JPS62110894A - Welding wire for nonmagnetic steel - Google Patents

Welding wire for nonmagnetic steel

Info

Publication number
JPS62110894A
JPS62110894A JP24983185A JP24983185A JPS62110894A JP S62110894 A JPS62110894 A JP S62110894A JP 24983185 A JP24983185 A JP 24983185A JP 24983185 A JP24983185 A JP 24983185A JP S62110894 A JPS62110894 A JP S62110894A
Authority
JP
Japan
Prior art keywords
wire
strength
toughness
low
welding wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24983185A
Other languages
Japanese (ja)
Inventor
Osamu Tanaka
治 田中
Tsuneji Ogawa
小川 恒司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24983185A priority Critical patent/JPS62110894A/en
Publication of JPS62110894A publication Critical patent/JPS62110894A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain a welding wire for a nonmagnetic steel having excellent strength and low-temp. toughness by specifying the components of the wire. CONSTITUTION:The components of the wire contain 0.01-0.04% C (wt%, hereinafter the same), 0.1-0.8% Si, 15-30% Mn, 5-20% Ni, 8-20% Cr, and 0.07-0.25% N, consist of the balance Fe and unavoidable impurities and contain <=0.02% oxygen. The welding wire for the nonmagnetic steel having the excellent strength and low-temp. toughness is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は非磁性鋼用溶接ワイヤに関し、詳細には強度及
び低温靭性の優れた非磁性鋼用溶接ワイヤに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a welding wire for non-magnetic steel, and more particularly to a welding wire for non-magnetic steel that has excellent strength and low-temperature toughness.

[従来の技術] 核融合炉、リニアモータカー、MHD発電及び超電導発
電等の設備では大ぎな磁場を発生させる。従ってこれら
の設備の構造材料としては主に非磁性鋼が使用されてい
る。又これらの設備はいずれも大型建造物であり、且つ
極低温での超電導技術を利用するものである為、構造材
料としては高強度でしかも低温靭性の優れたものが求め
られている。
[Prior Art] Facilities such as nuclear fusion reactors, linear motor cars, MHD power generation, and superconducting power generation generate large magnetic fields. Therefore, non-magnetic steel is mainly used as the structural material for these facilities. Furthermore, since all of these facilities are large-scale buildings and utilize superconducting technology at extremely low temperatures, structural materials that have high strength and excellent low-temperature toughness are required.

従来構造材料として用いられてきた非磁性鋼を分類する
と、5US304tI4を基本にしたNi−Cr系非磁
性鋼と、高Mn系非磁性鋼とに大別される。即ち前者の
Ni−Cr系非磁性鋼は低温靭性や耐食性に優れており
、又後者の高Mn系非磁性鋼は特に高強度が得られると
いった特徴がある。
Nonmagnetic steels conventionally used as structural materials are broadly divided into Ni-Cr nonmagnetic steel based on 5US304tI4 and high Mn nonmagnetic steel. That is, the former Ni-Cr nonmagnetic steel has excellent low-temperature toughness and corrosion resistance, and the latter high Mn nonmagnetic steel has the characteristic of particularly high strength.

[発明が解決しようとする問題点] 上記列挙した構造物は将来ますます大型化していく趨勢
にあるが、この様な動向に対処するうえで最も問題とな
るのは溶接材料である。即ち前述の様な鋼材の特性を十
分に発揮させる為には、溶接継手についても母材に匹敵
する強度や低温靭性等を確保する必要があるが、現在の
ところ要求を満たす様な溶接材料は開発されていない。
[Problems to be Solved by the Invention] The structures listed above are likely to become larger and larger in the future, and the biggest problem in dealing with this trend is welding materials. In other words, in order to fully utilize the characteristics of steel materials mentioned above, it is necessary for welded joints to have strength and low-temperature toughness comparable to that of the base metal, but currently there are no welding materials that meet these requirements. Not developed.

従って本発明の目的は、上記趣旨から明らかな如く強度
及び低温靭性の優れた非磁性鋼用溶接ワイヤを提供する
点にある。
Accordingly, an object of the present invention is to provide a welding wire for non-magnetic steel that has excellent strength and low-temperature toughness, as is clear from the above-mentioned purpose.

