
JP (1) JPS62112751A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665652A1 (en) * 1990-08-13 1992-02-14 Usinor Sacilor METHOD AND DEVICE FOR MANUFACTURING A SEMI-FERRITIC STAINLESS STEEL STRIP FROM MOLTEN METAL.
WO2014103884A1 (en) * 2012-12-28 2014-07-03 独立行政法人物質・材料研究機構 Damping alloy
WO2015003755A1 (en) 2013-07-10 2015-01-15 Thyssenkrupp Steel Europe Ag Method for producing a flat product from an iron-based shape memory alloy
WO2018186321A1 (en) * 2017-04-04 2018-10-11 国立研究開発法人物質・材料研究機構 Fe-mn-si-based alloy casting material having excellent low-cycle fatigue properties
CN114411015A (en) * 2022-01-26 2022-04-29 宝鸡市博信金属材料有限公司 Preparation method of ultrathin memory alloy foil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576043A (en) * 1978-11-30 1980-06-07 Nippon Steel Corp Steel having partial form memory effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576043A (en) * 1978-11-30 1980-06-07 Nippon Steel Corp Steel having partial form memory effect

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665652A1 (en) * 1990-08-13 1992-02-14 Usinor Sacilor METHOD AND DEVICE FOR MANUFACTURING A SEMI-FERRITIC STAINLESS STEEL STRIP FROM MOLTEN METAL.
WO2014103884A1 (en) * 2012-12-28 2014-07-03 独立行政法人物質・材料研究機構 Damping alloy
JP2014129567A (en) * 2012-12-28 2014-07-10 National Institute For Materials Science Damping alloy
KR20150117637A (en) * 2012-12-28 2015-10-20 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 Damping alloy
EP2940175A4 (en) * 2012-12-28 2016-08-24 Nat Inst For Materials Science Damping alloy
WO2015003755A1 (en) 2013-07-10 2015-01-15 Thyssenkrupp Steel Europe Ag Method for producing a flat product from an iron-based shape memory alloy
JP2016531001A (en) * 2013-07-10 2016-10-06 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag Method for manufacturing flat products from iron-based shape memory alloys
US10450624B2 (en) 2013-07-10 2019-10-22 Thyssenkrupp Steel Europe Ag Method for producing a flat product from an iron-based shape memory alloy
WO2018186321A1 (en) * 2017-04-04 2018-10-11 国立研究開発法人物質・材料研究機構 Fe-mn-si-based alloy casting material having excellent low-cycle fatigue properties
JP2018178150A (en) * 2017-04-04 2018-11-15 国立研究開発法人物質・材料研究機構 Fe-Mn-Si-BASED ALLOY CASTING MATERIAL EXCELLENT IN LOW CYCLE FATIGUE PROPERTY
CN114411015A (en) * 2022-01-26 2022-04-29 宝鸡市博信金属材料有限公司 Preparation method of ultrathin memory alloy foil
CN114411015B (en) * 2022-01-26 2022-12-09 宝鸡市博信金属材料有限公司 Preparation method of ultrathin memory alloy foil

Also Published As

Publication number Publication date
JPH0333773B2 (en) 1991-05-20

Similar Documents

Publication Publication Date Title
EP0010866B1 (en) Homogeneous brazing foils of copper based metallic glasses
CN105220037B (en) Super-strength anti-corrosion easy-to-cut aluminum alloy radiating material, preparation method and applications
CN102712969A (en) Flame retardant magnesium alloy with excellent mechanical properties, and preparation method thereof
KR101765729B1 (en) Method for the production of a metal foil
CN102753715A (en) Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
CN106282704A (en) A kind of 1120 alloy flexibility bonded ceramic welding lining pad aluminium foils and preparation method thereof
CN107438487A (en) Light-duty martensite steel plate of hot rolling and preparation method thereof
JPH0569888B2 (en)
KR900006690B1 (en) Method of producing thin sheet of high si-fe alloy
JPS62112751A (en) Manufacturer of ferrous shape memory alloy sheet metal or wire
JPS58128292A (en) Thin strip of phosphorus copper brazing filler metal
JPS591653A (en) Copper alloy for fin of radiator
CN101550515B (en) Copper-containing high-strength and high-ductility high manganese steel
CN106756528A (en) A kind of nitrogen medium managese steel strip high and its near-net forming preparation method
JPH10324961A (en) Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture
JPS60228645A (en) Aluminum alloy having high wear resistance and low thermal expansion and its production
KR100483698B1 (en) Oxidation-resistant metal foil, its use and method for its production
CN114192599B (en) Method for manufacturing platinum or platinum rhodium belt and sheet
JP2005111482A (en) Method for producing aluminum alloy fin material for brazing
JP4444143B2 (en) Copper alloy strip manufacturing method
JP2004516944A (en) Production method of laminated metal product slab and laminated metal product slab
JP2610757B2 (en) Method for producing ultra-thin Au-Si alloy brazing material with excellent thickness accuracy
JPS6077928A (en) Production of cold-rolled steel plate for drawing
JPH05237604A (en) Production of dual phase stainless steel ingot
JP2559914B2 (en) Method for producing Fe-Cu alloy plate excellent in homogeneity