JPS6211078B2 - - Google Patents

Info

Publication number
JPS6211078B2
JPS6211078B2 JP8351383A JP8351383A JPS6211078B2 JP S6211078 B2 JPS6211078 B2 JP S6211078B2 JP 8351383 A JP8351383 A JP 8351383A JP 8351383 A JP8351383 A JP 8351383A JP S6211078 B2 JPS6211078 B2 JP S6211078B2
Authority
JP
Japan
Prior art keywords
weight
furnace
paint
treatment
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8351383A
Other languages
Japanese (ja)
Other versions
JPS59229496A (en
Inventor
Akiteru Sasaki
Hirobumi Hara
Ubee Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP8351383A priority Critical patent/JPS59229496A/en
Publication of JPS59229496A publication Critical patent/JPS59229496A/en
Publication of JPS6211078B2 publication Critical patent/JPS6211078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、炉中ろう付の如く無酸化雰囲気にお
いて高熱処理された鋼材を炉冷し、急冷処理を施
すにあたり、鋼材表面に生じる酸化スケールを除
去抑制すると共に、そのまま水洗することなく直
接、下地処理としてのアニオン型電着塗装を施す
ことを可能とした塗装前処理剤及び塗装前処理方
法に関するものである。 通常鋼材表面に塗装を施す場合、鋼材表面にリ
ン酸亜鉛などの化成皮膜を下地として形成し、こ
の皮膜上に塗膜を形成するものであるが鋼材等か
らなる部品を炉中ろう付等により接合し、所望の
部材を得るものについては、鋼材の機械的性質を
向上させるため、特公昭56―25903号公報で知ら
れるように1100℃〜1150℃のろう付け加熱処理後
鋼材を約570℃〜720℃の変態点近傍まで炉冷し次
いでこれを急冷している。 しかしこの場合鋼材表面に酸化鉄、酸化膜(酸
化スケール)が生成され、この酸化スケールを除
去しないで化成皮膜処理を施すと化成皮膜と鋼材
の密着性、化成皮膜表面への塗料の付着性、塗膜
の耐蝕性等が劣る。このためシヨツトブラスト等
の物理的手段、塩酸、硫酸などの無機酸、シユウ
酸などの有機酸による化学的手段を用いて酸化ス
ケール等を除去しているが、物理的手段において
は完全に除去することがむづかしく又化学的手段
においては、水素脆弱による鋼材表面の劣化及び
水洗を完全にしないと、黄錆の発生による化成皮
膜の悪化があり、この場合、酸洗、水洗、中和及
び防錆等の各処理を行わなければならない。又、
以上の如く酸化スケールを除去して化成皮膜を形
成しても耐蝕性に限界があるため、最近では下地
皮膜の耐久性の向上を図るべく更に電着塗装を施
し、或いは化成皮膜に代えて鋼材に直接電着塗装
を施すことが要求されてきている。 しかし酸化スケールを除去するような上記処理
剤を用いた場合、該処理剤は電着塗料と反応して
凝集を起こしたり、劣化させたり、また雑イオン
による電着浴液の汚染も生じ電着特性の変化をき
たし凝集物の表面付着による品質低下をまねくた
め、電着塗装を施す場合には、浸漬水洗、スプレ
ー水洗又はそれ等の組合わせによる充分な洗浄処
理をしなければならず工程数及び工数を増大する
のみならず設備費及び多大なスペースも要しコス
ト的にも高くなる。 これを更に詳述するに電着塗料は、その基本的
電着機構によりアニオン電着塗料とカチオン電着
塗料に大別されるもので、ここでアニオン電着塗
料に使用される樹脂はポリエステル、エポキシエ
ステル、ポリアクリル酸エステルなどを骨格とし
たポリカルボン酸樹脂で通常、有機アミノ、カセ
イカリなどの塩基で中和、水溶化(水分散化)さ
れ負に帯電しているため酸性物質が混入すると、
水溶化している樹脂分が再び水に不溶化してしま
う。 又、カチオン電着塗料はエポキシ樹脂、アクリ
ル樹脂などを骨格としたポリアミノ樹脂で通常有
機酸で中和、水溶化(水分散化)されて正に帯電
している。このため塩基性物質が混入すると、水
溶化している塗料が再び不溶化してしまう。それ
ばかりでなくCl-,PO -,SO -などの負イオン
とも反応し、凝集してしまう。 従つてアニオン電着塗料によるアニオン型電着
塗装及びカチオン電着塗料によるカチオン型電着
塗装の何れの場合にも上記の洗浄処理が必要とな
るのである。 そこで本発明は、以上の点に鑑み、鋼材の急冷
処理に際しての酸化スケールの発生を抑制除去す
ると共に、アニオン電着塗料の不溶化や凝集を生
じない塗装前処理剤を提供することをその目的と
するもので、縮合リン酸ソーダ2.0〜17.0重量
%、還元糖を0.5〜5.0重量%、有機酸を0.1〜2.2
重量%、弗化物を0.1〜2.2重量%含有する水溶液
から成る。本発明の第2発明は、上記第1発明の
処理剤を用いた塗装前処理方法を提供することを
その目的とするもので、無酸化雰囲気中で高熱処
理した鋼材を炉冷し、次いでこれを第1発明の処
理剤によつて急冷した後、水洗工程を経ずにアニ
オン型電着塗装を施すようにしたことを特徴とす
る。 本発明処理剤の主成分である縮合リン酸ソーダ
は、塩基性である上にリン酸イオン(PO -)を有
するためカチオン電着塗料と直に反応して塗料の
凝集を生ずるが、アニオン電着塗料に対しては塩
基性のため塗料浴に持ち込まれても悪影響は無
い。 又、補助成分の還元糖は非導電性のため塗料浴
に持ち込まれても電着に影響は無く、又有機酸や
弗化物は濃度的に非常に薄いため影響は無い。こ
こで縮合リン酸ソーダは、冷却速度を速めると同
時に酸化スケールやテンパーカラーの発生を抑制
する冷却剤、スケール抑制剤として機能するもの
であるが、2.0重量%未満では冷却剤スケール抑
制剤としての効果がうすれ、電着塗装しても耐食
性が低下してしまう。又、17.0重量%を越えると
スケール抑制効果は充分だが、アニオン電着塗料
の浴液のPHが上昇傾向になり、液管理がむつかし
くなる。 還元糖は、鋼材表面に薄い一次防錆皮膜を生成
させるものであるが、0.5重量%未満では急冷取
出し後の黄錆発生が早くなり、急冷処理電着塗装
間のワーク流動時間を持てなくなる。又、5.0重
量%を越えると表面付着量が多くなり電着塗装の
つきまわり性の低下がみられる。 有機酸は、鉄イオンとのキレートを生成するも
のであるが、0.1重量%未満ではスケール除去性
が低下し、電着塗装しても充分な耐蝕性が得られ
ない。又、2.2重量%を越えると一部アニオン電
着塗料との凝集がみられるようになり、塗装外
観、耐食性の低下がみられる。尚、有機酸として
はクエン酸、グルコン酸等が用いられる。弗化物
は、弗素イオンのエツチング作用により酸化スケ
ールを溶解、除去するものであるが、有機酸の場
合と同様の理由によりその含有率は0.1〜2.2重量
%とする。 次にこの処理剤を用いて行う第2発明の塗装前
処理方法の1例を図示の処理装置に基いて説明す
る。 図面で1はトレイ2をプツシヤーにより矢示方
向に1タクトづつ間歇的に順次移行せしめるコン
ベア装置を示し、その前端部にはトレイ2を供給
側に上昇せしめる昇降装置1―aを備え、その後
端部にはトレイ2をプツシヤーにより押送される
もとの位置に下降せしめる昇降装置1―bを備
え、その上面には長さ方向に沿い長手の加熱炉3
を設けられ、その前部は予備加熱室5に構成され
て居り、夫々には電気抵抗ヒーターを内設してい
る。該加熱炉3は内部に分解アンモニア等の変性
ガス、窒素ガス、還元ガス等任意の無酸化性ガス
を導入されるガス導管4が接続されて居り、無酸
化性雰囲気下で被処理材の予備加熱及びろう付け
加熱がなされるようにした。該加熱炉3の後方に
はウオータージヤケツト式の炉冷室6が連設され
て居り、炉冷室6の後端と前記加熱炉3の前端に
