JPS62111122A - Supercharged multi-cylinder internal combustion engine - Google Patents

Supercharged multi-cylinder internal combustion engine

Info

Publication number
JPS62111122A
JPS62111122A JP25153685A JP25153685A JPS62111122A JP S62111122 A JPS62111122 A JP S62111122A JP 25153685 A JP25153685 A JP 25153685A JP 25153685 A JP25153685 A JP 25153685A JP S62111122 A JPS62111122 A JP S62111122A
Authority
JP
Japan
Prior art keywords
cylinder
intake
combustion
engine
supercharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25153685A
Other languages
Japanese (ja)
Inventor
Shinichi Yamamoto
真一 山本
Toshiro Kitamura
北村 敏郎
Yasuhiro Miyagawa
宮川 保博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP25153685A priority Critical patent/JPS62111122A/en
Publication of JPS62111122A publication Critical patent/JPS62111122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To lead an intake air in a swirl flow tangentially contacting a sparking plug and an exhaust valve, and enable active cooling by constituting suction air passages tangentially toward the sparking plug. CONSTITUTION:Openings 7a and 8a for suction ports 7 and 8 in a primary cylinder 2 and a tertiary cylinder 4 are made eccentric by a suitable distance 'e1' toward a cylinder 3 for supercharging, and the exhaust ports 11 and 12 of the cylinders 2 and 4 are made eccentric by a suitable distance 'e2' toward the outside. The cylinders and sparking plugs 27 and 28 in the cylinder 4 are arranged outside of orthogonal center lines 25 and 26, while the suction port 7 in the cylinder 2 and the suction 8 in the cylinder 4 are tangentially constituted so that suction air from said ports 7 and 8 will flow toward the sparking plugs 27 and 28 for each cylinder, when an engine is viewed from top.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、クランク軸を共通にした3つの気筒のうち中
央に位置する1つの気筒を、その両側における2つの燃
焼用気筒に対する過給用の気筒にした多気筒内燃機関に
関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a method for supercharging two combustion cylinders on both sides of one central cylinder out of three cylinders sharing a common crankshaft. The present invention relates to a multi-cylinder internal combustion engine with several cylinders.

〔従来の技術〕[Conventional technology]

クランク軸を共通にした3つの気筒のうち中央に位置す
る1つの気筒を、その両側に位置する2つの燃焼用気筒
に対する過給用の気筒にし、該過給用気筒に逆止弁付き
吸入通路を介して吸入した混合気を、前記両燃焼用気筒
に各々吸気通路を介して交互に分配するようにした過給
式多気筒内燃機関は、先行技術としての特開昭53−2
4913号公報に記載されており、この先行技術のもの
は、過給用気筒からの吸気通路の燃焼用気筒に対する開
口部中心及び過給用気筒における排気ポートの開口部中
心を、過給用気筒における長手中心線と直角方向の中心
線上に配設した構成にしている。
Of the three cylinders that share a common crankshaft, one cylinder located in the center is used as a supercharging cylinder for the two combustion cylinders located on both sides, and the supercharging cylinder has an intake passage with a check valve. A supercharged multi-cylinder internal combustion engine in which the air-fuel mixture taken in through the combustion cylinders is alternately distributed to the two combustion cylinders via the intake passages is disclosed in Japanese Patent Laid-Open No. 53-2 as a prior art.
4913, and in this prior art, the center of the opening of the intake passage from the supercharging cylinder to the combustion cylinder and the center of the opening of the exhaust port in the supercharging cylinder are connected to the supercharging cylinder. The structure is such that the center line is perpendicular to the longitudinal center line.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このようにクランク軸を共通にした3つの気筒
のうち中央に位置する1つの気筒を、その両側における
2つの燃焼用気筒に対する過給用の気筒に構成すると、
この過給用気筒及び当該過給用気筒から両燃焼用気筒へ
の吸気通路は、過給用気筒の両側に位置する燃焼用気筒
によって挟まれた位置にあって、両燃焼用気筒からの熱
伝達を同時に受ける形態になっていると共に、過給用気
筒のピストンが上死点に達した圧縮路わりの時期及びピ
ストンが上死点からの下降行程によって吸入を始める時
期における気筒容積つまり隙間容積には、燃焼用気筒へ
の両吸気通路の内容積が加算されることにより、隙間容
積が増大する。
However, if one cylinder located in the center of the three cylinders sharing a common crankshaft is configured as a supercharging cylinder for the two combustion cylinders on both sides,
This supercharging cylinder and the intake passage from the supercharging cylinder to both combustion cylinders are located between the combustion cylinders located on both sides of the supercharging cylinder, and heat from both combustion cylinders is In addition to receiving transmission at the same time, the cylinder volume, that is, the gap volume, at the time when the piston of the supercharging cylinder reaches the top dead center and the time when the piston starts suction on the downward stroke from the top dead center. By adding the internal volumes of both intake passages to the combustion cylinder, the gap volume increases.