[問題点を解決する為の手段] 上記目的を達成し得た本発明のワイヤとは、C: 0.
01〜0.04%(重量%、以下同じ)、Si:0.1
〜0.8%、Mn:15〜30%、Ni:5〜20%、
Cr:8〜20%、N : 0.07〜0.25%を含
み、残部がFe及び不可避不純物からなり、酸素が0.
02%以下である点に要旨を有するものである。
[Means for Solving the Problems] The wire of the present invention that achieves the above object has a wire of C: 0.
01 to 0.04% (weight%, same below), Si: 0.1
~0.8%, Mn: 15-30%, Ni: 5-20%,
Contains Cr: 8 to 20%, N: 0.07 to 0.25%, the balance consists of Fe and inevitable impurities, and oxygen is 0.07 to 0.25%.
The main point is that it is less than 0.02%.

[作用] 本発明者らは上記構成を採用するに先たちまず高Mn系
非磁性鋼について考慮した。高強度を有する高Mn系非
磁性鋼は、その金属組織が安定なオーステナイト相であ
る為、−100℃程度の穏やかな低温領域であれば仮に
0.1〜0.5%程度のCを含有するものであっても比
較的良好な靭性が得られていた。しかしながら超電導を
扱う様な極低温領域では、上述の様な高Mn系非磁性鋼
では十分な靭性が得られないことが判明した。そこで本
発明者らは種々検討した結果、高強度を発揮する高Mn
系非磁性鋼において極低温での靭性を改善するには、該
非磁性鋼中のC含有量を極力抑えてやれば極めて効果的
であるという着想を得た。
[Function] Before adopting the above configuration, the present inventors first considered high Mn non-magnetic steel. High Mn-based nonmagnetic steel with high strength has a stable austenitic metal structure, so if it is in a mild low temperature region of about -100℃, it will contain about 0.1 to 0.5% C. Relatively good toughness was obtained even when However, it has been found that the above-mentioned high Mn-based nonmagnetic steel cannot provide sufficient toughness in extremely low temperature regions such as those dealing with superconductivity. Therefore, as a result of various studies, the present inventors found that a high Mn-rich material that exhibits high strength
In order to improve the toughness of non-magnetic steel at extremely low temperatures, we came up with the idea that it would be extremely effective to suppress the C content in the non-magnetic steel as much as possible.

そして上記着想に基づきC量を抑えるという技術を溶接
金属に応用することによって、強度及び低温靭性がいず
れも極めて良好な非磁性鋼用溶接ワイヤが実現できると
の確信を得、本発明を完成するに至った。
Based on the above idea, by applying the technology of suppressing the amount of C to weld metal, we were able to realize a welding wire for non-magnetic steel with extremely good strength and low-temperature toughness, and completed the present invention. reached.

本発明は上記の如く構成されるが、本発明における成分
範囲限定の理由を説明する。
Although the present invention is configured as described above, the reason for limiting the range of components in the present invention will be explained.

C: 0.01〜0.04% 上述した如く高強度の高Mn系非磁性鋼において極低温
での靭性な改善するには、C含有量を極力抑える必要が
ある。更に高Mn−N成分系の溶接金属では、耐ブロー
ホール性に及ぼすC量の影響を見逃す訳にはいかず、高
C量になるほど溶融金属からのCOガス発生量が増大す
る傾向があり、X線性能が低下するという問題がある。
C: 0.01 to 0.04% As mentioned above, in order to improve the toughness at extremely low temperatures in high-strength, high-Mn-based nonmagnetic steel, it is necessary to suppress the C content as much as possible. Furthermore, in weld metals with high Mn-N components, the influence of the amount of C on blowhole resistance cannot be overlooked; the higher the amount of C, the more the amount of CO gas generated from the molten metal tends to increase. There is a problem that line performance deteriorates.