はタクト送りと連動して開閉するシヤツター装置
7,7を有する。8,8はガス導出管を示す。か
くして被処理材の炉冷も無酸化性雰囲気下で行な
われるようにした。炉冷室6の後方にはこれに連
接して冷却室9を設け、その室9の下面に本発明
処理剤を入れた冷却槽10を設け、又その内部に
無酸化性ガスを導入するガス導入管11とこれを
排出するガス排出管8とを接続して有し、その下
端にはタクト送りと連動し開閉するシヤツター装
置12を有する。 かくして被処理材は無酸化性ガス雰囲気下で冷
却処理が行なわれるようにした。13はトレイ2
をその上に受けてこれを昇降させトレイ2内の被
処理材を該冷却剤液に所定時間浸漬し、これに急
冷処理を与えるための昇降装置を示す。14は該
冷却槽10と接続するポンプ15を備えた供給タ
ンクで、槽10内の液を必要に応じて新しい液と
1部置換し常に液温を好ましくは5℃〜45℃に維
持するようにした。 以上の如き構成からなる装置において、各接合
部にろう材をセツトした鋼材をトレイ2上に載
せ、予備加熱室5に送り、ここで予熱した後、加
熱炉3に搬送し、この加熱炉3において例えば
1100℃〜1150℃まで加熱してろう付を行なう。 次いで鋼材を炉冷室6に送り、ここで後に急冷
しても熱による変形が小さい変態点以下の温度、
即ち570℃〜720℃程度まで冷却する。そして炉冷
が終つた鋼材を次の冷却室9に導き、この冷却室
9の下方に配した冷却槽10内の本発明処理剤に
浸漬して急冷する。この後、鋼材を冷却槽10か
ら引き上げ、冷却室9から取り出し、水洗工程を
経ずにアニオン型電着塗装を行い、焼付後上塗り
塗装して製品とする。 尚、上記の如く急冷処理後そのままアニオン電
着塗装して上塗りしても充分耐食性試験に合格す
る製品を得られるが、製品の形状性質から更に耐
食性を要求される場合には、急冷処理後リン酸亜
鉛皮膜等の化成処理を施してから電着塗装、上塗
り塗装を行うようにしても良く、これによれば耐
食性は2倍程度に性能アツプする。又、被処理剤
は無酸化雰囲気中で高熱処理されるため、防錆油
等の油分が完全に除去され、電着塗料への混入も
なく塗料の安定化塗膜品質の向上も図れる。 次に上記前処理法の実施例及び比較実験例につ
いて説明する。 (実施例 1) 縮合リン酸ソーダ7.5重量%、還元糖1.5重量
%、クエン酸0.5重量%、フツ化ナトリウム0.5重
量%残り水よりなる処理剤をあらかじめ冷却槽に
調製しておいた。SPCC鋼を2枚ならべ、接合部
に銅ろう材をセツトし分解プロパンガスよりなる
無酸化雰囲気の予備加熱室にて200℃付近まで予
備加熱し、次いで徐々に加熱炉に移行させ1150℃
まで加熱し、ろう材を融解させて接合部に流入さ
せ3分間保持した。次いで700℃まで炉冷後25℃
の処理剤中に浸漬して急冷した。1分後、取り出
したところ表面外観はスケールの発生はなく光沢
のあるテストピースが得られた。更に1分後アニ
オン電着塗装(日本ペイント社製・パワーコート
9000)を250V、3分の条件で行つた。さらに170
℃、30分で焼付したところ表面外観は凝集もなく
良好であつた。上塗り後(溶剤アクリル型)の耐
食性試験でも好成績であつた。 (実施例 2) 実施例1と同一の処理剤を用い、同一の方法に
て炉中ろう付後急冷しさらに1分後取り出したの
ちアニオン電着塗装(関西ペイントエレクロン
7200K)を行い170℃、30分の条件で焼付したとこ
ろ上塗り後の耐食性試験でも良好であつた。 (実ば例 3) 総合リン酸ソーダ6重量%、還元糖0.8重量
%、グルコン酸0.5重量%、酸性弗化アンモニウ
ム0.3重量%残り水よりなる処理剤を冷却槽中に
調製し、実施例1と同様の手順にて炉中ろう付し
670℃まで炉冷後処理剤中に浸漬して急冷したと
ころ、表面外観はスケールの発生がなく良好なテ
ストピースが得られた。そのまま実施例1と同方
式にて、アニオン電着塗装を行つたが同様に良好
であつた。 (実施例 4) 実施例3と同じ処理剤を用い、620℃で急冷処
理したところ表面外観等良好で尚かつアニオン電
着塗装上塗り後の耐食性試験も好結果であつた。 (実施例 5) 縮合リン酸ソーダ2重量%、還元糖0.7重量
%、グルコン酸0.2重量%、ケイ弗化亜鉛0.2重量
%残り水よりなる水溶液を冷却槽に調製し、炉中
ろう付後690℃にて急冷処理したが、同様に酸化
スケールの発生もなく良好な外観のテストピース
が得られた。取り出し後実施例2と同一方式にて
電着塗装、上塗りを行い、耐食性試験も優秀な結
果が得られた。 (比較実験例 1) 実施例1と同じ処理剤を用い、同様の方法にて
急冷処理し、取り出し後カチオン電着塗装(日本
ペイント社、パワートツプ―U)を行つたとこ
ろ、テストピース表面に塗料の凝集物がみられた
ばかりでなく、一部塗膜の破壊が確認された。 (比較実験例 2) リンゴ酸7重量%残り水からなる処理剤にて実
施例1と同様の方法にて炉中ろう付後、700℃で
急冷処理した。表面外観は一部酸化スケールの残
在がみられた。次に、そのままアニオン電着塗装
(日本ペイント社、パワーコート9000)を行つた
が塗料の凝集物が表面に著しく、付着し、外観は
不良であつた。 下表は、上記実施例と比較実験例の結果をまと
めたものである。
The present invention removes and suppresses oxidized scale that forms on the surface of the steel material when the steel material that has been subjected to high heat treatment in a non-oxidizing atmosphere, such as during furnace brazing, is cooled in a furnace and subjected to rapid cooling treatment. The present invention relates to a painting pretreatment agent and a painting pretreatment method that make it possible to perform anionic electrodeposition coating as a treatment. Normally, when painting the surface of a steel material, a chemical conversion film such as zinc phosphate is formed on the surface of the steel material as a base, and a coating film is formed on top of this film. In order to improve the mechanical properties of the steel materials, the steel materials are heated at approximately 570°C after brazing heat treatment at 1100°C to 1150°C, as known from Japanese Patent Publication No. 56-25903. It is furnace cooled to around the transformation point of ~720°C and then rapidly cooled. However, in this case, iron oxide and oxide film (oxide scale) are generated on the surface of the steel material, and if chemical conversion coating treatment is applied without removing this oxide scale, the adhesion between the chemical conversion coating and the steel material, the adhesion of paint to the surface of the chemical conversion coating, The corrosion resistance of the paint film is poor. For this reason, oxidized scale is removed using physical means such as shot blasting, and chemical means using inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as oxalic acid, but physical means do not completely remove it. Moreover, chemical methods can cause deterioration of the steel surface due to hydrogen brittleness and deterioration of the chemical conversion film due to the generation of yellow rust if not thoroughly washed with water. and various treatments such as rust prevention must be carried out. or,