この場合、両側の燃焼用気筒からの熱伝達は、過給用気
筒のおよび両吸気通路の壁面の温度を高め、吸入空気の
温度が高くなって、両燃焼用気筒に対する吸入空気の体
積効率を低下させると共に燃焼用気筒にノッキングが発
生し易くなる。一方、過給用気筒における隙間容積の増
大は、当該過給用気筒における体積効率を低下させるこ
とになる。
In this case, the heat transfer from the combustion cylinders on both sides increases the temperature of the walls of the supercharging cylinder and both intake passages, which increases the temperature of the intake air and reduces the volumetric efficiency of the intake air to both combustion cylinders. As the combustion temperature decreases, knocking becomes more likely to occur in the combustion cylinder. On the other hand, an increase in the gap volume in the supercharging cylinder reduces the volumetric efficiency of the supercharging cylinder.

従って、過給用気筒を2つの燃焼用気筒の間に配設した
場合には、前記過給用気筒における体積効率の低下及び
燃焼用気筒における体積効率の低下とによって、両燃焼
用気筒への過給効率が可成り低下するから、過給用気筒
の行程容積としてはこの過給効率の低下を見込んで大き
くしなければならないから、機関が大型になるのであり
、しかも、燃焼用気筒においてノッキングが発生し易く
なるために過給圧及び圧縮比を高くすることができない
点に問題があった。
Therefore, when a supercharging cylinder is disposed between two combustion cylinders, the reduction in volumetric efficiency in the supercharging cylinder and the reduction in volumetric efficiency in the combustion cylinder causes Since the supercharging efficiency decreases considerably, the stroke volume of the supercharging cylinder must be increased to take into account this decrease in supercharging efficiency, which results in a larger engine.Moreover, knocking occurs in the combustion cylinder. There was a problem in that the supercharging pressure and compression ratio could not be increased because this would easily occur.

本発明は、2つの燃焼用気筒の間に当該過給用気筒に対
する過給用気筒を配設した場合における前記の問題、つ
まり過給効率及び耐ノツキング性の低下を回避すると共
に、燃焼用気筒における急速燃焼を実現・して、機関の
出力及び燃費を向上することを目的とするものである。
The present invention avoids the above-mentioned problem when a supercharging cylinder for the supercharging cylinder is disposed between two combustion cylinders, that is, a decrease in supercharging efficiency and knocking resistance, and also The purpose is to achieve rapid combustion in the engine and improve engine output and fuel efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

このため本発明は、クランク軸を共通にした3つの気筒
のうち中央に位置する1つの気筒を、その両側における
2つの燃焼用気筒に対する過給用の気筒にし、該過給用
気筒に逆止弁付き吸入通路を介して吸入した空気を、前
記両燃焼用気筒に各々吸気通路を介して交互に分配する
ようにした過給式多気筒内燃機関において、前記両吸気
通路の燃焼用気筒内への開口部中心を、機関の平面視に
おいて機関の長手中心線より一方側の領域で且つ燃焼用
気筒の略中心を通る直交中心線よりも過給用気筒側に偏
芯した部位に、前記両燃焼用気筒における排気ポートの
開口部中心を、前記長手中心線より他方側の領域で且つ
前記直交中心線よりも外側に偏芯した部位に各々配設す
る一方、両燃焼用気筒における点火栓を、前記直交中心
線よりも外側の領域に配設し、更に、前記両吸気通路を
燃焼用気筒に対して、機関の平面視において当該開口部
からの吸入空気が前記点火栓の方向を向かうように接線
状に構成したものである。
Therefore, in the present invention, one cylinder located in the center out of three cylinders sharing a common crankshaft is used as a supercharging cylinder for the two combustion cylinders on both sides, and the supercharging cylinder is provided with a back check. In a supercharged multi-cylinder internal combustion engine, in which air taken in through a valved intake passage is alternately distributed to both combustion cylinders via the intake passages, into the combustion cylinders of both intake passages. The center of the opening is located in a region on one side of the longitudinal center line of the engine in a plan view of the engine, and in a region eccentric to the supercharging cylinder side with respect to an orthogonal center line passing approximately at the center of the combustion cylinder. The centers of the openings of the exhaust ports in the combustion cylinders are arranged in a region on the other side of the longitudinal center line and in a part eccentric to the outside of the orthogonal center line, while the spark plugs in both combustion cylinders are arranged. , disposed in an area outside of the orthogonal center line, and further including both the intake passages with respect to the combustion cylinder so that the intake air from the openings is directed toward the spark plug when the engine is viewed from above. It is constructed tangentially to .