従って低温靭性及びX線性能等を総合的に考慮し、C量
は0.04%以下とした。又Cは溶接金属の強度を高め
る上でも最も効果的な元素であるが、本発明ではC量を
極力抑えてもMn、Cr、N量を調整することによりっ
て高強度の維持を画っており、従来の高C−高Mn系溶
接金属と同程度の高強度が維持される。しかしながらこ
の場合においても、C量が0.01%未満では強度が不
十分となる為、C量の下限を0.01%とした。
Therefore, by comprehensively considering low-temperature toughness, X-ray performance, etc., the C content was set to 0.04% or less. Furthermore, C is the most effective element in increasing the strength of weld metal, but in the present invention, even if the amount of C is suppressed as much as possible, high strength can be maintained by adjusting the amounts of Mn, Cr, and N. As a result, high strength comparable to that of conventional high C-high Mn weld metals is maintained. However, even in this case, if the C content is less than 0.01%, the strength will be insufficient, so the lower limit of the C content is set to 0.01%.

S i : O,L〜0.8% SLは脱酸剤として有効であり、又母材との馴染み性等
の面で溶接作業性を改善するので最低0.1%は必要で
ある。しかしながら0.8%を超えると、耐割れ性特に
高温における耐割れ性の低下が顕著に現われる。従フて
本発明ではSiは0.1〜0.8%と特定した。
Si: O, L ~ 0.8% SL is effective as a deoxidizer and improves welding workability in terms of compatibility with the base metal, so a minimum content of 0.1% is required. However, if it exceeds 0.8%, the cracking resistance, especially at high temperatures, will noticeably deteriorate. Therefore, in the present invention, Si is specified to be 0.1 to 0.8%.

Mn:15〜30% Mnはオーステナイト形成元素であり且つ強度を高める
効果があり、最低15%は必要である。
Mn: 15-30% Mn is an austenite-forming element and has the effect of increasing strength, and must be at least 15%.

しかしながら30%を超えるとスラグの発生量が増大し
、熔融金属のl1lI染み性が低下して溶接作業性に悪
影響を及ぼす。従って本発明ではMnは15〜30%と
特定した。
However, if it exceeds 30%, the amount of slag generated increases, the l1lI stainability of the molten metal decreases, and this adversely affects welding workability. Therefore, in the present invention, Mn is specified to be 15 to 30%.

Ni:5〜20% 本発明では低温靭性を良好にする為C量を極力抑えるも
のであるが、CはNiやNと同様強力なオーステナイト
形成元素であるのでC量が低くなると安定したヤーステ
ナイト組織が得られにくくなる傾向を示す。d量を抑え
た代りにMnとN等でオーステナイト相を安定化させる
のであるが、MnはCやNに比べてその効果が小さく、
又Nは耐ブローホール性を考慮すればそれほど多く添加
することは好ましくない。それ故、低C−高Mn−N系
オーステナイト系溶接金属では、ミクロ的に不安定なオ
ーステナイト組織が析出し十分な延□性を確保すること
が困難になる傾向がある。更に不都合なことに不安定な
オーステナイト組織が析出すると、水素を原因とする低
温割れ感受性が増大する。、これらの点に鑑みると、オ
ーステナイト形成元素であるNiの添加は不可欠である
。又十分な延性を得る為には最低5%のNiが必要であ
る。しかしながらNiは上記効果を発揮する反面その添
加量が増大すると高温割れ性を高め更にSCC(応力腐
食割れ)感受性も高めるという傾向も示す。従って本発
明ではNiの上限を20%とした。
Ni: 5-20% In the present invention, the amount of C is suppressed as much as possible in order to improve the low-temperature toughness, but since C is a strong austenite-forming element like Ni and N, the lower the amount of C, the more stable yerstenite is formed. It shows a tendency for tissue to become difficult to obtain. In exchange for suppressing the amount of d, the austenite phase is stabilized with Mn, N, etc., but Mn has a smaller effect than C and N.
Further, in consideration of blowhole resistance, it is not preferable to add so much N. Therefore, in low C-high Mn-N austenitic weld metals, a microscopically unstable austenite structure tends to precipitate, making it difficult to ensure sufficient ductility. Furthermore, the precipitation of an unstable austenitic structure increases the susceptibility to hydrogen-induced cold cracking. In view of these points, it is essential to add Ni, which is an austenite-forming element. Also, a minimum of 5% Ni is required to obtain sufficient ductility. However, while Ni exhibits the above-mentioned effects, it also shows a tendency to increase hot cracking resistance and further to increase SCC (stress corrosion cracking) susceptibility as the amount added increases. Therefore, in the present invention, the upper limit of Ni is set to 20%.