Even if a chemical conversion film is formed by removing oxide scale as described above, there is a limit to its corrosion resistance.Recently, in order to improve the durability of the base film, electrodeposition coating has been applied, or instead of a chemical conversion film, steel materials have been applied. There is a growing demand for direct electrodeposition coating. However, when the above-mentioned treatment agent that removes oxidized scale is used, the treatment agent reacts with the electrodeposition paint, causing aggregation and deterioration, and also contaminating the electrodeposition bath liquid with miscellaneous ions. When applying electrodeposition coating, it is necessary to perform sufficient cleaning treatment by immersion water washing, spray washing, or a combination of these, as this may cause changes in properties and deterioration of quality due to surface adhesion of aggregates. This not only increases the number of man-hours but also requires equipment costs and a large amount of space, resulting in high costs. To explain this in more detail, electrodeposition paints are broadly classified into anionic electrodeposition paints and cationic electrodeposition paints depending on their basic electrodeposition mechanism, and the resins used for anionic electrodeposition paints are polyester, polyester, Polycarboxylic acid resins with backbones such as epoxy esters and polyacrylic esters are usually neutralized with bases such as organic aminos and caustic potash, and are water-solubilized (dispersed in water) and negatively charged, so if acidic substances are mixed in. ,
The resin that has been made water-soluble becomes insoluble in water again. In addition, cationic electrodeposition paints are polyamino resins with skeletons of epoxy resins, acrylic resins, etc., and are normally neutralized with an organic acid and made water-soluble (water-dispersed) to be positively charged. For this reason, if a basic substance is mixed in, the water-soluble paint becomes insolubilized again. In addition, it reacts with negative ions such as Cl - , PO 3 4 - and SO 2 4 - , resulting in aggregation. Therefore, the above-mentioned cleaning treatment is required for both anionic electrodeposition coating using anionic electrodeposition paint and cationic electrodeposition coating using cationic electrodeposition paint. Therefore, in view of the above points, an object of the present invention is to provide a paint pretreatment agent that suppresses and removes the generation of oxide scale during the rapid cooling treatment of steel materials, and does not cause insolubilization or aggregation of anionic electrodeposition paints. 2.0 to 17.0% by weight of condensed sodium phosphate, 0.5 to 5.0% by weight of reducing sugar, and 0.1 to 2.2% of organic acid.