〔発明の作用・効果〕[Action/effect of the invention]

このように、両吸気通路における燃焼用気筒内への開口
部中心を、機関の平面視において燃焼用気筒の略中心を
通って機関の長手中心線に対して直角に延びる直交中心
線よりも過給用気筒側に偏芯した部位に設置したことに
より、該両吸気通路の長さは、当該吸気通路の燃焼用気
筒内への開口部中心を前記先行技術のように燃焼用気筒
の略中心を通る直交中心線上に配設した場合よりも短く
なるから、この短くなる分だけ過給用気筒における隙間
容積を縮小できると共に、過給用気筒から両燃焼用気筒
への吸入空気の流れ抵抗を低減でき、更には、吸気通路
内を流れる吸入空気への熱伝達を低減できる。  ・ 一方、両燃焼用気筒における排気ポートの開口部中心を
、燃焼用気筒の略中心を通る直交中心線よりも外側に偏
芯した部位に配設したことにより、燃焼用気筒において
特に高温になる排気ポートは、過給用気筒及び両吸気通
路から遠ざかることになって、当該排気ボートから過給
用気筒及び両吸気通路への熱の伝達が低減するから、過
給用気筒及び両吸気通路の壁面温度を、排気ポートの開
口部中心を前記先行技術のように燃焼用気筒の略中心を
通る直交中心線上に配設した場合よりも低くすることが
できる。
In this way, the centers of the openings of both intake passages into the combustion cylinders are positioned beyond the orthogonal center line that passes through the approximate center of the combustion cylinders and extends perpendicularly to the longitudinal centerline of the engine when viewed from the top of the engine. By installing the intake passages at a location eccentric to the supply cylinder side, the length of both intake passages is such that the center of the opening of the intake passage into the combustion cylinder is approximately at the center of the combustion cylinder as in the prior art. Since it is shorter than when it is arranged on the orthogonal center line passing through the cylinder, the gap volume in the supercharging cylinder can be reduced by this shortening, and the flow resistance of intake air from the supercharging cylinder to both combustion cylinders can be reduced. Furthermore, heat transfer to the intake air flowing in the intake passage can be reduced. - On the other hand, by arranging the opening centers of the exhaust ports in both combustion cylinders at locations eccentric to the outside of the orthogonal center line that passes through the approximate center of the combustion cylinders, the temperature in the combustion cylinders is particularly high. Since the exhaust port is moved away from the supercharging cylinder and both intake passages, the transfer of heat from the exhaust boat to the supercharging cylinder and both intake passages is reduced. The wall surface temperature can be made lower than when the center of the opening of the exhaust port is arranged on the orthogonal center line passing approximately the center of the combustion cylinder as in the prior art.

また、前記の構成に加えて、両燃焼用気筒における点火
栓を、前記直交中心線よりも外側の領域に配設する一方
、前記両吸気通路を燃焼用気筒に対して、機関の平面視
において当該開口部からの吸入空気が前記点火栓の方向
を向かうように接線状に構成したことにより、燃焼用気
筒内への吸入空気は、点火栓及び排気弁をかすめるスワ
ール流となって流入するから、特に高温になる点火栓及
び排気弁を吸入空気によって積極的に冷却することがで
きて、点火栓及び排気弁に起因するプリイグニッション
の発生を回避でき、更に、゛スワール流によって燃焼用
気筒内での混合気の確実な着火性を確保できると共に混
合気の急速な燃焼を達成できるから、混合気における空
燃比のリーン化を図ることができる。
In addition to the above configuration, the spark plugs in both combustion cylinders are arranged in a region outside the orthogonal center line, and both intake passages are connected to the combustion cylinders in a plan view of the engine. Since the intake air from the opening is tangentially directed toward the spark plug, the intake air flows into the combustion cylinder as a swirl flow that brushes over the spark plug and the exhaust valve. In particular, the ignition plug and exhaust valve, which become hot, can be actively cooled by intake air, thereby avoiding the occurrence of pre-ignition caused by the ignition plug and exhaust valve. Since reliable ignitability of the air-fuel mixture can be ensured and rapid combustion of the air-fuel mixture can be achieved, the air-fuel ratio of the air-fuel mixture can be made lean.