Cr二8〜20% Crは耐食性を改善し且つ強度を高める元素であり、最
低8%は必要である。しかしながらCrが20%を超え
ると靭性が低下し脆化し易くなるので、Crの上限を2
0%と定めた。
Cr2 8-20% Cr is an element that improves corrosion resistance and increases strength, and a minimum content of 8% is required. However, if Cr exceeds 20%, the toughness decreases and embrittlement becomes more likely, so the upper limit of Cr is set to 2.
It was set as 0%.

N : 0.07〜0.25% Nはオーステナイト形成促進元素であり、溶接金属の強
度を高める効果が大きい。その効果は0.07%から現
われる。しかしながらNが多くなりすぎると、その固溶
限界範囲を超えてしまいブローホールの発生原因となる
のでNの上限を0.25%とした。
N: 0.07 to 0.25% N is an element that promotes austenite formation and has a great effect on increasing the strength of weld metal. The effect appears from 0.07%. However, if N increases too much, it exceeds its solid solubility limit and causes blowholes, so the upper limit of N was set at 0.25%.

0 : 0.02%以下 0はX線性能に影響を与えるものであるが、本発明の目
的を有効に達成する為にはCを少なくするだけでは不十
分であり、0も少なくする必要があり、CとOとによる
相剰的悪影響を防止する為にも0は0,02%以下に抑
える必要がある。
0: 0.02% or less 0 affects X-ray performance, but in order to effectively achieve the purpose of the present invention, it is not enough to reduce C, and it is necessary to reduce 0 as well. Therefore, in order to prevent the additive negative effects of C and O, it is necessary to suppress 0 to 0.02% or less.

[実施例] 実施例1 本発明者は各種化学成分の溶接ワイヤを作製し、得られ
た溶接ワイヤを用いてTIG溶接を行ない溶接金属の性
能を調査した。その結果を下記第1表の結果から下記の
様に考察することができる。
[Example] Example 1 The inventor produced welding wires of various chemical compositions, performed TIG welding using the obtained welding wires, and investigated the performance of the weld metal. The results can be considered as follows from the results in Table 1 below.

(1)ワイヤNo、 1〜4はCの影響を調査したもの
であり、Cの増加に伴なって溶接金属の引張強さが上昇
する傾向を示す。ワイヤNo、1.2は本発明における
各成分の特定範囲を全て満足する実施例であり、溶接金
属性能は全ての面で良好である。これに対し、ワイヤN
o、3.4はCが本発明で規定する範囲外である比較例
であり、強度の点では十分であるものの靭性が低く、更
にワイヤNo、 4ではブローホールが発生している。
(1) Wires No. 1 to 4 were investigated for the influence of C, and show a tendency for the tensile strength of the weld metal to increase as C increases. Wire No. 1.2 is an example that satisfies all the specified ranges of each component in the present invention, and the weld metal performance is good in all aspects. On the other hand, wire N
Wire No. 3.4 is a comparative example in which C is outside the range specified by the present invention, and although the strength is sufficient, the toughness is low, and furthermore, wire No. 4 has blowholes.

(2)ワイヤNo、 5はMnの影響を調査する為の比
較例であり、Mn量が低い為強度が不足している。
(2) Wire No. 5 is a comparative example for investigating the influence of Mn, and the strength is insufficient because the amount of Mn is low.

(3)ワイヤNo、 6. 7はCrの影響を調査する
為の比較例であり、Crの増加に伴なって強度は上昇す
るが靭性は低下する。即ち、Crが少なすぎる(ワイヤ
No、6)と強度が不足しており、Crが多すぎる(ワ
イヤNo、7)と十分な靭性が得られない。
(3) Wire No. 6. No. 7 is a comparative example for investigating the influence of Cr, and as the Cr content increases, the strength increases but the toughness decreases. That is, if there is too little Cr (wire No. 6), the strength is insufficient, and if there is too much Cr (wire No. 7), sufficient toughness cannot be obtained.