% by weight, consisting of an aqueous solution containing 0.1 to 2.2% by weight of fluoride. The second invention of the present invention aims to provide a painting pretreatment method using the treatment agent of the first invention, in which a steel material that has been subjected to high heat treatment in a non-oxidizing atmosphere is cooled in a furnace, and then the steel material is cooled in a furnace. It is characterized in that after quenching with the treatment agent of the first invention, an anionic electrodeposition coating is applied without passing through a water washing step. Condensed sodium phosphate, which is the main component of the treatment agent of the present invention, is basic and contains phosphate ions (PO 3 4 - ), so it reacts directly with the cationic electrodeposition paint, causing aggregation of the paint. Since it is basic to anionic electrodeposition paints, there is no adverse effect even if it is brought into the paint bath. In addition, since the reducing sugar as an auxiliary component is non-conductive, it has no effect on electrodeposition even if it is brought into the paint bath, and organic acids and fluorides have very low concentrations and therefore have no effect. Here, condensed sodium phosphate functions as a coolant and scale inhibitor that speeds up the cooling rate and at the same time suppresses the generation of oxide scale and temper color, but if it is less than 2.0% by weight, it cannot function as a coolant scale inhibitor. The effect will be weakened, and even if electrodeposition is applied, the corrosion resistance will decrease. Moreover, if it exceeds 17.0% by weight, the scale suppression effect is sufficient, but the pH of the anionic electrodeposition paint bath solution tends to rise, making solution management difficult. Reducing sugar forms a thin primary rust-preventing film on the surface of the steel material, but if it is less than 0.5% by weight, yellow rust will occur quickly after rapid cooling and removal, and the work flow time between rapid cooling and electrodeposition coating will not be maintained. Moreover, if it exceeds 5.0% by weight, the amount of surface adhesion increases and the throwing power of the electrodeposition coating decreases. The organic acid forms a chelate with iron ions, but if it is less than 0.1% by weight, the scale removal performance decreases and sufficient corrosion resistance cannot be obtained even with electrodeposition coating. Moreover, if it exceeds 2.2% by weight, some aggregation with the anionic electrodeposition paint will be observed, resulting in a decrease in the painted appearance and corrosion resistance. Incidentally, as the organic acid, citric acid, gluconic acid, etc. are used. Fluoride dissolves and removes oxide scale by the etching action of fluoride ions, and its content is set at 0.1 to 2.2% by weight for the same reason as in the case of organic acids. Next, an example of the pre-painting treatment method of the second invention using this treatment agent will be explained based on the illustrated treatment apparatus. In the drawings, reference numeral 1 denotes a conveyor device that sequentially moves the trays 2 in the direction of the arrow intermittently in one takt by a pusher.The front end of the conveyor device 1 is equipped with a lifting device 1-a that raises the trays 2 toward the supply side. The section is equipped with a lifting device 1-b for lowering the tray 2 to the original position where it is pushed by a pusher, and a heating furnace 3 extending along the length is provided on the upper surface of the lifting device 1-b.