従って本発明によると、隙間容積の縮小によって過給用
気筒における体積効率を高くできる一方、燃焼用気筒へ
の吸入空気の流れ抵抗の低減と過給用気筒及び両吸気通
路における壁面温度の低下とによって両燃焼用気筒にお
ける体積効率を高くでき、これら両者が相俟って、両燃
焼用気筒に対する過給効率を高めることができるから、
過給用気筒の行程容積を縮小できて機関の小型化を図る
ことができるのであり、しかも、燃焼用気筒への吸入空
気の温度上昇を低減できることと、点火栓及び排気弁に
対する積極的な冷却によってプリイグニッションの発生
を回避できることとが相俟って、燃焼用気筒における耐
ノツキング性を向上でき、燃焼用気筒における過給圧及
び圧縮比を高くすることができるから、前記空燃比のリ
ーン化とによって機関の出力及び燃費を相乗的に向上で
きる効果を有する。
Therefore, according to the present invention, the volumetric efficiency in the supercharging cylinder can be increased by reducing the gap volume, while the flow resistance of intake air to the combustion cylinder is reduced and the wall surface temperature in the supercharging cylinder and both intake passages is reduced. Since the volumetric efficiency in both combustion cylinders can be increased by this, and these two factors work together, the supercharging efficiency for both combustion cylinders can be increased.
It is possible to reduce the stroke volume of the supercharging cylinder, making the engine more compact.Moreover, it is possible to reduce the temperature rise of the intake air to the combustion cylinder, and it is possible to actively cool the spark plug and exhaust valve. In combination with the ability to avoid the occurrence of pre-ignition, the knocking resistance in the combustion cylinder can be improved, and the supercharging pressure and compression ratio in the combustion cylinder can be increased, making the air-fuel ratio leaner. This has the effect of synergistically improving engine output and fuel efficiency.

〔実施例〕〔Example〕

以下本発明を実施例の図面について説明すると、図にお
いて1は両側に位置する第1気筒2及び第3気筒4を四
サイクルの燃焼用気筒とし、中央に位置する第2気筒3
を2サイクルの過給用気筒とした判型3気筒機関を示し
、該内燃機関における各気筒は1本のクランク軸(図示
せず)で構成されており、この内燃機関1において、シ
リンダブロック5の上面に締結したシリンダヘッド6に
は、第1気筒2及び第3気筒4に各々吸気弁9.10を
備えた吸気ポート7.8と、各々排気弁(図示せず)を
備えた排気ボート11.12とがそれぞれ形成されると
共に、第2気筒3の個所に1つの吸入通路15が形成さ
れている。この場合、前記吸入通路15は、前記シリン
ダヘッド6における一側面13に、両排気ボート11.
12は、シリンダヘッド6における他側面14に各々開
口している。
The present invention will be explained below with reference to drawings of embodiments. In the drawings, 1 is a four-cycle combustion cylinder in which a first cylinder 2 and a third cylinder 4 located on both sides are used, and a second cylinder 3 is located in the center.
shows a three-cylinder engine with a two-stroke supercharging cylinder, each cylinder in the internal combustion engine is composed of one crankshaft (not shown), and in this internal combustion engine 1, the cylinder block 5 The cylinder head 6 fastened to the upper surface has an intake port 7.8 having an intake valve 9.10 for each of the first cylinder 2 and the third cylinder 4, and an exhaust port 7.8 each having an exhaust valve (not shown). 11 and 12, respectively, and one intake passage 15 is formed at the second cylinder 3. In this case, the suction passage 15 is provided on one side 13 of the cylinder head 6 on both exhaust boats 11.
12 are open to the other side surface 14 of the cylinder head 6, respectively.