(4)ワイヤN098はNiの影響を調査する為の比較
例であり、Niが低すぎる為、ワイヤNo。
(4) Wire No. 098 is a comparative example for investigating the influence of Ni, and since Ni is too low, it is wire No.

1.2のもの(実施例)と比べ十分な伸びが得られてい
ない。
Sufficient elongation was not obtained compared to 1.2 (Example).

(5)ワイヤNO49はNの影響を調査する為の比較例
であり、Nが低すぎると十分な強度が得られない。
(5) Wire No. 49 is a comparative example for investigating the influence of N, and if N is too low, sufficient strength cannot be obtained.

(6)ワイヤNo、10は0の影響を調査する為の比較
例であり、○が高すぎると十分な靭性が得られない。
(6) Wire No. 10 is a comparative example for investigating the influence of 0, and if ○ is too high, sufficient toughness cannot be obtained.

(7)ワイヤNo、11.12は本発明で規定する各成
分を全て満足する実施例であり、いずれも強度及び靭性
の面で良好であった。
(7) Wire No. 11.12 is an example that satisfies all of the components specified in the present invention, and all were good in terms of strength and toughness.

実施例2 次に本発明者らは、ワイヤNo、12の溶接ワイヤを用
いて継手溶接を行ない、継手部における引張試験、衝寮
試験及び曲げ試験を行なった。使用した母材は板厚20
mmの高Mn鋼であり、その化学的成分及び機械的性能
は下記第2表に示す。尚開先はX開先とし、TIG溶接
で溶接を行ない、溶接条件は150A (DC3P)−
12V−10cm/minであり、シールドガスはAr
を用いた。
Example 2 Next, the present inventors performed joint welding using welding wire No. 12, and conducted a tensile test, impact test, and bending test on the joint. The base material used has a plate thickness of 20
mm high Mn steel, and its chemical composition and mechanical performance are shown in Table 2 below. The groove is an
12V-10cm/min, shielding gas is Ar
was used.

溶接後、ビード表面の液体浸透探傷試験及びX線透過試
験を行なったが、欠陥は全く発生していなかった。継手
引張試験、衝撃試験及び曲げ試験第   3   表 第   4   表 第   5   表 [発明の効果] 以上述べた如く本発明によれば、既述の構成を採用する
ことによって強度及び低温靭性の良好な非磁性鋼用溶接
ワイヤが実現できた。
After welding, a liquid penetrant test and an X-ray transmission test were conducted on the bead surface, but no defects were found. Joint tensile test, impact test and bending test Table 3 Table 4 Table 5 [Effect of the invention] As described above, according to the present invention, by employing the above-mentioned configuration, a non-woven fabric with good strength and low temperature toughness can be obtained. A welding wire for magnetic steel has been realized.

Claims (1)

【特許請求の範囲】[Claims] C:0.01〜0.04%(重量%、以下同じ)、Si
:0.1〜0.8%、Mn:15〜30%、Ni:5〜
20%、Cr:8〜20%、N:0.07〜0.25%
を含み、残部がFe及び不可避不純物からなり、酸素が
0.02%以下であることを特徴とする非磁性鋼用溶接
ワイヤ。
C: 0.01 to 0.04% (weight%, same below), Si
:0.1~0.8%, Mn:15~30%, Ni:5~
20%, Cr: 8-20%, N: 0.07-0.25%
A welding wire for non-magnetic steel, characterized in that the remainder is Fe and unavoidable impurities, and the oxygen content is 0.02% or less.
JP24983185A 1985-11-07 1985-11-07 Welding wire for nonmagnetic steel Pending JPS62110894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24983185A JPS62110894A (en) 1985-11-07 1985-11-07 Welding wire for nonmagnetic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24983185A JPS62110894A (en) 1985-11-07 1985-11-07 Welding wire for nonmagnetic steel