are provided, the front part of which is configured as a preheating chamber 5, each of which is equipped with an electric resistance heater. The heating furnace 3 is connected to a gas conduit 4 into which any non-oxidizing gas such as decomposed ammonia, nitrogen gas, reducing gas, etc. is introduced, and the material to be processed is prepared in a non-oxidizing atmosphere. Heating and brazing heating were performed. A water jacket-type furnace cold chamber 6 is connected to the rear of the heating furnace 3, and a shutter device is installed at the rear end of the furnace cold chamber 6 and the front end of the heating furnace 3 to open and close in conjunction with tact feeding. It has 7,7. Reference numerals 8 and 8 indicate gas outlet pipes. In this way, the furnace cooling of the treated material was also carried out in a non-oxidizing atmosphere. A cooling chamber 9 is provided at the rear of the furnace cooling chamber 6 and connected thereto, and a cooling tank 10 containing the treatment agent of the present invention is provided on the lower surface of the chamber 9, and a gas for introducing non-oxidizing gas into the interior thereof is provided. It has an introduction pipe 11 and a gas discharge pipe 8 for discharging it, and has a shutter device 12 at its lower end that opens and closes in conjunction with tact feeding. In this way, the material to be treated was cooled in an atmosphere of non-oxidizing gas. 13 is tray 2
The figure shows an elevating device for receiving and lowering the material on the tray 2, immersing the material in the tray 2 in the coolant liquid for a predetermined period of time, and applying a rapid cooling process to the material. Reference numeral 14 denotes a supply tank equipped with a pump 15 connected to the cooling tank 10, which replaces part of the liquid in the tank 10 with new liquid as necessary to maintain the liquid temperature at preferably 5°C to 45°C. I made it. In the apparatus configured as described above, the steel material with brazing filler metal set at each joint is placed on the tray 2, sent to the preheating chamber 5, preheated there, and then transported to the heating furnace 3. For example in
Brazing is performed by heating to 1100℃ to 1150℃. Next, the steel material is sent to the furnace cooling chamber 6, where it is kept at a temperature below the transformation point at which deformation due to heat is small even if it is rapidly cooled later.
That is, it is cooled to about 570°C to 720°C. After the furnace cooling, the steel material is led to the next cooling chamber 9, and immersed in the treatment agent of the present invention in a cooling tank 10 disposed below this cooling chamber 9 to be rapidly cooled. Thereafter, the steel material is pulled up from the cooling tank 10, taken out from the cooling chamber 9, and subjected to anionic electrodeposition coating without going through a water washing process, and then subjected to a top coat after baking to produce a product. As mentioned above, it is possible to obtain a product that satisfactorily passes the corrosion resistance test by applying anion electrodeposition and topcoating after the rapid cooling treatment, but if further corrosion resistance is required due to the shape of the product, rinsing after the rapid cooling treatment may be necessary. Electrodeposition coating or top coating may be applied after a chemical conversion treatment such as an acid zinc coating, whereby the corrosion resistance can be approximately doubled. In addition, since the treated agent is subjected to high heat treatment in a non-oxidizing atmosphere, oil such as rust preventive oil is completely removed, and the quality of the stabilized coating film can be improved without being mixed into the electrodeposition coating. Next, examples and comparative experimental examples of the above pretreatment method will be described. (Example 1) A treatment agent consisting of 7.5% by weight of condensed sodium phosphate, 1.5% by weight of reducing sugar, 0.5% by weight of citric acid, 0.5% by weight of sodium fluoride and the remainder water was prepared in advance in a cooling tank. Two pieces of SPCC steel are lined up, copper brazing material is set at the joint, and preheated to around 200℃ in a preheating chamber with a non-oxidizing atmosphere made of decomposed propane gas, then gradually transferred to a heating furnace to 1150℃.