前記第1気筒2及び第3気筒4のピストンは同一位相で
上下動するが、第2気筒3のピストンは、第1気筒2及
び第3気筒4のピストンとは正反対に上下動するように
クランク角で180度ずれている一方、第1気筒2と第
3気筒4とは、第1気筒2が爆発行程のとき第3気筒4
が吸気行程となるように点火時期がクランク角で360
度ずれており、且つ、第2気筒3の最初の圧縮行程のと
き第3気筒4が吸気行程で、第2気筒3の次の圧縮行程
のとき第1気筒2が吸気行程になるように設定されてい
る。また、前記第1気筒2と第3気筒4とにおける往復
運動部分の質量及び回転運動部分の質量を両気筒につい
て同じにする一方、第2気筒3における往復運動部分の
質量及び回転運動部分の質量を、第1気筒2又は第3気
筒4における往復運動部分の質量及び回転運動部分の質
量の略2倍に設定することによって、往復質量及び回転
質量に対するバランスを保つように、換言すれば、第2
気筒3が第1気筒2及び第3気筒4に対するバランス気
筒を構成するようになされている。
The pistons of the first cylinder 2 and the third cylinder 4 move up and down in the same phase, but the piston of the second cylinder 3 is cranked so that it moves up and down in the exact opposite direction to the pistons of the first cylinder 2 and the third cylinder 4. On the other hand, the first cylinder 2 and the third cylinder 4 are angularly shifted by 180 degrees, and when the first cylinder 2 is in the explosion stroke, the third cylinder 4
The ignition timing is 360 degrees in crank angle so that the intake stroke is
The settings are such that when the second cylinder 3 is on its first compression stroke, the third cylinder 4 is on its intake stroke, and when the second cylinder 3 is on its next compression stroke, the first cylinder 2 is on its intake stroke. has been done. Further, while the mass of the reciprocating motion part and the mass of the rotary motion part in the first cylinder 2 and the third cylinder 4 are made the same for both cylinders, the mass of the reciprocating motion part and the mass of the rotary motion part in the second cylinder 3 are made the same. is set to approximately twice the mass of the reciprocating part and the mass of the rotary part in the first cylinder 2 or the third cylinder 4, so as to maintain the balance with respect to the reciprocating mass and the rotating mass. 2
The cylinder 3 constitutes a balance cylinder for the first cylinder 2 and the third cylinder 4.

また、前記第2気筒3における行程容積は、第1気筒2
及び第3気筒4の両方に対して過給を行うことできるよ
うに、第1気筒2又は第3気筒4の行程容積より大きい
値に設定されている。
Further, the stroke volume in the second cylinder 3 is equal to the stroke volume in the first cylinder 2.
The stroke volume of the first cylinder 2 or the third cylinder 4 is set to be larger than the stroke volume of the first cylinder 2 or the third cylinder 4 so that both the cylinder 2 and the third cylinder 4 can be supercharged.

一方、エアクリーナ16からのスロットル弁17付き吸
入管路18は、前記スロットル弁17の上流側に気化器
19を備えて、前記第2気筒3における吸入通路15に
接続され、第2気筒3における吸入通路15内には、第
2気筒3への方向にのみ開くようにした逆止弁20が設
けられ、また、内燃機関1におけるシリンダヘッド6内
には、第2気筒3内と、第1気筒2及び第3気筒4にお
ける吸気ポート7.8とを各々連通するようにした吸気
通路21.22を形成する。
On the other hand, a suction pipe 18 with a throttle valve 17 from the air cleaner 16 is provided with a carburetor 19 on the upstream side of the throttle valve 17 and is connected to the suction passage 15 in the second cylinder 3. A check valve 20 that opens only toward the second cylinder 3 is provided in the passage 15, and a check valve 20 that opens only toward the second cylinder 3 is provided in the cylinder head 6 of the internal combustion engine 1. Intake passages 21 and 22 are formed to communicate with the intake ports 7.8 in the second and third cylinders 4, respectively.

この場合、前記気化器19に変えて燃料噴射式にすると
きには、前記気化器19を廃止する一方、エアクリーナ
16の下流側にエアフローメータを設け、該エアフロー
メータで計測した空気量に対応する量の燃料を第1気筒
2及び第3気筒4又は第2気筒3に対して供給すれば良
い、また、第1気筒2及び第3気筒4の排気ボート11
.12には、排気マニホールド23が接続されている。
In this case, when replacing the carburetor 19 with a fuel injection type, the carburetor 19 is abolished, and an air flow meter is provided on the downstream side of the air cleaner 16, and an amount of air corresponding to the amount of air measured by the air flow meter is provided. It is sufficient to supply fuel to the first cylinder 2 and the third cylinder 4 or the second cylinder 3, and the exhaust boat 11 of the first cylinder 2 and the third cylinder 4
.. 12 is connected to an exhaust manifold 23.