Publications (1)

Publication Number Publication Date
JPS62110894A true JPS62110894A (en) 1987-05-21

Family

ID=17198832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24983185A Pending JPS62110894A (en) 1985-11-07 1985-11-07 Welding wire for nonmagnetic steel

Country Status (1)

Country Link
JP (1) JPS62110894A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302379A (en) * 2013-06-25 2013-09-18 保定天威集团有限公司 Fusion welding method of low magnetic plate of transformer clamp structure and round stainless steel
CN105014189A (en) * 2015-07-09 2015-11-04 武汉钢铁(集团)公司 Shielded metal arc welding method for high-manganese non-magnetic steel with tensile strength of 1000 MPa
CN106238959A (en) * 2016-08-04 2016-12-21 上海交通大学 Low magnetic steel gas protection wire
CN107009046A (en) * 2017-03-28 2017-08-04 武汉科技大学 The tungsten argon arc welding solid core welding wire welded for ultralow temperature potassium steel
CN107052618A (en) * 2017-03-28 2017-08-18 武汉科技大学 The potassium steel of LNG basins is prepared with full-automatic submerged arc welding solid core welding wire
WO2024111595A1 (en) * 2022-11-24 2024-05-30 日本製鉄株式会社 Steel material, solid wire, and steel sheath

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302379A (en) * 2013-06-25 2013-09-18 保定天威集团有限公司 Fusion welding method of low magnetic plate of transformer clamp structure and round stainless steel
CN105014189A (en) * 2015-07-09 2015-11-04 武汉钢铁(集团)公司 Shielded metal arc welding method for high-manganese non-magnetic steel with tensile strength of 1000 MPa
CN106238959A (en) * 2016-08-04 2016-12-21 上海交通大学 Low magnetic steel gas protection wire
CN106238959B (en) * 2016-08-04 2018-06-08 上海交通大学 Low magnetic steel gas protection wire
CN107009046A (en) * 2017-03-28 2017-08-04 武汉科技大学 The tungsten argon arc welding solid core welding wire welded for ultralow temperature potassium steel
CN107052618A (en) * 2017-03-28 2017-08-18 武汉科技大学 The potassium steel of LNG basins is prepared with full-automatic submerged arc welding solid core welding wire
CN107052618B (en) * 2017-03-28 2019-03-19 武汉科技大学 Prepare the full-automatic submerged arc welding solid core welding wire of potassium steel of LNG basin
WO2024111595A1 (en) * 2022-11-24 2024-05-30 日本製鉄株式会社 Steel material, solid wire, and steel sheath

Similar Documents

Publication Publication Date Title
JPH028840B2 (en)
JPH09267190A (en) Welding wire for high crome ferrite wire
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JPS62110894A (en) Welding wire for nonmagnetic steel
JP2000158183A (en) Welding material of martensite system stainless steel, welding joint, and manufacture thereof
JP2857318B2 (en) Welding wire for high tensile steel
JP3851394B2 (en) High Mn stainless steel welding wire for cryogenic temperatures with excellent resistance to welding hot cracking
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JP2742201B2 (en) TIG welding wire for high strength Cr-Mo steel
JPH0561036B2 (en)
JPS6317038B2 (en)
JPS59226151A (en) Austenitic high-alloy stainless steel with superior weldability and hot workability
JPH0242313B2 (en)
JPS6313692A (en) Wire for welding austenitic stainless steel
JPS6048584B2 (en) Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability
JPH0583626B2 (en)
JPS6075551A (en) Stainless nonmagnetic steel for electronic device parts
JPH01293992A (en) High-ni alloy welding wire
JPS6188997A (en) Wire for welding 9cr-1mo steel
JP7492184B1 (en) Manufacturing method of solid wire and welded joint
JPS62224493A (en) Wire for welding 9cr-2mo steel
JPS6227557A (en) High-mn nonmagnetic steel for very low temperature use excellent in electron beam weldability
JP3598600B2 (en) Weld metal having high strength and toughness and method of forming the same
JP3237132B2 (en) Stainless steel for concentrated nitric acid with excellent weld toughness and corrosion resistance