The brazing filler metal was heated to 100%, melted and flowed into the joint, and held for 3 minutes. Then furnace cooled to 700℃ and then 25℃
It was immersed in a processing agent and quenched. When the test piece was taken out after 1 minute, a shiny test piece with no scale appearance was obtained. After another 1 minute, apply anionic electrodeposition coating (manufactured by Nippon Paint Co., Ltd., Power Coat).
9000) at 250V for 3 minutes. 170 more
When baked at ℃ for 30 minutes, the surface appearance was good with no agglomeration. Good results were also obtained in the corrosion resistance test after top coating (solvent acrylic type). (Example 2) Using the same treatment agent as in Example 1, brazing in the furnace in the same manner as in Example 1, quenching, taking it out after one minute, and applying anion electrodeposition coating (Kansai Paint Elekron).
7200 K ) and baked at 170°C for 30 minutes, the corrosion resistance test after topcoating also showed good results. (Example 3) A treatment agent consisting of 6% by weight of total sodium phosphate, 0.8% by weight of reducing sugar, 0.5% by weight of gluconic acid, and 0.3% by weight of acidic ammonium fluoride with the remainder water was prepared in a cooling tank. Furnace brazing using the same procedure as
When quenched by immersing it in a furnace cooling post-treatment agent to 670°C, a good test piece with no scale appearance was obtained on the surface. Anion electrodeposition coating was performed using the same method as in Example 1, but the results were similarly good. (Example 4) Using the same treatment agent as in Example 3, the product was rapidly cooled at 620°C. The surface appearance was good, and the corrosion resistance test after topcoating with anionic electrodeposition also showed good results. (Example 5) An aqueous solution consisting of 2% by weight of condensed sodium phosphate, 0.7% by weight of reducing sugar, 0.2% by weight of gluconic acid, and 0.2% by weight of zinc silicofluoride with the remainder water was prepared in a cooling tank, and after brazing in a furnace, Although the sample was rapidly cooled at ℃, a test piece with a good appearance and no oxidized scale was obtained. After removal, electrodeposition coating and top coating were performed in the same manner as in Example 2, and excellent results were obtained in the corrosion resistance test. (Comparative Experiment Example 1) Using the same treatment agent as in Example 1, quenching was performed in the same manner, and after taking it out, cationic electrodeposition coating (Nippon Paint Co., Ltd., Power Top-U) was performed, and the paint appeared on the surface of the test piece. Not only were aggregates observed, but some damage to the paint film was also confirmed. (Comparative Experimental Example 2) After brazing in a furnace in the same manner as in Example 1 using a treatment agent consisting of 7% by weight of malic acid and residual water, it was rapidly cooled at 700°C. The surface appearance showed some residual oxide scale. Next, anion electrodeposition coating (Nippon Paint Co., Ltd., Power Coat 9000) was applied as it was, but a significant amount of paint agglomerates adhered to the surface and the appearance was poor. The table below summarizes the results of the above examples and comparative experimental examples.