そして、前記第1気筒2及び第3気筒4における吸気ポ
ート7.8の開口部7a、8aを、機関の平面視におい
て機関の長手中心線24より一方側(実施例では左側)
の領域で、且つ第1気筒2及び第3気筒4の略中心点を
通って前記長手中心線24と直角に延びる直交中心線2
5.26よりも第2気筒3側に適宜の距離(el)だけ
偏芯した部位に配設する一方、前記第1気筒2及び第3
気筒4における排気ボー)11.12を、前記長手中心
線24より他方側(実施例では右側)の領域で、且つ直
交中心線25.26よりも外側に適宜の距離(e2)だ
け偏芯した部位に配設した構  成とし、且つ、前記第
1気筒2及び第3気筒4における点火栓27.28を、
前記直交中心線25゜26よりも外側の領域に配設する
一方、第1気筒2における吸気ボート7及び第3気筒4
における吸気ポート8を、機関の平面視においてその各
々の気筒に対して当該吸気ボート7.8からの吸入空気
が前記点火栓27.28に向かうように接線状に構成す
る。
Then, the openings 7a and 8a of the intake ports 7.8 in the first cylinder 2 and the third cylinder 4 are located on one side (the left side in the embodiment) from the longitudinal centerline 24 of the engine in a plan view of the engine.
an orthogonal center line 2 extending perpendicularly to the longitudinal center line 24 through approximately the center point of the first cylinder 2 and the third cylinder 4;
The first cylinder 2 and the third cylinder
Exhaust bow) 11.12 in cylinder 4 is eccentric by an appropriate distance (e2) in a region on the other side (right side in the example) from the longitudinal centerline 24 and outward from the orthogonal centerline 25.26. The spark plugs 27 and 28 in the first cylinder 2 and the third cylinder 4 are
The intake boat 7 in the first cylinder 2 and the third cylinder 4 are arranged in an area outside the orthogonal center line 25° 26
The intake port 8 is configured to be tangential to each cylinder in a plan view of the engine so that the intake air from the intake boat 7.8 is directed toward the spark plug 27.28.

この構成において、第2気筒3のピストンが下降する吸
入行程のとき、第1気筒2は圧縮行程、第3気筒4は排
気行程で、勇気筒2.4における吸気弁7.8はいずれ
も閉じているから、エアクリーナ16からの大気空気は
、逆止弁20を介して第2気筒3内に吸入される、次い
で第2気筒3が圧縮行程になると、第3気筒4が吸気行
程になってその吸気弁10が開くことより、第2気筒3
で圧縮された混合気が第3気筒4に吸気通路22を介し
て圧縮供給され(この時、第3気筒4への混合気は、逆
止弁20の閉によってその上流側に逆流することはない
)、第3気筒4に対しての過給が行なわれ、また、第2
気筒3における次の圧縮行程によって同様に第1気筒2
に対して過給が行なわれるのである。
In this configuration, when the piston of the second cylinder 3 is in the intake stroke in which it descends, the first cylinder 2 is in the compression stroke, the third cylinder 4 is in the exhaust stroke, and the intake valves 7.8 in the cylinder 2.4 are both closed. Therefore, atmospheric air from the air cleaner 16 is drawn into the second cylinder 3 through the check valve 20. Then, when the second cylinder 3 enters the compression stroke, the third cylinder 4 enters the intake stroke. Since the intake valve 10 opens, the second cylinder 3
The air-fuel mixture compressed by the air-fuel mixture is compressed and supplied to the third cylinder 4 via the intake passage 22 (at this time, the air-fuel mixture to the third cylinder 4 is prevented from flowing back upstream due to the closing of the check valve 20). ), the third cylinder 4 is supercharged, and the second
Similarly, the next compression stroke in cylinder 3 causes the first cylinder 2 to
Supercharging is performed on the

この場合において、両吸気通路21.22に連通ずる吸
気ポート7.8における開口部7a、8aの中心を、長
手中心線24と直角の直交中心線25.26よりも第2
気筒3側に適宜の距離(el)だけ偏芯した部位に設置
したことにより、第2気筒3から第1気筒2及び第3気
筒4に至る吸気通路21.22長さは、前記偏芯距離(
131)だけ短くなるから、この短くなる分だけ第2気
筒3における隙間容積を縮小できると共に、第2気筒3
から第1気筒2及び第3気筒4への吸入空気の流れ抵抗
を低減できるのである。
In this case, the center of the openings 7a, 8a in the intake port 7.8 communicating with both intake passages 21.22 is set at a point second to
By installing the intake passage 21 and 22 at a position eccentric to the cylinder 3 side by an appropriate distance (el), the length of the intake passage 21 and 22 from the second cylinder 3 to the first cylinder 2 and the third cylinder 4 is equal to the eccentric distance. (
131), the gap volume in the second cylinder 3 can be reduced by this shortening, and the gap volume in the second cylinder 3 can be reduced by this amount.
This makes it possible to reduce the flow resistance of intake air from the air to the first cylinder 2 and the third cylinder 4.

また、第1気筒2及び第3気筒4における排気ボー)1
1.12の開口部中心を、長手中心線24と直角の直交
中心線25.26よりも外側に適宜の距離(e2)だけ
偏芯した部位に設置したことにより、第1気筒2及び第
3気筒4において特に高温になる排気ボート11.12
は、第2気筒3より前記偏芯距離(e2)だけ遠ざかる
ことになるから、当該排気ポート11.12から第2気
筒3及び吸気ポート7.8並びに吸気通路21゜22へ
の熱の伝達は低減するのである。
In addition, exhaust bow) 1 in the first cylinder 2 and the third cylinder 4
By installing the center of the opening of 1.12 at a location eccentrically outward by an appropriate distance (e2) from the orthogonal center line 25.26 perpendicular to the longitudinal center line 24, the first cylinder 2 and the third cylinder Exhaust boat 11.12 where the temperature is particularly high in cylinder 4
is separated from the second cylinder 3 by the eccentric distance (e2), so the heat transfer from the exhaust port 11.12 to the second cylinder 3, intake port 7.8, and intake passage 21°22 is as follows. It reduces it.

しかも、前記の構成、つまり両吸気通路21゜22に連
通する吸気ポート7.8における開口部7a、8aの中
心を、長手中心線24と直角の直交中心線25.26よ
りも第2気筒3側に適宜の距!(al)だけ偏芯した部
位に設置したこと、及び第1気筒2及び第3気筒4にお
ける排気ボー)11.12の開口部中心を、長手中心線
24と直角の直交中心線25.26よりも外側に適宜の
距離(e2)だけ偏芯した部位に設置したことに加えて
、吸気ボート7.8における開口部7a。
Moreover, the center of the openings 7a, 8a in the intake port 7.8 communicating with both the intake passages 21 and 22 is set to be closer to the second cylinder 3 than the orthogonal center line 25.26 which is perpendicular to the longitudinal center line 24. Appropriate distance to the side! (al), and the center of the opening of exhaust bow (11.12) in the first cylinder 2 and the third cylinder 4 is set from the orthogonal center line 25.26 perpendicular to the longitudinal center line 24. In addition, the opening 7a in the intake boat 7.8 is installed at a location eccentrically outward by an appropriate distance (e2).

8aの中心を長手中心線24に対して一方側の領域に、
排気ボー)11.12の開口部中心を長手中心線24・
に対して他方側の領域に各々配設する一方、第1気筒2
及び第3気筒における点火栓27.28を、直交中心線
25.26よりも外側の領域に配設し、且つ、前記両吸
気通路21.22に連通ずる吸気ポート7.8を、機関
の平面視において各々の気筒2,4に対して接線状に構
成したことにより、この吸気ポート7.8からの吸入空
気は、第1図及び第2図に矢印Aで示すように、点火栓
27.28をかすめると共に、排気ポート11.12の
開口部に設けられている排気弁をかすめるスワール流と
なって、各気筒2,4内に流入するのである。
8a in an area on one side with respect to the longitudinal center line 24,
Exhaust bow) 11. The center of the opening of 12 is the longitudinal center line 24.
while the first cylinder 2
The spark plugs 27, 28 in the third cylinder are disposed outside the orthogonal center line 25, 26, and the intake ports 7, 8 communicating with both the intake passages 21, 22 are arranged in the plane of the engine. By being arranged tangentially to each cylinder 2, 4 in view, the intake air from this intake port 7.8 is directed to the spark plug 27.8 as shown by arrow A in FIGS. 1 and 2. 28 and flows into each of the cylinders 2 and 4 as a swirl flow that passes through the exhaust valves provided at the openings of the exhaust ports 11 and 12.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示す図で、・第1図は平面図、
第2図は第1図のn−n挽断面図である。 1・・・・内燃機関、2,3.4・・・・気筒、7,8
・・・・吸気ポート、7a、8a・・・・開口部、11
゜12・・・・排気ポート、15・・・・吸入通路、1
6・・・・エアクリーナ、18・・・・吸入管路、20
・・・・逆止弁、21.22・・・・吸気通路、24・
・・・長手中心線、25.26・・・・直交中心線、2
7.28・・・・点火栓。
The drawings are diagrams showing embodiments of the present invention; ・Figure 1 is a plan view;
FIG. 2 is a sectional view taken along line nn in FIG. 1. 1... Internal combustion engine, 2, 3. 4... Cylinder, 7, 8
...Intake port, 7a, 8a...Opening, 11
゜12...Exhaust port, 15...Intake passage, 1
6...Air cleaner, 18...Suction pipe, 20
...Check valve, 21.22...Intake passage, 24.
... Longitudinal center line, 25.26 ... Orthogonal center line, 2
7.28...Spark plug.