【表】【table】

【表】 この様に本発明による処理剤は、冷却剤及び酸
化スケールの抑制剤として機能する縮合リン酸ソ
ーダを主成分として、更に防錆作用を有する還元
糖や、スケール除去作用を有する有機酸、弗化物
を含有するもので、鋼材の急冷処理に際しての酸
化スケールの発生が抑制除去され、且つ該処理剤
はアニオン電着塗料浴に持ち込まれても塗料の凝
集を生ずることが無く、急冷処理後水洗工程を経
ずにアニオン型電着塗装を施しても、塗料の凝集
や塗膜のはじきの無い耐食性の良好な電着塗膜を
形成出来、工程数を削減して設備費の低廉化と生
産性の向上とを図ることが出来る効果を有する。
[Table] As described above, the treatment agent according to the present invention has condensed sodium phosphate as a main component, which functions as a coolant and an oxidation scale inhibitor, and further contains reducing sugars, which have a rust-preventing effect, and organic acids, which have a scale-removing effect. , containing fluoride, suppresses and removes the generation of oxidized scale during the rapid cooling treatment of steel materials, and does not cause paint agglomeration even when brought into the anionic electrocoating paint bath, making it suitable for rapid cooling treatment. Even if anionic electrodeposition coating is applied without a post-rinsing process, it is possible to form an electrodeposition coating with good corrosion resistance without paint agglomeration or repellency, reducing the number of processes and lowering equipment costs. This has the effect of improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の実施に用いる装置の1側の
側面線図である。
The drawing is a side view of one side of the apparatus used for carrying out the method of the invention.

Claims (1)

【特許請求の範囲】 1 縮合リン酸ソーダを2.0〜17.0重量%、還元
糖を0.5〜5.0重量%、有機酸を0.1〜2.2重量%、
弗化物を0.1〜2.2重量%含有する水溶液から成る
鋼材の塗装前処理剤。 2 無酸化雰囲気中で高熱処理した鋼材を炉冷
し、次いでこれを縮合リン酸ソーダを2.0〜17.0
重量%、還元糖を0.5〜5.0重量%、有機酸を0.1〜
2.2重量%、弗化物を0.1〜2.2重量%含有する水溶
液から成る処理剤によつて急冷した後、水洗工程
を経ずにアニオン型電着塗装を施すようにしたこ
とを特徴とする鋼材の塗装前処理方法。
[Claims] 1. 2.0 to 17.0% by weight of condensed sodium phosphate, 0.5 to 5.0% by weight of reducing sugar, 0.1 to 2.2% by weight of organic acid,
A pre-painting agent for steel consisting of an aqueous solution containing 0.1 to 2.2% by weight of fluoride. 2 Steel materials that have been subjected to high heat treatment in a non-oxidizing atmosphere are cooled in a furnace, and then heated with condensed sodium phosphate at a concentration of 2.0 to 17.0
% by weight, reducing sugar 0.5-5.0% by weight, organic acid 0.1-5.0% by weight
2.2% by weight, and anionic electrodeposition coating is applied without a water washing process after quenching with a treatment agent consisting of an aqueous solution containing 0.1 to 2.2% by weight of fluoride. Pretreatment method.
JP8351383A 1983-05-14 1983-05-14 Pretreating agent and pretreatment for painting of steel material Granted JPS59229496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8351383A JPS59229496A (en) 1983-05-14 1983-05-14 Pretreating agent and pretreatment for painting of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8351383A JPS59229496A (en) 1983-05-14 1983-05-14 Pretreating agent and pretreatment for painting of steel material

Publications (2)

Publication Number Publication Date
JPS59229496A JPS59229496A (en) 1984-12-22
JPS6211078B2 true JPS6211078B2 (en) 1987-03-10

Family

ID=13804562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8351383A Granted JPS59229496A (en) 1983-05-14 1983-05-14 Pretreating agent and pretreatment for painting of steel material

Country Status (1)

Country Link
JP (1) JPS59229496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221187U (en) * 1988-07-29 1990-02-13

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233785A (en) * 1985-08-02 1987-02-13 Honda Motor Co Ltd Pretreatment for painting of steel product
JP6235997B2 (en) * 2012-03-02 2017-11-22 出光興産株式会社 Water-based coolant
JP6227248B2 (en) * 2012-12-27 2017-11-08 出光興産株式会社 Water-based coolant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221187U (en) * 1988-07-29 1990-02-13

Also Published As

Publication number Publication date
JPS59229496A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
US2738294A (en) Salt bath system and method for treating metals
CN108265252B (en) Environment-friendly hot-dip coating method
JPS6123272B2 (en)
US2813813A (en) Process for forming protective phosphate coatings on metallic surfaces
US3493440A (en) Method for phosphate coating ferrous metal surfaces and finishing treatment thereof
JPS6211078B2 (en)
US2271375A (en) Process of coating metal surfaces
US11118271B2 (en) Conveyor frame treatment for suppressing phosphate dragging resulting from the plant design in a dip coating process sequence
JP2000160394A (en) Short time phosphate treatment of ferrous metallic material
JPS6211077B2 (en)
CA1135573A (en) Method for locally galvanizing a piece of metal and galvanized products obtained by said process
CN115485415A (en) Method for producing a hardened steel component having an anti-corrosion zinc treatment
US3523067A (en) Selective galvanizing of steel strip
US20190032224A1 (en) Suppression of phosphate dragging resulting from the plant design in a dip coating process sequence
JPS6233785A (en) Pretreatment for painting of steel product
EP0372915B1 (en) Composition and process for coating metallic surfaces
KR100436597B1 (en) Method for plating with molten aluminum
JPS5848678A (en) Pretreating agent for coating steel products and pretreatment for coating
US2366477A (en) Protective coating
US2330608A (en) Preparing stock for coating and electroplating
US3632453A (en) Method of manufacturing aluminum-coated ferrous base articles
JPS6025503B2 (en) Pre-painting treatment agent and method for steel materials
JPS5848677A (en) Pretreating agent for coating steel products and pretreatment for coating
US3261710A (en) Method for removing coating of epoxyphenolic resin and polytetrafluoroethylene from metal cases
Nair Special Types of Phosphating-A Review