Claims (1)

【特許請求の範囲】[Claims] (1)、クランク軸を共通にした3つの気筒のうち中央
に位置する1つの気筒を、その両側における2つの燃焼
用気筒に対する過給用の気筒にし、該過給用気筒に逆止
弁付き吸入通路を介して吸入した混合気を、前記両燃焼
用気筒に各々吸気通路を介して交互に分配するようにし
た過給式多気筒内燃機関において、前記両吸気通路の燃
焼用気筒内への開口部中心を、機関の平面視において機
関の長手中心線より一方側の領域で且つ燃焼用気筒の略
中心を通る直交中心線よりも過給用気筒側に偏芯した部
位に、前記両燃焼用気筒における排気ポートの開口部中
心を、前記長手中心線より他方側の領域で且つ前記直交
中心線よりも外側に偏芯した部位に各々配設する一方、
両燃焼用気筒における点火栓を、前記直交中心線よりも
外側の領域に配設し、更に、前記両吸気通路を燃焼用気
筒に対して、機関の平面視において当該開口部からの吸
入空気が前記点火栓の方向を向かうように接線状に構成
したことを特徴とする過給式多気筒内燃機関。
(1) Among the three cylinders that share a common crankshaft, one cylinder located in the center is used as a supercharging cylinder for the two combustion cylinders on both sides, and the supercharging cylinder is equipped with a check valve. In a supercharged multi-cylinder internal combustion engine, in which the air-fuel mixture taken in through an intake passage is alternately distributed to the two combustion cylinders via the intake passages, The center of the opening is located in a region on one side of the longitudinal centerline of the engine in a plan view of the engine, and in a region eccentric to the supercharging cylinder side with respect to an orthogonal center line passing approximately at the center of the combustion cylinder. The center of the opening of the exhaust port in each cylinder is located in a region on the other side of the longitudinal centerline and eccentrically outward of the orthogonal centerline;
The spark plugs in both combustion cylinders are disposed in an area outside the orthogonal center line, and the intake air from the openings is arranged in both intake passages relative to the combustion cylinder in a plan view of the engine. A supercharged multi-cylinder internal combustion engine, characterized in that the engine is configured in a tangential manner so as to face the direction of the spark plug.
JP25153685A 1985-11-08 1985-11-08 Supercharged multi-cylinder internal combustion engine Pending JPS62111122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25153685A JPS62111122A (en) 1985-11-08 1985-11-08 Supercharged multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25153685A JPS62111122A (en) 1985-11-08 1985-11-08 Supercharged multi-cylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62111122A true JPS62111122A (en) 1987-05-22

Family

ID=17224271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25153685A Pending JPS62111122A (en) 1985-11-08 1985-11-08 Supercharged multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62111122A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276517A (en) * 1975-12-20 1977-06-28 Honda Motor Co Ltd 4 cycle multi-cylinder internal conbustion engine
JPS59229016A (en) * 1983-06-08 1984-12-22 Daihatsu Motor Co Ltd Supercharged multi-cylinder internal-combustion engine
JPS60153427A (en) * 1984-01-20 1985-08-12 Daihatsu Motor Co Ltd Supercharged multi-cylinder internal-combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276517A (en) * 1975-12-20 1977-06-28 Honda Motor Co Ltd 4 cycle multi-cylinder internal conbustion engine
JPS59229016A (en) * 1983-06-08 1984-12-22 Daihatsu Motor Co Ltd Supercharged multi-cylinder internal-combustion engine
JPS60153427A (en) * 1984-01-20 1985-08-12 Daihatsu Motor Co Ltd Supercharged multi-cylinder internal-combustion engine

Similar Documents

Publication Publication Date Title
KR950000599B1 (en) Spark ignited reciprocating engine
US4969425A (en) Piston with a resonant cavity
US5143028A (en) Supercharged V type two cycle engine
US5630386A (en) Intake structure for V-type engine
US4216747A (en) Uniflow, double-opposed piston type two-cycle internal combustion engine
US5307773A (en) Squish structure for spark ignition engine
JP3153283B2 (en) Engine with mechanical supercharger
US7444974B2 (en) Internal combustion engine intake device
JP3436313B2 (en) Spark ignition engine
JPS60237118A (en) Stratified combustion cross flow cleaning type two-cycle engine
JPS62111122A (en) Supercharged multi-cylinder internal combustion engine
Onishi et al. Multi-layer stratified scavenging (MULS)-a new scavenging method for two-stroke engine
JPH0120295B2 (en)
JPS62111121A (en) Supercharged multi-cylinder internal combustion engine
JPS60153427A (en) Supercharged multi-cylinder internal-combustion engine
JPS6397826A (en) Supercharging type multicylinder internal combustion engine
JPH045725Y2 (en)
JPH0313580Y2 (en)
JPH0313577Y2 (en)
JPH0115864Y2 (en)
JPS637253B2 (en)
JPH068274Y2 (en) Engine combustion chamber structure
JPS62111120A (en) Supercharged multi-cylinder internal combustion engine
JPS6259210B2 (en)
JPH0212268Y2 (en)